Série 4

1. Calculer sans machine les valeurs suivantes :

a)
$$\cos(\frac{7\pi}{12})$$

c)
$$\tan(\frac{5\pi}{12})$$

b)
$$\sin(\frac{\pi}{12})$$

d)
$$\tan(\frac{\pi}{8})$$

2. Calculer le sinus et le cosinus de l'angle 2x dans les deux cas suivants :

a)
$$\sin x = \pm \frac{3}{5}$$
, $\frac{\pi}{2} \le x \le \pi$

b)
$$\cot x = \pm 2\sqrt{2}$$
, $3\pi \le x \le \frac{7\pi}{2}$

3. Calculer le sinus et le cosinus de l'angle $\frac{x}{2}$ dans les deux cas suivants :

a)
$$\cos x = \pm \frac{3}{5}$$
, $-\frac{7\pi}{2} < x < -3\pi$

a)
$$\cos x = \pm \frac{3}{5}$$
, $-\frac{7\pi}{2} < x < -3\pi$ b) $\tan x = -\frac{4}{3}$, $\frac{7\pi}{2} < x < \frac{9\pi}{2}$

4. Si $\tan x = \frac{1}{3}$ et $\tan y = -\frac{1}{7}$, calculer sans machine, l'angle $\varphi = 2x - y$

- a) sachant que x et y sont compris entre $-\frac{\pi}{2}$ et $\frac{\pi}{2}$.
- b) sachant que x et y sont compris entre $\frac{\pi}{2}$ et $\frac{3\pi}{2}$.

5. Calculer sans calculatrice la valeur de $\tan(x+y)$ sachant que $\tan x = -\frac{\sqrt{2}}{2}$ et que $\,y\,$ est défini par $\,\sin y = \cos(\frac{y}{3})\,$ avec $\,\frac{19\pi}{4} \le y \le 5\pi\,.$

6. Factoriser les expressions suivantes :

a)
$$\sin(5x) - \sin x$$

b)
$$\cos^2(3x) - \cos^2 x$$

7. Factoriser avant de résoudre les équations suivantes :

a)
$$\sin(3x) + \sin x = \sin(2x)$$

c)
$$\sin^2(5x) = \sin^2 x$$

b)
$$\cos(3x) + \cos(5x) = \cos x$$

d)
$$(1 + \tan x) [\cos(7x) + \cos x] = 0$$

8. Démontrer l'identité suivante : $\tan(\frac{x}{2}) = \frac{\sin x}{1 + \cos x}$.

9. Exercice récréatif

Calculer la valeur exacte de $\cos(\frac{2\pi}{5})$. En déduire la construction à la règle et au compas d'un pentagone régulier inscrit dans un cercle trigonométrique.

Indication : chercher une équation polynomiale satisfaite par $\cos(\frac{2\pi}{5})$.

Réponses de la série 4

1. a)
$$\cos(\frac{7\pi}{12}) = -\frac{\sqrt{2}}{4}(\sqrt{3} - 1)$$

c)
$$\tan(\frac{5\pi}{12}) = 2 + \sqrt{3}$$

b)
$$\sin(\frac{\pi}{12}) = \frac{\sqrt{2}}{4}(\sqrt{3} - 1)$$

d)
$$\tan(\frac{\pi}{8}) = \sqrt{2} - 1$$

2. a)
$$\sin(2x) = -\frac{24}{25}$$
, $\cos(2x) = \frac{7}{25}$. b) $\sin(2x) = \frac{4\sqrt{2}}{9}$, $\cos(2x) = \frac{7}{9}$.

b)
$$\sin(2x) = \frac{4\sqrt{2}}{9}$$
, $\cos(2x) = \frac{7}{9}$.

3. a)
$$\sin(\frac{x}{2}) = \frac{2\sqrt{5}}{5}$$
, $\cos(\frac{x}{2}) = \frac{\sqrt{5}}{5}$

a)
$$\sin(\frac{x}{2}) = \frac{2\sqrt{5}}{5}$$
, $\cos(\frac{x}{2}) = \frac{\sqrt{5}}{5}$. b) $\sin(\frac{x}{2}) = -\frac{\sqrt{5}}{5}$, $\cos(\frac{x}{2}) = \frac{2\sqrt{5}}{5}$.

4. a)
$$\varphi = \frac{\pi}{4}$$

b)
$$\varphi = \frac{5\pi}{4}$$

5.
$$\tan(x+y) = \sqrt{2} - 3$$

6. a)
$$\sin(5x) - \sin x = 2\sin(2x)\cos(3x)$$

b)
$$\cos^2(3x) - \cos^2 x = -4 \sin x \cos x \sin(2x) \cos(2x) = -\sin(2x) \sin(4x)$$

7. a)
$$S = \left\{ \frac{k\pi}{2}, -\frac{\pi}{3} + 2k\pi, \frac{\pi}{3} + 2k\pi, k \in \mathbb{Z} \right\}$$

b)
$$S = \left\{ \frac{\pi}{2} + k\pi, -\frac{\pi}{12} + \frac{k\pi}{2}, \frac{\pi}{12} + \frac{k\pi}{2}, k \in \mathbb{Z} \right\}$$

c)
$$S = \left\{ \frac{k\pi}{6}, \frac{k\pi}{4}, k \in \mathbb{Z} \right\} = \left\{ \frac{k\pi}{2}, \frac{\pi}{6} + \frac{k\pi}{2}, \frac{\pi}{4} + \frac{k\pi}{2}, \frac{\pi}{3} + \frac{k\pi}{2}, k \in \mathbb{Z} \right\}$$

d)
$$S = \left\{ -\frac{\pi}{4} + k\pi, \frac{\pi}{8} + \frac{k\pi}{4}, \frac{\pi}{6} + k\pi, \frac{5\pi}{6} + k\pi, k \in \mathbb{Z} \right\}$$