EPFL - CMS Analyse I

27.11.20

Fonctions continues sur un intervalle fermé

Dans cette note on passera en revue quelques propriétés générales des fonctions à valeurs réelles et continues définies sur un intervalle fermé I = [a, b].

Rappelons le résultat suivant, déjà prouvé dans la note sur la convergence monotone :

Tout ensemble $\emptyset \neq E \subset \mathbb{R}$ majoré possède un plus petit majorant $M \in \mathbb{R}$.

La construction de la suite décimale représentant ce plus petit majorant M est tout à fait analogue à la construction de la limite L d'une suite $(x_n)_{n\in\mathbb{N}^*}$ majorée.

Nous allons maintenant utiliser ce fait sur les sous-ensmbles de la droite réelle pour justifier une première observation sur les fonctions réelles et continues définies sur un intervalle fermé :

Soit $f:[a,b]\to\mathbb{R}$ une fonction continue. Alors son image est un sousensemble borné de \mathbb{R} .

En effet, supposons l'image de f non bornée et nous allons tomber sur une contradiction. Si $\mathrm{Im}(f)$ n'est pas bornée, il doit pour tout $n \in \mathbb{N}^*$ exister un $x \in [a,b]$ tel que f(x) > n. Les ensembles pré-images $E_n := f^{-1}]n, \infty[$ sont donc tous non-vides et bien sûr contenus dans [a,b].

Par le rappel précédent, on a donc l'existence d'un plus grand minorant x_n pour chaque E_n , et puisque par construction

$$E_1 \subset E_2 \subset E_3 \subset \dots \in [a,b]$$

on a que

$$a \le x_1 \le x_2 \le x_3 \le \dots x_n \le \dots \le b.$$

Remarquons encore que puisque f est continue, alors pour tout $\epsilon>0$, il doit exister un $\delta>0$ tel que $|x-x_n|<\delta$ implique $|f(x_n)-f(x)|<\epsilon$. Mais x_n étant le plus grand minorant de E_n , on a alors l'existence d'un $x\in E_n$ avec $|x_n-x|<\delta$, et par conséquent $|f(x_n)-f(x)|<\epsilon$. Ceci implique alors que $f(x_n)>n-\epsilon$ et ceci étant valable pour tout $\epsilon>0$, on a $f(x_n)\geq n$.

Résumons-nous : l'hypothèse d'une image non-bornée pour f nous a conduit à reconnaître l'existence d'une suite monotone croissante $(x_n)_{n\in\mathbb{N}^*}\subset [a,b]$ avec $f(x_n)\geq n$ pour tout $n\in\mathbb{N}^*$. Cette suite étant majorée par b elle doit donc converger vers son plus petit majorant M, lui-même inférieur à b. On obtient alors

$$\mathbb{R} \ni f(M) = f(\lim_{n} x_n) = \lim_{n} f(x_n) \ge \lim_{n} n = \infty (\notin \mathbb{R}),$$

ce qui nous donne la contradiction souhaîtée.

On vient d'établir que l'image d'une fonction continue $f:[a,b]\to\mathbb{R}$ doit être bornée, et donc contenue dans un intervalle fermé [c,d]. Ceci nous amène vers une

EPFL - CMS Analyse I

deuxième observation:

Soit $f:[a,b]\to\mathbb{R}$ une fonction continue. Alors il existe $m,M\in[a,b]$ tel que

$$\forall x \in [a, b], \quad f(m) \le f(x) \le f(M).$$

Par l'observation précédente, l'image de f est bornée et possède donc un plus petit majorant, disons M_f . Par conséquent, il doit pour chaque $n \in \mathbb{N}^*$ exister un $x \in [a,b]$ avec $M_f - \frac{1}{n} < f(x) \le M_f$. Les ensembles pré-images $E_n := f^{-1}]M_f - \frac{1}{n}, \infty[$ ne sont donc pas vides et comme précédemment

$$E_1 \subset E_2 \subset E_3 \subset \dots \in [a,b].$$

Chacun de ces ensembles E_n possède à son tour un plus grand minorant x_n qui vérifient eux aussi

$$a \le x_1 \le x_2 \le x_3 \le \dots x_n \le \dots \le b.$$

A nouveau, la continuité de f implique que pour tout $n \in \mathbb{N}^*$, $M_f - \frac{1}{n} \leq f(x_n) \leq M_f$. De plus, la suite $(x_n)_{n \in \mathbb{N}^*}$ étant monotone et bornée (par b par exemple), elle doit converger vers son plus petit majorant, disons M, et $M \in [a,b]$. On obtient alors que

$$M_f \ge f(M) = f(\lim_n x_n) = \lim_n f(x_n) \ge \lim_n (M_f - \frac{1}{n}) = M_f,$$

d'où $M_f = f(M)$. Le cas de l'existence de $m \in [a,b]$ tel que $m_f = f(m)$ se traîte de manière tout à fait symétrique.

Pour une fonction continue $f:[a,b]\to\mathbb{R}$ nous venons donc d'établir l'existence de nombres $m,M\in[a,b]$, tels que l'intervalle [f(m),f(M)] contient l'image de f. La prochaı̂ne observation est connue sous le nom de **théorème de Bolzano-Weierstrass** :

Soit $f:[a,b]\to\mathbb{R}$ une fonction continue. Soient $m,M\in[a,b]$ tels que $\forall x\in[a,b]$, $f(m)\leq f(x)\leq f(M)$. Alors, si $f(m)\leq\lambda\leq f(M)$, il existe au moins un $x_0\in[a,b]$ tel que $f(x_0)=\lambda$.

Sans perte de généralité, on peut supposer $a \leq m \leq M \leq b$. On construit itérativement une suite croissante $(x_n)_{n \in \mathbb{N}^*} \subset [a,b]$ et une suite décroissante $(y_n)_{n \in \mathbb{N}^*} \subset [a,b]$ de la manière suivante : on pose $x_1 = m$ et $y_1 = M$. On évalue ensuite f au point $\frac{m+M}{2}$, qui est le milieu de l'intervalle [m,M]. Si $f(\frac{m+M}{2}) < \lambda$, on pose $x_2 = \frac{m+M}{2}$ et $y_2 = y_1 = M$. Sinon, on pose $x_2 = x_1 = m$ et $y_2 = \frac{m+M}{2}$. Remarquons que $y_2 - x_2 = \frac{M-m}{2}$, que $x_1 \leq x_2 \leq y_2 \leq y_1$ et que $f(x_2) < \lambda \leq f(y_2)$.

Supposons maintenant qu'on ait construit les éléments $x_1 \leq x_2, \ldots, \leq x_n \leq y_n \leq \ldots \leq y_2 \leq y_1$, avec $y_n - x_n = \frac{M-m}{2^{n-1}}$, $\{x_1, \ldots, x_n\} \subset f^{-1}] - \infty, \lambda[$ et $\{y_1, \ldots, y_n\} \subset f^{-1}[\lambda, \infty[$. On évalue alors f au point $\frac{x_n + y_n}{2}$, qui est le milieu de l'intervalle $[x_n, y_n]$. Si $f(\frac{x_n + y_n}{2}) < \lambda$, on pose $x_{n+1} = \frac{x_n + y_n}{2}$ et $y_{n+1} = y_n$. Sinon, on pose $x_{n+1} = x_n$ et $y_{n+1} = \frac{x_n + y_n}{2}$.

On remarque que les suites $(x_n)_{n\in\mathbb{N}^*}$ et $(y_n)_{n\in\mathbb{N}^*}$ ainsi construites sont monotone croissante et décroissante respectivement, que tous les éléments de $(x_n)_{n\in\mathbb{N}^*}$ sont majorés par tous les éléments de $(y_n)_{n\in\mathbb{N}^*}$, que pour tout $n\in\mathbb{N}^*$ $y_n-x_n=\frac{M-m}{2^{n-1}}$ et

EPFL - CMS Analyse I

que
$$(x_n)_{n\in\mathbb{N}^*}\subset f^{-1}]-\infty, \lambda[$$
 et $(y_n)_{n\in\mathbb{N}^*}\subset f^{-1}[\lambda,\infty[$.

Par la convergence monotone on a alors que $(x_n)_{n\in\mathbb{N}^*}$ doit converger vers son plus petit majorant, disons x, et que $(y_n)_{n\in\mathbb{N}^*}$ converge vers son plus grand minorant, disons y. Puisque les éléments de $(x_n)_{n\in\mathbb{N}^*}$ minorent ceux de $(y_n)_{n\in\mathbb{N}^*}$ on doit avoir $x\leq y$. De plus, pour tout $n\in\mathbb{N}^*$, $y-x\leq y_n-x_n\leq \frac{M-m}{2^{n-1}}$, d'où on doit avoir $x=y=x_0$. Mais par continuité de f

$$f(x_0)=f(\lim_n x_n)=\lim_n f(x_n)\leq \lambda\leq \lim_n f(y_n)=f(\lim_n y_n)=f(x_0),$$
 d'où $f(x_0)=\lambda$.

Une conséquence immédiate de ce dernier résultat est l'observation suivante :

Soit $f:[a,b]\to\mathbb{R}$ une fonction continue. Alors l'image de f égale l' intervalle [f(m),f(M)] en entier.