EPFL - CMS Analyse I

Comprendre la convergence

La définition de la convergence peut aussi s'approcher par la négation de celle-ci : Dire qu'une suite $(a_n)_{n\in\mathbb{N}}$ ne converge pas vers un nombre réel $l\in\mathbb{R}$ signifie, que les éléments de $(a_n)_{n\in\mathbb{N}}$ vont rester loin de l.

Ici il faut s'entendre sur ce qu'on comprend par "rester loin de l". En fait, il suffit de dire que les éléments de $(a_n)_{n\in\mathbb{N}}$ vont rester à une certaine distance de l et ne vont pas s'en approcher plus. On peut donc dire qu'une suite $(a_n)_{n\in\mathbb{N}}$ ne converge pas vers un nombre réel $l\in\mathbb{R}$ si il existe un nombre $\epsilon>0$, tel que les éléments de $(a_n)_{n\in\mathbb{N}}$ soient en dehors de l'intervalle $[l-\epsilon,l+\epsilon]$.

On peut même affaiblir un peu cette définition : en fait la suite

$$1, -1, 1, -1, 1 - 1, \dots$$

de terme général $(-1)^n$ ne converge pas vers l=1. Cela peut s'exprimer en disant qu'il existe un $\epsilon>0$ (par exemple $\epsilon=\frac{1}{2}$) tel qu'une infinité d'éléments de la suite (en fait tout les termes $(-1)^{2n+1}$) se trouvent à l'extérieur de l'intervalle $]1-\epsilon,1+\epsilon[$ (en fait donc dans l'exemple $]\frac{1}{2},\frac{3}{2}[$).

On peut donc poser la

Définition. Une suite $(a_n)_{n\in\mathbb{N}}$ ne converge pas vers un nombre réel $l\in\mathbb{R}$ si il existe un nombre $\epsilon>0$, tel qu'une infinité d'éléments de $(a_n)_{n\in\mathbb{N}}$ soient en dehors de l'intervalle $]l-\epsilon,l+\epsilon[$.

Plus formellement:

$$\exists \epsilon > 0$$
, t.q. $|l - a_n| \ge \epsilon$ pour une infinité de $n \in \mathbb{N}$.

La définition d'une suite convergente vers un nombre réel l n'est donc autre que la négation de la définition d'une suite qui ne converge pas vers $l \in \mathbb{R}$. Autrement dit :

Définition. Une suite $(a_n)_{n\in\mathbb{N}}$ **converge** vers un nombre réel $l\in\mathbb{R}$ si pour tout nombre $\epsilon>0$, un nombre fini seulement d'éléments de $(a_n)_{n\in\mathbb{N}}$ se trouvent en dehors de l'intervalle $]l-\epsilon,l+\epsilon[$.

Plus formellement:

$$\forall \epsilon > 0, |l - a_n| \geq \epsilon$$
 pour un nombre fini de $n \in \mathbb{N}$.

Comme il y a selon cette définition un nombre fini seulement d'éléments de $(a_n)_{n\in\mathbb{N}}$ qui se trouvent en dehors de l'intervalle $]l-\epsilon,l+\epsilon[$,on peut en faire la liste. Comme celle-ci est finie, il doit exister un dernier élément de cette liste, disons a_{N_0} .

Dire qu'un nombre fini d'éléments de la suite $(a_n)_{n\in\mathbb{N}}$ se trouvent en dehors de l'intervalle $]l-\epsilon,l+\epsilon[$ veut donc dire, que si $n>N_0$, alors a_n se trouve dans l'intervalle $]l-\epsilon,l+\epsilon[$.

On arrive ainsi enfin à la définition du cours de la convergence d'une suite :

EPFL - CMS Analyse I

Définition. Une suite $(a_n)_{n\in\mathbb{N}}$ **converge** vers un nombre réel $l\in\mathbb{R}$ si pour tout nombre $\epsilon>0$, il existe un nombre $N_0\in\mathbb{N}$, à partir duquel tous les éléments de $(a_n)_{n\in\mathbb{N}}$ se trouvent dans l'intervalle $]l-\epsilon,l+\epsilon[$.

Plus formellement:

$$\forall \epsilon>0, \, \exists N_0 \in \mathbb{N} \text{ t.q. } n>N_0 \text{ implique } |l-a_n|<\epsilon.$$

