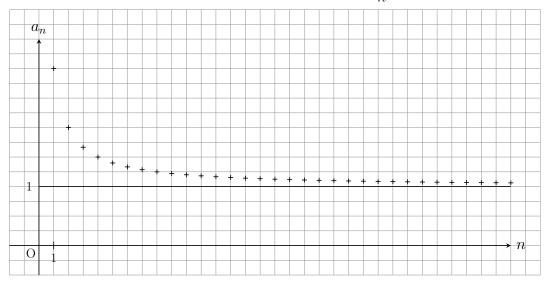
Série 5

1. Voici la représentation de la suite définie par $a_n = \frac{n+2}{n}$, $n \in \mathbb{N}^*$.



a) Soit $N(\varepsilon) \in \mathbb{N}^*$ tel que $n \ge N(\varepsilon) \Rightarrow |a_n - 1| < \varepsilon$.

Déterminer graphiquement $N(\varepsilon)$ dans les trois cas suivants :

i)
$$\varepsilon = \frac{1}{2}$$
,

ii)
$$\varepsilon = \frac{1}{4}$$
,

i)
$$\varepsilon=\frac{1}{2}\,,$$
 ii) $\varepsilon=\frac{1}{4}\,,$ iii) $\varepsilon=\frac{1}{8}\,.$

- b) Démontrer à l'aide de la définition de la limite d'une suite que $\lim_{n\to\infty} a_n = 1$.
- **2.** On considère la suite (a_n) définie par son terme général $a_n = \sqrt{1 + \frac{1}{n}}$, $n \in \mathbb{N}^*$. En utilisant la définition de la limite d'une suite, montrer que (a_n) converge vers a = 1.
- 3. Soient (a_n) une suite et $l \in \mathbb{R}$. Parmi les affirmations suivantes, déterminer lesquelles sont équivalentes à

$$\lim_{n \to +\infty} a_n = l.$$

Quand ce n'est pas le cas, s'en convaincre en exhibant un contre-exemple.

- a) $\forall \varepsilon > 0, \exists N(\varepsilon) \in \mathbb{N}^*, \text{ tel que } n \geq N(\varepsilon) \implies |a_n l| < \varepsilon.$
- b) $\forall \varepsilon > 0, \exists N(\varepsilon) \in \mathbb{N}^*, \text{ tel que } n \geq N(\varepsilon) \implies |a_n l| \leq \varepsilon.$
- c) $\forall \varepsilon \geq 0, \exists N(\varepsilon) \in \mathbb{N}^*, \text{ tel que } n \geq N(\varepsilon) \implies |a_n l| < \varepsilon.$
- d) $\exists N \in \mathbb{N}^*$, tel que $\forall \varepsilon > 0$, $n \ge N \implies |a_n l| < \varepsilon$.
- e) $\forall N \in \mathbb{N}^*, \exists \varepsilon > 0 \text{ tel que } n \geq N \implies |a_n l| < \varepsilon.$
- 4. Montrer que les suites ci-dessous sont majorées en exhibant un majorant.

a)
$$a_n = \frac{n^2}{n^2 + 1}, \quad n \in \mathbb{N}^*.$$

b)
$$b_n = \frac{n^2 + n}{n^2 + 1}, \quad n \in \mathbb{N}^*.$$

c) $c_n = \frac{n+3}{n^2+1} + \frac{n+4}{n^2+1} + \dots + \frac{2n+2}{n^2+1}, \qquad n \in \mathbb{N}^*.$

Indication: combien y a-t-il de termes dans la somme ?

d)
$$d_n = \frac{n+3}{n^2+1} + \frac{n+4}{n^2+2} + \dots + \frac{2n+2}{n^2+n}, \quad n \in \mathbb{N}^*$$

5. a) Soit $r \in \mathbb{R}$, $r \neq 1$. On considère la suite

$$1, r, r^2, r^3, r^4, r^5, \dots$$

Soit (A_n) définie par

$$A_n = \sum_{k=0}^{n-1} r^k,$$

c'est-à-dire, A_n est la somme des premiers n termes de la suite ci-dessus. Montrer par récurrence que

$$A_n = \frac{1 - r^n}{1 - r}, \quad \forall n \in \mathbb{N}^*.$$

b) On considère la suite $1, 3, 5, 7, 9, 11, \ldots$ d'entiers naturels impairs. Soit A_n la somme des premiers n termes de cette suite. Montrer par récurrence que

$$A_n = n^2, \quad \forall n \in \mathbb{N}^*.$$

6. On considère la suite (a_n) définie par récurrence de la façon suivante :

$$a_{n+1} = 3 - \frac{2}{a_n}, \quad a_1 = 3, \quad n \in \mathbb{N}^*.$$

Déterminer le terme général de la suite (a_n) , puis démontrer ce résultat par récurrence.

- 7. a) Donner un exemple de suites (a_n) et (b_n) telles que la somme $(a_n + b_n)$ est une suite constante, mais pour lesquelles (a_n) et (b_n) ne sont pas constantes.
 - b) Montrer que si (a_n) et (b_n) sont bornées, alors la suite $(a_n \cdot b_n)$ est bornée.
 - c) Donner un exemple de suites (a_n) et (b_n) telles que $(a_n \cdot b_n)$ est bornée, mais pour lesquelles ni la suite (a_n) est bornée ni la suite (b_n) est bornée.
 - d) Donner un exemple de suites (a_n) et (b_n) telles que (a_n) est strictement croissante, (b_n) est strictement décroissante et $a_1 < b_1$, mais telles qu'il n'existe aucun $n \in \mathbb{N}^*$ tel que $b_n < a_n$.

8. Exercice facultatif

[Voir l'Exemple 2 du Chapitre_2_sec_1_suites_introduction.pdf des slides du cours sur Moodle pour la définition de fraction continue, ainsi qu'un exemple.]

Déterminer une fraction continue qui décrit $\sqrt{5}$. Calculer les premiers termes de la suite associée à cette fraction continue. Puis définir cette suite par récurrence.

Réponses de la série 5

1. Si
$$N > \frac{2}{\varepsilon}$$
, alors $n \ge N \Rightarrow |a_n - 1| < \varepsilon$

2. Si
$$N > \frac{1}{2\varepsilon + \varepsilon^2}$$
, alors $n \ge N \implies |a_n - 1| < \varepsilon$

- a) C'est la définition du cours. 3.
 - b) La proposition est équivalente.
 - c) La proposition n'est pas équivalente.
 - d) La proposition n'est pas équivalente.
 - e) La proposition n'est pas équivalente.
- a) Par exemple M = 1. **4.**
 - b) Par exemple M=2.
 - c) Par exemple M=4.
 - d) Par exemple M = 4.
- a) Par exemple $a_n = (-1)^n$ et $b_n = (-1)^{n+1}, n \in \mathbb{N}^*$.
 - c) Par exemple $a_n=1,0,2,0,3,0,4,0,5,0,\dots$ et $b_n:0,1,0,2,0,3,0,4,0,5,0,\dots$
 - d) Par exemple $a_n = 1 \frac{1}{n}, b_n = 1 + \frac{1}{n}, n \in \mathbb{N}^*$.