Série 6 - Exercices supplémentaires

Exercice 1. On considère l'application :

$$f:]-\infty, -2[\cup]-2, 2[\cup]2, +\infty[\to \mathbb{R}, x \to \frac{x}{x^2-4}]$$

- a. Pour tout $y \in \mathbb{R}$, déterminer l'ensemble $f^{-1}(\{y\})$. En déduire que f est surjective. Est-elle injective?
- b. Montrer que, pour tout $y \in \mathbb{R}^*$, on a : $\left| 1 \sqrt{1 + 16y^2} \right| < 4|y| < 1 + \sqrt{1 + 16y^2}$.
- c. Montrer que la restriction de f fournit une bijection de]-2,2[sur $\mathbb R$ et décrire la bijection réciproque.

Exercice 2. On donne les ensembles $E = \{\alpha, \beta, \gamma, \delta\}$ et $F = \{\varepsilon, \zeta, \eta\}$.

- a. Combien existe-t-il d'applications de E dans F? Parmi celles-ci, y a-t-il des surjections?
- b. Calculer le nombre d'applications de E dans F dont l'image directe est exactement égale à $\{\varepsilon,\zeta\}$.
- c. Déterminer le nombre de surjections de E dans F. Indication : s'intéresser aux applications non surjectives et utiliser b.

Exercice 3. Est-il vrai que, pour tout choix d'ensembles E et F et tout choix d'applications $f: E \to F$ et $g: F \to E$ on a :

- a. $f \circ g$ surjective $\Rightarrow f$ surjective?
- b. f surjective $\Rightarrow f \circ g$ surjective?
- c. $g \text{ surjective} \Rightarrow f \circ g \text{ surjective}$?

Justifier votre réponse par une démonstration ou un contre-exemple.

Exercice 4. Soient E et F deux ensembles. Montrer qu'une application $f: E \to F$ est surjective si et seulement si :

$$\forall A \subset E$$
, $C_F(f(A)) \subset f(C_E(A))$.

Exercice 5. (Facultatif) On donne une application $f: E \to \mathcal{P}(E)$ d'un ensemble E vers son ensemble des parties. Montrer que f n'est pas surjective en étudiant l'ensemble des antécédents de A par f, où :

$$A = \{ x \in E, \, x \not\in f(x) \}.$$

Ce résultat constitue le théorème de Cantor.

Éléments de réponse :

Ex. 1: c.
$$\mathbb{R} \to]-2, 2[, y \to 0 \text{ si } y = 0, \frac{1-\sqrt{1+16y^2}}{2y} \text{ si } y \neq 0.$$

Ex. 2: a. 81, oui, b. 14, c. 36.

Ex. 3: a. vrai, b. faux, c. faux.