Série 11

1. Calculer la fonction dérivée des fonctions suivantes, en précisant leur ensemble de définition et celui de la fonction dérivée.

a)
$$a(x) = x^6 + 15\sqrt[5]{x^2} - \frac{6}{x}$$
 d) $d(x) = \sqrt{x\sqrt{x\sqrt{x}}}$

b)
$$b(x) = \frac{4x-1}{2x+1}$$
 e) $e(x) = \frac{\sqrt{x^2+1}+x}{\sqrt{x^2+1}-x}$

c)
$$c(x) = \sqrt{\frac{1-2x}{x+1}}$$
 f) $f(x) = \sqrt[3]{\left(1-\sqrt{x^3}\right)^2}$

- g) $g(x) = (x-1)^5(2x+1)^5$; pour quelles valeurs de x la dérivée g'(x) est-elle nulle ?
- h) $h(x) = \sqrt[3]{(x-1)^2(x+a)}$; pour quelle valeur de a la dérivée h'(x) est-elle nulle en x = -1?
- 2. Déterminer l'équation de la parabole d'équation $y=x^2+px+q$ tangente à la droite d'équation y-3x-1=0 au point T d'abscisse $x_T=1$.
- 3. Déterminer les points de tangence T des tangentes issues de l'origine à la courbe Γ d'équation $y=\frac{3x+1}{x^2-x+4}$.
- **4.** Soient f une fonction dérivable en $x_0=2$, Γ_1 la courbe d'équation y=f(x) et t_1 la tangente à Γ_1 en $x_0=2$.

$$t_1: 3x - 2y - 4 = 0.$$

Soient g la fonction définie par $g(x)=\frac{1}{x^2+1}$, Γ_2 la courbe d'équation $y=g\circ f(x)$ et t_2 la tangente à Γ_2 en $x_0=2$.

Déterminer l'équation cartésienne de t_2 .

5. On donne deux arcs de parabole Γ_1 et Γ_2 définis par

$$\Gamma_1: f_1(x) = -2x^2 + 6$$
 et $\Gamma_2: f_2(x) = -(x-1)^2$.

Déterminer l'équation cartésienne de la tangente t commune aux courbes Γ_1 et Γ_2 , de pente négative.

6. Montrer que les graphes des deux fonctions f et g admettent un unique point d'intersection,

$$f(x) = \frac{2x-1}{x}$$
 et $g(x) = \frac{x^2-3x+4}{x^2-2x+3}$,

puis calculer l'angle φ entre les deux courbes en ce point.

7. Soit \hat{b} la fonction définie dans l'exercice 7 de la série 10 (prolongée par continuité de la fonction b donnée dans l'exercice 4 b) de la série 9):

$$\hat{b}(x) = \frac{\sqrt{x^2 + 1} + x - 1}{x}$$
 si $x \neq 0$ et $\hat{b}(0) = 1$.

La fonction \hat{b} est-elle continûment dérivable en $x_0 = 0$?

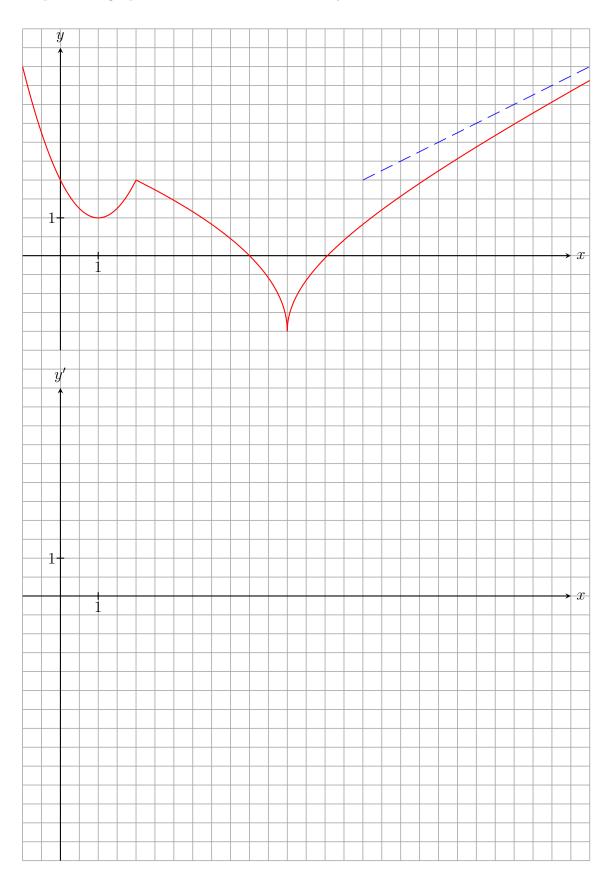
8. Calculer la dérivée d'ordre $n, n \in \mathbb{N}^*$, des fonctions suivantes :

a)
$$f(x) = x^{-3}$$
 b) $g(x) = \sin(ax)$, $a \in \mathbb{R}^*$.

- **9.** Parmi les énoncés suivants, déterminer s'ils sont vrais ou faux. S'ils sont vrais, justifier. S'ils sont faux, donner un contre-exemple.
 - a) Soient f, g deux fonctions réelles telles que $h = g \circ f$ soit continue en $x_0 \in \mathbb{R}$. Si g est continue sur \mathbb{R} , alors f est continue en x_0 .
 - b) Si f est dérivable en x = 0, alors $\lim_{h \to 0} \frac{f(3h) f(h)}{h} = 2f'(0)$.
 - c) Soient f et g deux fonctions dérivables sur \mathbb{R} . Si f'(0) = 0, alors $(f \circ g)'(0) = 0$.
 - d) Si f est dérivable sur l'intervalle ouvert $I \subset \mathbb{R}$, alors f' est continue sur I.

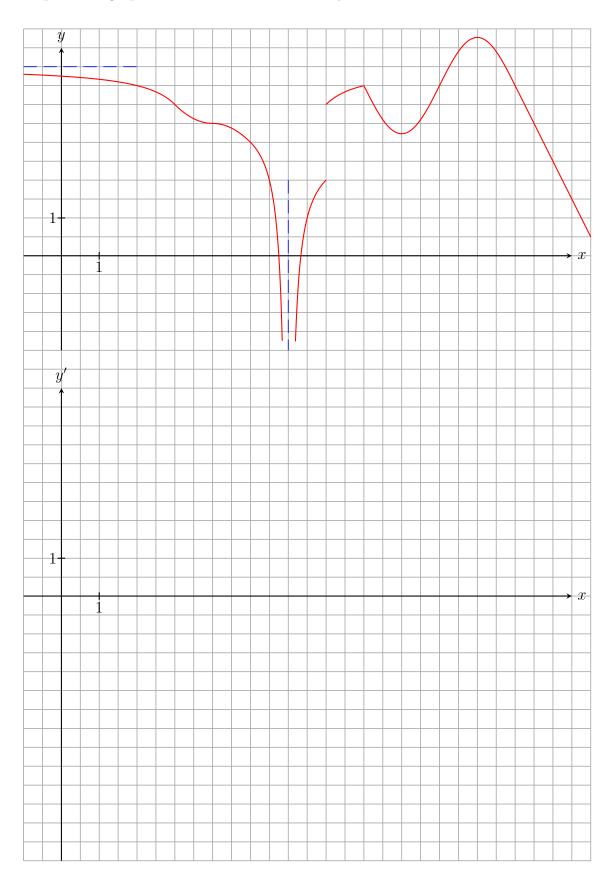
10. On donne ci-dessous la courbe Γ d'équation y = f(x).

Esquisser le graphe de la fonction dérivée de $\ f$.



11. On donne ci-dessous la courbe Γ d'équation y = f(x).

Esquisser le graphe de la fonction dérivée de $\ f$.



Réponses de la série 11

1. a)
$$a'(x) = 6\left(x^5 + \frac{1}{\sqrt[5]{x^3}} + \frac{1}{x^2}\right), \quad D_a = D_{a'} = \mathbb{R}^*.$$

b)
$$b'(x) = \frac{6}{(2x+1)^2}$$
, $D_b = D_{b'} = \mathbb{R} - \{-\frac{1}{2}\}$.

c)
$$c'(x) = -\frac{3}{2} \frac{1}{\sqrt{(x+1)^3(1-2x)}}$$
, $D_c =]-1; \frac{1}{2}[$ et $D_{c'} =]-1; \frac{1}{2}[$.

d)
$$d'(x) = \frac{7}{8} \frac{1}{\sqrt[8]{x}}$$
, $D_d = \mathbb{R}_+$ et $D_{d'} = \mathbb{R}_+^*$.

e)
$$e'(x) = \frac{2}{\sqrt{x^2 + 1}} \left(\sqrt{x^2 + 1} + x \right)^2$$
, $D_e = D_{e'} = \mathbb{R}$.

f)
$$f'(x) = -\frac{\sqrt{x}}{\sqrt[3]{1-\sqrt{x^3}}}$$
, $D_f = \mathbb{R}_+$ et $D_{f'} = \mathbb{R}_+ - \{1\}$.

g)
$$g'(x) = 5(4x - 1)(x - 1)^4(2x + 1)^4$$
, $D_g = D_{g'} = \mathbb{R}$, $g'(x) = 0 \iff x \in \{-\frac{1}{2}; \frac{1}{4}; 1\}$.

h)
$$h'(x) = \frac{3x + 2a - 1}{3} \frac{1}{\sqrt[3]{(x+a)^2 (x-1)}}$$
, $D_h = \mathbb{R}$ et $D_{h'} = \mathbb{R} - \{1; -a\}$, $h'(-1) = 0 \iff a = 2$.

2. Equation de la parabole : $y = x^2 + x + 2$.

3.
$$T(-1; -\frac{1}{3})$$

4.
$$t_2: 3x + 4y - 8 = 0$$
.

5.
$$t: 4x + y - 8 = 0$$
.

6.
$$\varphi = \arctan(3)$$
.

7. Oui, car
$$\lim_{x\to 0} \hat{b}'(x) = \hat{b}'(0)$$

8. a)
$$f^{(n)}(x) = \frac{1}{2} (-1)^n (n+2)! x^{-(n+3)}$$
, à démontrer par récurrence.

b)
$$g^{(n)}(x) = a^n \sin\left(ax + \frac{n\pi}{2}\right)$$
, à démontrer par récurrence.

9. a) Faux. b) Vrai. c) Faux. d) Faux.