Série 10 bis

1. Déterminer la fonction dérivée des fonctions suivantes :

a)
$$a(x) = \cos(\frac{1+2x}{x})$$

d)
$$d(x) = \frac{\sin x + \cos x}{\sin x - \cos x}$$

b)
$$b(x) = \cos^2(\sin x)$$

e)
$$e(x) = \arccos(3x - 1)$$

c)
$$c(x) = [\sin(p x^q)]^r, p, q, r \in \mathbb{N}^*$$

f)
$$f(x) = \arctan\left(\frac{12\sin x}{5+13\cos x}\right)$$

- 2. Cet exercice a pour but de montrer comment on peut calculer la dérivée des fonctions trigonométriques réciproques sans passer par le rapport de Newton et sans appliquer directement la formule vue en cours.
 - a) En dérivant à l'aide des règles de calcul chaque côté de l'égalité

$$\sin(\arcsin(x)) = 1,$$

montrer que
$$\arcsin'(x) = \frac{1}{\sqrt{1-x^2}}, \forall x \in]-1,1[.$$

- b) Reproduire la même méthode pour calculer $\arccos'(x)$ et $\arctan'(x)$
- **3.** Soit Γ la courbe d'équation $y = 3 \arctan\left(\frac{\tan x}{3}\right), x \in [0, \frac{\pi}{2}]$.
 - a) Montrer que la courbe Γ admet une tangente de pente m=3. Déterminer l'équation cartésienne de cette tangente.
 - b) Pour quelle valeur de x, la courbe Γ admet-elle au point (x,f(x)), une normale de pente $m=-\frac{1}{2}$?
- **4.** Soit Γ la courbe d'équation $y = \arccos\left(\frac{1-x^2}{1+x^2}\right)$.

Montrer que la droite t d'équation $y = \frac{\pi}{3} - \frac{\sqrt{3}}{2} (1 + \sqrt{3} x)$ est tangente à Γ .

5. Montrer que la fonction dérivée de la fonction f est identiquement nulle.

$$f(x) = \arctan x + \arctan \left(\frac{1-x}{1+x}\right)$$

En déduire l'expression de $\arctan\left(\frac{1-x}{1+x}\right)$ en fonction de $\arctan x$ sur chaque intervalle de son domaine de continuité.

Puis déduire le graphe de la fonction $\arctan\left(\frac{1-x}{1+x}\right)$ de celui de la fonction $\arctan x$.

6. Exercice facultatif

Montrer que les fonctions suivantes ont même fonction dérivée sur l'intervalle $\,\left[\,0\,,\,\frac{\pi}{2}\,\right].$

$$f(x) = \arctan\left(\frac{12\sin x}{5+13\cos x}\right)$$
 et $g(x) = 2\arctan\left(\frac{3+2\tan(x/2)}{3-2\tan(x/2)}\right)$.

Puis en déduire que $f(x) = g(x) - \frac{\pi}{2} \text{ sur } [0, \frac{\pi}{2}].$

- 7. On considère la fonction $f(x) = \arcsin\left(\frac{2x}{1+x^2}\right) + \arccos\left(\frac{1-x^2}{1+x^2}\right)$.
 - a) Donner le domaine de définition de la fonction f.
 - b) Déterminer la fonction dérivée de f ainsi que son domaine de définition.
 - c) En déduire la représentation graphique de f.

1. a)
$$a'(x) = \frac{1}{x^2} \sin(\frac{1+2x}{x})$$

d)
$$d'(x) = -\frac{2}{(\sin x - \cos x)^2}$$

b)
$$b'(x) = -\cos x \sin(2\sin x)$$

e)
$$e'(x) = -\frac{3}{\sqrt{-9x^2 + 6x}}$$

c)
$$c'(x) = p q r x^{q-1} \cos(p x^q) [\sin(p x^q)]^{r-1}$$
 f) $f'(x) = \frac{12}{13 + 5 \cos x}$

f)
$$f'(x) = \frac{12}{13 + 5\cos x}$$

3. a) En
$$x = \frac{\pi}{3}$$
, Γ admet une tangente d'équation : $y - \frac{\pi}{2} = 3(x - \frac{\pi}{3})$

Réponses de la série 10 bis

b)
$$x = \arcsin \frac{3}{4}$$

4. La droite
$$t$$
 est tangente à Γ en $T\left(-\frac{\sqrt{3}}{3}, \frac{\pi}{3}\right)$

5.
$$\arctan \frac{1-x}{1+x} = \begin{cases} -\frac{3\pi}{4} - \arctan x & \text{si} \quad x < -1 \\ \frac{\pi}{4} - \arctan x & \text{si} \quad x > -1 \end{cases}$$

6.
$$f'(x) = g'(x) = \frac{12}{13 + 5 \cos x}$$

7. a)
$$D_f = \mathbb{R}$$

b)
$$f'(x) = \frac{2}{1+x^2} \left[\operatorname{sgn}(1-x^2) + \operatorname{sgn} x \right], \qquad D_{f'} = \mathbb{R} - \{-1, 0, 1\}.$$

c)
$$f(x) = \begin{cases} -\pi - 4 \arctan x & \text{si } x < -1 \\ 0 & \text{si } -1 \le x \le 0 \\ 4 \arctan x & \text{si } 0 < x \le 1 \\ \pi & \text{si } x > 1 \end{cases}$$