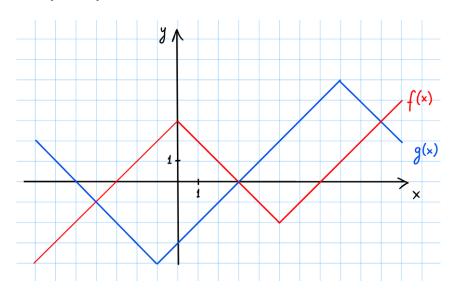
Série 2

1. Soient $f, g: [-7, 11] \to \mathbb{R}$ deux fonctions données par leurs graphes ci-dessous.



Donner les tableaux de signes des fonctions f(x), g(x) et f(x) - g(x).

2. Résoudre dans \mathbb{R} les trois inéquations suivantes :

a)
$$\frac{11}{4}x + \frac{1}{5}(2-3x) \le \frac{1}{3}(7x-1)$$
, c) $\frac{1-x}{2+x} \le -\frac{2}{3x-4}$.

c)
$$\frac{1-x}{2+x} \le -\frac{2}{3x-4}$$
.

b)
$$\frac{x+2}{2x-4} \le \frac{5-2x}{x-2} + 3$$
,

3. Résoudre dans \mathbb{R} les inéquations suivantes.

a)
$$(x+2)^2 > 4$$
,

b)
$$(x+3)^3 < 8$$
.

4. Résoudre dans \mathbb{R} l'équation et l'inéquation suivantes par rapport à la variable xen fonction du paramètre réel m.

a)
$$mx - 4 = 2(x - m)$$
,

a)
$$mx - 4 = 2(x - m)$$
, b) $\frac{2}{m-1}x \le x - \frac{1}{m-1}$, $m \ne 1$.

5. Résoudre dans \mathbb{R} les inéquations suivantes par rapport à la variable x en fonction du paramètre réel m.

a)
$$\frac{m}{x+m} \le 1$$
,

b)
$$\frac{x^2 - m^2}{x + 2m} > 0$$
.

6. Soient a et b deux nombres réels strictement positifs.

On définit la moyenne arithmétique m_a , la moyenne géométrique m_g et la moyenne harmonique m_h de ces deux nombres de la façon suivante :

$$m_a = \frac{1}{2} (a+b)$$

$$m_g = \sqrt{ab}$$

$$\frac{1}{m_h} = \frac{1}{2} \left(\frac{1}{a} + \frac{1}{b}\right)$$

- a) Comparer la moyenne arithmétique m_a et la moyenne géométrique m_g , c'està-dire établir si $m_a \leq m_g$ ou si $m_a \geq m_g$.
- b) Déduire de a) une comparaison entre la moyenne géométrique m_g et la moyenne harmonique m_h .

Réponses de la série 2

x		-3		3		7	
f(x)	_	0	+	0	_	0	+
x		-5		3			
g(x)	+	0	_	0	+		
x		-4		3		10	
f(x) - g(x)	_	0	+	0	_	0	+

- **2.** a) $S = [4; +\infty[$.
 - b) $S =]-\infty$; $2[\cup [4; +\infty[.$
 - c) $S =]-\infty$; $-2[\cup[0; \frac{4}{3}[\cup[3; +\infty[.$
- 3. a) $S =]-\infty, -4[\cup]0, +\infty[,$
 - b) $S =]-\infty, -1[.$
- **4.** a) m = 2 : $S = \mathbb{R}$
 - $m \neq 2$: $S = \{-2\}$.
 - b) $m \in]-\infty$; $1[\cup]3$; $+\infty[: S = [\frac{1}{m-3}; +\infty[$
 - $m \in]1; 3[: S =] -\infty; \frac{1}{m-3}]$
 - $m = 3 : S = \emptyset$.
- **5.** a) m < 0: $S =] \infty, 0] \cup] m, +\infty[$
 - m=0: $S=\mathbb{R}^*$,
 - m > 0: $S =] \infty, -m[\cup [0, +\infty[.$
 - b) m < 0: $S =] m, -m [\cup] 2m, +\infty [...]$
 - $\bullet \ m = 0: \ S = \mathbb{R}_+^*,$
 - $\bullet \ m>0: \ S=\,]-2m\,,\,-m\,[\,\cup\,]\,m\,,\,+\infty\,[\,.$