1. Calculer, si elle existe, la limite des suites définies par les termes généraux suivants :

Série 6

a)
$$a_n = \frac{\sqrt{n^2 + 1} + n}{n + 3}$$
,

a)
$$a_n = \frac{\sqrt{n^2 + 1} + n}{n + 3}$$
, b) $b_n = \sqrt{n^2 + 1} - \sqrt{n^2 + a n}$, $a \in \mathbb{R}$,

c)
$$c_n = \frac{1+2+\cdots+n}{n^2+n+1}$$

c)
$$c_n = \frac{1+2+\cdots+n}{n^2+n+1}$$
, d) $d_n = \frac{3(n+2)!+2(n+1)!}{(n+3)!}$,

e)
$$e_n = (-1)^n \sin(\frac{n\pi}{2})$$
,

f)
$$f_n = \sqrt{2n} - \sqrt{n+1}$$
,

g)
$$g_n = \frac{n}{\sqrt{n^4 + 1} - (n^2 + 1)}$$
.

2. A l'aide du théorème des deux gendarmes, étudier la convergence des suites suivantes.

a)
$$a_n = \frac{\sqrt{n^2 + 1}}{n}$$
, $n \in \mathbb{N}^*$,

b)
$$b_n = \frac{\sin(\frac{n\pi}{2})}{(n+1)^2}, \quad n \in \mathbb{N}^*,$$

c)
$$c_n = \frac{n^2}{n^3 + 3n + 1} + \frac{n^2 + 1}{n^3 + 3n + 2} + \frac{n^2 + 2}{n^3 + 3n + 3} + \dots + \frac{n^2 + 2n - 1}{n^3 + 5n}, \quad n \in \mathbb{N}^*.$$

- **3.** Etudier la convergence de la suite (a_n) définie par son terme général $a_n = \frac{n!}{2n}$.
- **4.** Montrer à l'aide de la définition de la limite infinie que $\lim_{n\to\infty}\left[\,n^2-10n\,\right]=+\infty$.
- 5. Soit (a_n) une suite. Pour chaque proposition, dire si elle est vraie ou fausse. Si elle est vraie, justifier. Si elle est fausse, donner un contre-exemple.
 - a) Si (a_n) n'est pas bornée, alors $\lim_{n\to +\infty} |a_n| = +\infty$.
 - b) Soit (b_n) une suite telle que $b_n \neq 0$ pour tout $n \in \mathbb{N}^*$. Si $\lim_{n \to +\infty} a_n = \lim_{n \to +\infty} b_n = l$ pour $l \in \mathbb{R}$, alors $\lim_{n \to +\infty} \frac{a_n}{b_n} = 1$.
 - c) Soit $a \in \mathbb{R}$. Si $a_n > 0$ pour tout $n \in \mathbb{N}^*$ et $\lim_{n \to +\infty} a_n = a$, alors a > 0.
 - d) Soit $a \in \mathbb{R}$. Si (a_n) ne converge pas vers a, alors il existe $\epsilon > 0$ et une infinité d'entiers $n \in \mathbb{N}^*$ tels que $a_n \notin]a - \varepsilon, a + \varepsilon[$.

6. Exercice facultatif

Soient (a_n) et (b_n) deux suites convergentes. Démontrer l'implication suivante :

$$\lim_{n \to \infty} a_n = a \quad \text{et} \quad \lim_{n \to \infty} b_n = b \qquad \Rightarrow \qquad \lim_{n \to \infty} (a_n + b_n) = a + b.$$

Réponses de la série 6

- a) $\lim_{n \to \infty} a_n = 2$ 1.
 - b) $\lim_{n \to \infty} b_n = -\frac{a}{2}$
 - c) $\lim_{n \to \infty} c_n = \frac{1}{2}$
 - $d) \lim_{n \to \infty} d_n = 0$
 - e) La suite (e_n) n'admet pas de limite (elle diverge).
 - f) $\lim_{n\to\infty} f_n = +\infty$
 - $g) \lim_{n \to \infty} g_n = -\infty$
- **2**. a) $\lim_{n\to\infty} a_n = 1$
 - $b) \lim_{n \to \infty} b_n = 0$
 - c) $\lim_{n\to\infty} c_n = 2$
- **3.** La suite (a_n) diverge, $\lim_{n\to\infty} a_n = +\infty.$
- 4. $N > 5 + \sqrt{25 + A}$.
- a) Faux. **5.**
 - b) Faux.
 - c) Faux.
 - d) Vrai.