Série 7

- 1. Résoudre les triangles ABC dans les trois cas suivants :
 - a) a = 4, b = 7 et c = 10,
 - b) $a = 12, b = 18 \text{ et } \gamma = 53^{\circ},$
 - c) a = 5, $\beta = 114^{\circ}$ et $\gamma = 31^{\circ}$.
- **2.** D'un triangle ABC, on ne connaît que les côtés a, c et l'angle α : a=7, c=10 et $\alpha=30^\circ$.
 - a) Résoudre le triangle (la solution est-elle unique?)
 - b) Construire la (les) solution(s).
- **3.** Pour déterminer l'altitude du sommet C d'une montagne, on fait le choix de deux points A et B distants de d mètres.

On mesure les angles $\alpha = \widehat{BAC}$, $\beta = \widehat{ABC}$ et l'angle d'élévation δ sous lequel on voit C depuis A.

Sachant que A est au bord de la mer, calculer l'altitude de C.

Application numérique : $d = 1000 \,\mathrm{m}$, $\alpha = 50^{\circ}$, $\beta = 115^{\circ}$ et $\delta = 35^{\circ}$.

- 4. Résoudre le triangle ABC dont on connaît : $\sigma = b + c$, β et γ . Indication : exprimer σ en fonction de a et des trois angles.
- 5. Soient ABC un triangle et M le point milieu du côté BC. Déterminer la longueur de la médiane AM en fonction des côtés a, b et c.
- 6. Soient A et B deux points situés sur le même méridien terrestre et S un satellite passant à la verticale de A. Déterminer l'altitude AS = h sachant que depuis B on observe S sous un angle β , que l'arc AB est de longueur x km et que le rayon terrestre vaut R km.



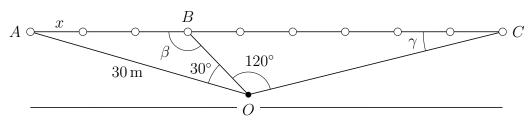
7. Dix réverbères, placés à intervalles égaux, se suivent sur toute la longueur d'un pont. Un passant situé à 30 mètres du premier réverbère voit la distance qui sépare celui-ci du quatrième, sous un angle de 30°, et la distance qui sépare le quatrième du dernier réverbère, sous un angle de 120°. Quelle est la longueur du pont?

Réponses de la série 7

- 1. a) $\alpha \approx 18,2^{\circ}$, $\beta \approx 33,1^{\circ}$ et $\gamma \approx 128,7^{\circ}$,
 - b) $c \approx 14, 4$, $\alpha \approx 41, 6^{\circ}$ et $\beta \approx 85, 4^{\circ}$,
 - c) $\alpha = 35^{\circ}$, $b \approx 8$ et $c \approx 4, 5$.
- 2. Il y a deux solutions, elles correspondent toutes les deux à $\sin \gamma = \frac{5}{7}$.
 - $\gamma \approx 45,6^{\circ}$, $\beta \approx 104,4^{\circ}$ et $b \approx 13,6$,
 - ou $\gamma \approx 134,4^{\circ}$, $\beta \approx 15,6^{\circ}$ et $b \approx 3,8$.
- **3.** $h = d \cdot \frac{\sin \beta \cdot \sin \delta}{\sin(\alpha + \beta)}$, application numérique : $h \approx 2'008 \,\mathrm{m}$.
- **4.** $a = \sigma \cdot \frac{\sin(\beta + \gamma)}{\sin \beta + \sin \gamma}$, $b = \sigma \cdot \frac{\sin \beta}{\sin \beta + \sin \gamma}$, $c = \sigma \cdot \frac{\sin \gamma}{\sin \beta + \sin \gamma}$.
- **5.** $AM = \frac{1}{2} \sqrt{2(b^2 + c^2) a^2}$.

Remarque : si le triangle ABC est rectangle en A , on retrouve le résultat : $AM = \frac{a}{2}$.

- **6.** $h = R \cdot \left(\frac{\cos \beta}{\cos(\beta + \frac{x}{R})} 1 \right).$
- 7. Figure d'étude :



La longueur du pont est égale à $9x = 10\sqrt{39}$ m.