Série 4 - Exercices supplémentaires

Exercice 1. On considère l'application :

$$f: \mathbb{Z}^2 \to \mathbb{Z}, (p,q) \to 4p + 6q.$$

- a. Que vaut l'image de (2, -1) par f?
- b. Déterminer les antécédents de 0 par f, puis ceux de 1.
- c. Montrer que $f(\mathbb{Z}^2)$ est l'ensemble des entiers relatifs pairs.

Exercice 2. Soit $\alpha \in \mathbb{R}$ et $A = [\alpha, +\infty[$. On donne aussi l'application :

$$f: \mathbb{R} \to \mathbb{R}, x \to -2x^2 + 4x + 3.$$

- a. Etant donné $y \in \mathbb{R}$, déterminer l'ensemble $f^{-1}(\{y\})$. Expliciter ensuite l'image directe de \mathbb{R} par f.
- b. Supposons que $\alpha \leq 1$. Montrer alors que tout élément de $f(\mathbb{R})$ possède (au moins) un antécédent dans A.
- c. Identifier le sous-ensemble f(A). Indication : discuter selon que $\alpha \leq 1$ ou $\alpha > 1$ et utiliser le résultat du b.
- d. Déterminer tous les réels β tels que $f(]-\infty,\beta])=f(A).$

Exercice 3. Est-il vrai que, pour tout choix d'ensemble E, d'application $f: E \to E$ et de sous-ensembles A, B de E, on a :

a.
$$f(A \cup B) = f(A) \cup f(B)$$
?

c.
$$f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$$
?

b.
$$f(A \cap B) = f(A) \cap f(B)$$
?

d.
$$f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$$
?

Justifier votre réponse par une démonstration ou un contre-exemple.

Exercice 4. Soient E et F deux ensembles non vides et $f:E\to F$ une application. Dans chacun des cas, quelle est la propriété portant sur $y\in F$ décrite par l'énoncé proposé?

a.
$$\forall x \in E, f(x) \neq y$$

b.
$$\forall x \in E, f(x) = y$$

c.
$$\exists x \in E, f(x) = y$$

d.
$$\exists x \in E, f(x) \neq y$$
.

Éléments de réponse :

Ex. 1: a. 2, b.
$$\{(-3k, 2k), k \in \mathbb{Z}\}$$
 et \emptyset .

Ex. 2: a.
$$]-\infty, 5]$$
, c. $]-\infty, 5]$ si $\alpha \le 1$, $]-\infty, -2\alpha^2 + 4\alpha + 3]$ sinon, d. $\beta \ge 1$ si $\alpha \le 1$, $\beta = 2 - \alpha$ sinon.