Série 10

- 1. Pour chaque fonction f ci-dessous, donner le nombre dérivé $f'(x_0)$ pour tout $x_0 \in D_f$ en calculant la limite du rapport de Newton.
 - a) $f(x) = \cos(x)$
 - b) $f(x) = \cot(x)$
 - c) $f(x) = \sin(2x)$
 - $d) f(x) = \sin(3x)$
 - e) $f(x) = \cos^3(x)$
 - f) $f(x) = \arctan\left(\frac{1}{x}\right)$
- **2.** Pour chaque paire de fonctions f et g ci-dessous, montrer que f et g sont des IPE autour de $x_0 = 0$.
 - a) $f(x) = \arcsin(x)$ et g(x) = x
 - b) $f(x) = \arccos(x) \frac{\pi}{2}$ et g(x) = -x
 - c) $f(x) = \arctan(\sin(x))$ et $g(x) = \sin(x)$
- **3.** On considère les deux fonctions $f(x) = \operatorname{arccot}(x)$ et $g(x) = \arctan(x) + \frac{\pi}{2}$.
 - a) Donner l'équation de la tangente au graphe de f au point (0, f(0)).
 - b) Donner l'équation de la tangente au graphe de g au point (0, g(0)).
 - c) Montrer que ces deux droites sont orthogonales. Indication : que vaut le produit des pentes ?
- **4.** Donner l'équation de la droite normale au graphe de la fonction $f(x) = 3\sin(2x)$ au point $\left(\frac{\pi}{12}, \frac{3}{2}\right)$.

Indication: la droite normale à un graphe de fonction au point $(x_0, f(x_0))$ est la droite perpendiculaire en ce point à la tangente au graphe.

5. On décrit le demi-cercle supérieur du cercle trigonométrique comme le graphe de la fonction f définie par

 $f(x) = \sqrt{1 - x^2}, x \in [-1, 1].$

En s'aidant d'un dessin, et sans calculer le nombre $f'(x_0)$, donner la pente de la tangente t au graphe G_f au point $(x_0, f(x_0))$ pour tout $x_0 \in]-1, 1[$. En déduire la valeur de $f'(x_0)$.

Indication : commencer par calculer la pente de la droite reliant l'origine au point $(x_0, f(x_0))$.

Réponses de la série 10

1. a)
$$f'(x_0) = -\sin(x_0)$$

b)
$$f'(x_0) = -1 - \cot^2(x_0) = \frac{-1}{\sin^2(x_0)}$$

c)
$$f'(x_0) = 2\cos(2x_0)$$

d)
$$f'(x_0) = 3\cos(3x_0)$$

e)
$$f'(x_0) = -3\cos^2(x_0)\sin(x_0)$$

f)
$$f'(x_0) = \frac{-1}{1+x_0^2}$$

3. a)
$$t_f: y = \frac{\pi}{2} - x$$

b)
$$t_g: y = \frac{\pi}{2} + x$$

4.
$$n: y = \frac{3}{2} - \frac{1}{3\sqrt{3}} \left(x - \frac{\pi}{12} \right)$$