EPFL - CMS Analyse I

Caractérisation de la limite d'une fonction par les suites

Théorème. Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction définie sur un voisinage de l'infini. Les deux affirmations suivantes sont équivalentes;

- $\mathbf{1.} \lim_{x \to +\infty} f(x) = l \in \mathbb{R}.$
- **2.** Si $a: \mathbb{N}^* \to \mathrm{Def}_f$ est telle que $\lim_{n \to \infty} a_n = +\infty$, alors $\lim_{n \to \infty} f(a_n) = l \in \mathbb{R}$.

Démonstration.

 $1.\Rightarrow 2.:$ Supposons que $\lim_{x\to +\infty}f(x)=l\in\mathbb{R}.$ Soit une suite $a:\mathbb{N}^*\to \mathrm{Def}_f$ telle que $\lim_{n\to\infty}a_n=+\infty$ et montrons que $\lim_{n\to\infty}f(a_n)=l\in\mathbb{R}.$

Soit $\epsilon > 0$. Par définition, et puisque f possède la limite l vers l'infini, il existe $M \in \mathbb{R}$, tel que $x \geq M$ implique $|f(x) - l| < \epsilon$.

Puisque $(a_n)_{n\in\mathbb{N}^*}$ diverge vers l'infini, il existe $N\in\mathbb{N}^*$, tel que $n\geq N$ implique $a_n\geq M$.

On a donc que $n \geq N$ implique $|f(a_n) - l| < \epsilon$. On conclut par le choix arbitraire de $\epsilon > 0$.

 $2. \Rightarrow 1.:$ On va montrer la contraposée : supposons que f(x) ne converge pas vers l avec x qui tend vers l'infini. Il existe donc $\epsilon > 0$, tel que pour tout $M \in \mathbb{R}$, il existe un $x \geq M$ et $x \in \mathrm{Def}_f$, tel que $|f(x) - l| \geq \epsilon$.

En particulier, il existe pour tout $n \in \mathbb{N}^*$ un $x_n \ge n$ et $x_n \in \mathrm{Def}_f$, tel que $|f(x_n) - l| \ge \epsilon$. La suite $(x_n)_{n \in \mathbb{N}^*}$ diverge donc vers l'infini avec n qui tend vers l'infini, mais $|f(x_n) - l| \ge \epsilon$ pour tout $n \in \mathbb{N}^*$. Ainsi, la contraposée est prouvée. \square