Série 10

1. Peut-on trouver des valeurs des constantes A et B de sorte que les fonctions suivantes soient continues en x = 0?

a)
$$a(x) = \frac{|x|(x+1) + x}{x^2(x+1)}$$
 si $x \neq 0$ et $a(0) = A$,

b)
$$b(x) = \frac{x\sqrt{3-4\cos x + \cos^2 x}}{|x|\sin x}$$
 si $x \neq 0$ et $b(0) = B$.

- **2.** a) La fonction définie par $f(x) = |\tan x| \cdot \cos^3(\frac{1}{x})$ si $x \neq 0$ et f(0) = 0 est-elle continue en x = 0?
 - b) Montrer que la fonction $f(x) = x E(x^2)$ est continue à droite en $x = \sqrt{2}$.
- 3. On considère la fonction f définie par

$$f(x) = \frac{1 - \cos(x^2)}{\sin^2 x - \tan^2 x}.$$

La fonction f est-elle prolongeable par continuité en x = 0?

- **4.** Montrer que les deux courbes Γ_1 et Γ_2 admettent un point d'intersection, localiser son abscisse sur un intervalle de longueur Δ :
 - a) $\Gamma_1: y = \cos(x), \qquad \Gamma_2: y = x^3, \qquad \Delta = \frac{\pi}{12}.$
 - b) Pour les étudiants qui connaissent la fonction logarithme népérien :

$$\Gamma_1: y = \ln(x), \qquad \Gamma_2: y = \sqrt{x-2}, \qquad \Delta = 1.$$

- **5.** Les fonctions suivantes sont-elles dérivables en x = 0?
 - a) $a(x) = \tan |x|$ c) $c(x) = \sin(x) \cos\left(\frac{1}{x}\right)$ si $x \neq 0$ et c(0) = 0
 - b) $b(x) = x \sin |x|$ d) $d(x) = \sin^2(x) \cos (\frac{1}{x})$ si $x \neq 0$ et d(0) = 0.
- **6.** On considère la fonction g définie dans un voisinage de $x_0 = \frac{\pi}{2}$ par

$$g(x) = \frac{\cos(2x) + \sin x}{\sin(2x)}$$
 si $x \neq \frac{\pi}{2}$ et $g(\frac{\pi}{2}) = 0$.

Montrer à l'aide de la définition que la fonction $\ g \$ est dérivable en $\ x_0 = \frac{\pi}{2} \, .$

7. Montrer que la fonction b(x) de l'exercice 4. b) de la série 9 peut être prolongée par continuité en $x_0=0$.

Est-elle alors dérivable en $x_0 = 0$? $b(x) = \frac{\sqrt{x^2 + 1} + x - 1}{x}$.

8. En calculant la limite du rapport de Newton associé, déterminer l'équation de la tangente t au graphe de f en x_0 :

$$f(x) = \frac{1}{x^2}, \qquad x_0 = 2.$$

9. Exercice facultatif.

Soit f une fonction définie sur un voisinage pointé de x_0 .

On dit que f admet une dérivée symétrique en x_0 si $\lim_{h\to 0} \frac{f(x_0+h)-f(x_0-h)}{2h}$ existe. On note alors cette limite $f'_s(x_0)$.

- * Montrer que si f est dérivable en x_0 , alors $f'_s(x_0)$ existe.
- * Vérifier que la réciproque est fausse.

Réponses de la série 10

a) Non 1.

b) Oui : B = 1

2.

a) oui, car $\lim_{x\to 0} f(x) = f(0)$ b) $\lim_{x\to \sqrt{2}^+} f(x) = f(\sqrt{2})$

Oui : $\hat{f}(0) = -\frac{1}{2}$ 3.

Utiliser le théorème de la valeur intermédiaire 4.

5. a) non b) oui

c) non

d) oui

6. La fonction g est dérivable en $x_0 = \frac{\pi}{2}$ et $g'(\frac{\pi}{2}) = -\frac{3}{4}$.

7. La fonction prolongée \hat{b} est dérivable en $x_0=0$ et $\hat{b}'(0)=\frac{1}{2}$.

8. t: x + 4y - 3 = 0