Série 5

Exercice 1. Dans chacun des cas suivants, déterminer si l'application $f: \mathbb{R} \to \mathbb{R}$ est injective. Justifier.

a.
$$x \to 2x + 1$$

b.
$$x \to 2\cos(x) - \sin(2x)$$

c. $x \to x^3$.

Exercice 2. On donne $E = \{\alpha, \beta, \gamma, \delta\}$ et $F = \{\varepsilon, \zeta, \eta\}$, ainsi que les applications $f : E \to F$ et $g : F \to E$ définies par :

$$f(\alpha) = \eta, f(\beta) = f(\gamma) = \varepsilon, f(\delta) = \zeta \text{ et } g(\varepsilon) = \delta, g(\zeta) = \beta, g(\eta) = \alpha.$$

- a. Déterminer l'application $f \circ g$. Est-elle injective?
- b. Même question avec l'application $g \circ f$.
- c. Lister tous les sous-ensembles non vides A de E tels que la restriction de f à A est injective. Combien y en a-t-il?

Exercice 3. On considère l'application :

$$f: \mathbb{R} \to \mathbb{R}^2, \ x \to (\frac{x}{2+x^2}, x^2 - 3x).$$

- a. Déterminer le (ou les) antécédent(s) éventuel(s) de $(\frac{1}{3}, -2)$ par f. L'application f est-elle injective?
- b. Montrer que f restreinte à $]-\infty,1[\cup]1,+\infty[$ est injective.

Exercice 4. On considère l'application :

$$f: \mathbb{R} \to \mathbb{R}, x \to -x^2 - 4x - 7.$$

- a. Pour tout $x \in \mathbb{R}$, déterminer l'ensemble $f^{-1}(\{f(x)\})$. L'application f est-elle injective? Et qu'en est-il de $f \circ f$?
- b. Identifier l'image directe de \mathbb{R} par f. La restriction de f à $f(\mathbb{R})$ est-elle injective?
- c. Soit $z \in \mathbb{R}$. Montrer que f restreinte à $]-\infty,z[$ est injective si et seulement si $z \leqslant -2$.

Exercice 5. On considère l'application :

$$f: \mathbb{R} \to \mathbb{R}, x \to x^3 - 3x.$$

- a. Pour tout $x \in \mathbb{R}$, déterminer l'ensemble $f^{-1}(\{f(x)\})$. L'application f est-elle injective?
- b. Montrer que, si x > 1, alors f(x) possède un unique antécédent par f dans $]1, +\infty[$.
- c. L'application f restreinte à $[1, +\infty[$ est-elle injective? Justifier.

Exercice 6. Soient E et F deux ensembles. Montrer qu'une application $f: E \to F$ est injective si et seulement si :

$$\forall A \subset E, \quad f(\mathcal{C}_E(A)) \subset \mathcal{C}_F(f(A)).$$

Indication: raisonner par double implication et pour " \Leftarrow ", utiliser le cas particulier $A = \{x\}$.

Éléments de réponse :

- Ex. 1: a. injective, b. non injective, c. injective.
- Ex. 2: a. oui, b. non, c. 11.
- **Ex.** 3 : a. $\{1, 2\}$, non.
- **Ex. 4**: a. $\{x, -4 x\}$, les deux sont non injectives, b. $]-\infty, -3]$, oui.
- **Ex. 5**: a. non, c. oui.