
2. Ultrashort Laser Pulses 

Rick Trebino and Erik Zeek 

The Basics 

What exactly is an ultrashort laser pulse anyway? Quite simply, it's a very 
very short burst of electro-magnetic energy. 

The pulse, like any light wave, is defined by its electric field as a function 
of space and time, 8(x, y, z, t). You may be more familiar with a continuous 
beam, whose electric field is sinusoidal in time. The difference is that an ultra­
short pulse comprises only a few cycles of a sine wave (more precisely, less 
than about a million for visible light). Indeed, our expression for an ultrashort 
pulse will be the product of a sine wave and a pulse-envelope function. So 
ultrashort laser pulses are not really much different from other types of laser 
light, just shorter. A lot shorter. 

New issues do arise, however, in dealing with ultrashort pulses, and, in 
particular, in measuring them. For example, the shorter the pulse, the broader 
its spectrum, that is, the greater the range of colors (the bandwidth) present. 
And, despite the incredibly short duration of these pulses, the color can change 
rapidly during one. Indeed, the pulse can begin as one color and end as quite 
another. Simply passing through a material-even air-can modify the color 
variation of a pulse in time. We'll need to be able to measure this variation­
which is contained in the pulse phase-as well as variations in the pulse 
intensity. 

We won't concern ourselves with how such pulses are created, a subject 
that could fill another entire book (and has! [1-4]). Their measurement will 
prove adequate subject matter for us. 

The Intensity and Phase vs. Time 

For the sake of simplicity, we'll treat the electric field as linearly polarized, 
so we need consider only one component of it. This is called the scalar 
approximation, in which we ignore the pulse electric field's vector character. 
The electric field of the pulse can potentially be a complicated function of 
space and time, but, as we're mainly interested in the temporal features of 
the pulse, we'll ignore the spatial portion of the field and write the temporal 
dependence of the pulse electric field as: 

8(t) = ~ /i(i) exp{i [wt - <P(t)]} + C.c. (2.1) 
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where t is time in the reference frame of the pulse, Wo is a carrier angular 
frequency on the order of 1015 sec-I, and I (t) and c!>(t) are the time-dependent 
intensity and phase of the pulse. 

Notice that we've removed the rapidly varying carrier wave exp(iwot) from 
the intensity and phase. This saves us the trouble of plotting all the oscillations 
of the pulse field. 

Sometimes, we refer to I (t) and c!>(t) as the temporal intensity and phase of 
the pulse to distinguish them for their spectral counterparts that we'll define 
next. We assume that, despite their ultrafast nature, I (t) and c!>(t) vary slowly 
compared to exp(iwot)-a good assumption for all but the shortest pulses. 
As usual, "c.c." means complex conjugate and is required to make the pulse 
field real. But, in this book (as in most other publications), we'll make what's 
called the analytic signal approximation and ignore the complex-conjugate 
term. This yields a complex pulse field, but it simplifies the mathematics 
significantly. 

We refer to the complex amplitude of this wave as: 

E(t) == Jl(t)exp[-ic!>(t)] (2.2) 

E(t) is simply B(t) but without the "Re" and the rapidly varying exp(iwot) 
factor and multiplied by 2. Equation (2.2) is the quantity we'll be measuring 
for the rest of this book. Some people refer to .J I (t) as the "amplitude," with 
the word "real" suppressed (see Fig. 2.1). 

We can solve for the intensity, given the field: 

let) = IE(t)1 2 (2.3) 
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Fig. 2.1: The electric field, intensity, (real) amplitude, and intensity of a Gaussian pulse. The 
intensity of a Gaussian pulse is ../2 shorter than its real amplitude. The phase of this pulse is a 
constant, lP(t) = 0, and is not plotted. 
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where we don't care about the absolute magnitude of the intensity (the irra­
diance); instead we only care about the shape, so, in Eq. (2.3), we've omitted 
constants like the permittivity and the speed of light. 

We can also solve for the phase: 

{ 
Im[E(t) } 

¢(t) = - arctan 
Re[E(t) 

An equivalent formula for the phase is: 

¢(t) = -Im{ln[E(t)]} 

The Intensity and Phase vs. Frequency 

(2.4) 

(2.5) 

The pulse field in the frequency domain is the Fourier transform the time­
domain field, 8(t): 

8(w) = i: 8(t) exp( -iwt) dt (2.6) 

where we'll use the tilde C) over a function to indicate that it's the Fourier 
transform. Also, the inverse Fourier transform is: 

1 foo -8(t) = - 8(w) exp(iwt) dw 
2rr -00 

(2.7) 

Separating 8(w) into its intensity and phase yields: 

IS(W) = jS(;) exp[ -icp(w)] I (2.8) 

where S(w) is the spectrum and cp(w) is the spectral phase. Note that, while 
the temporal phase (¢) and spectral phase (cp) are both called "phi," we've 
actually used different Greek characters to distinguish them. The spectrum 
and spectral phase typically have nonzero regions for both positive and neg­
ative frequencies (see Fig. 2.2). Because 8(t) is real, the two regions contain 
equivalent information, so everyone always ignores the negative-frequency 
reglOn. 

We could've defined the spectrum and spectral phase in terms of the 
Fourier transform ofthe complex pulse amplitude, E(t)' rather than the entire 
field,8(t): 

E(w - wo) = J S(w - wo) exp[ -icp(w - wo)] (2.9) 

where S(w - wo) would've been the spectrum, and cp(w - wo) would've been 
the spectral phase. These are the same functions as above, but the center 
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Fig. 2.2: The spectrum and spectral phase corresponding to the real pulse (gray) and the 
complex amplitude (black). Note that the real pulse spectrum has both positive and negative 
frequency components, centered on +Wo and -Wo, respectively (in this plot, Wo ~ O.38jfs). 
The spectrum and spectral phase corresponding to the pulse complex amplitude have only one 
component, centered on zero frequency. 

frequency of the spectrum and spectral phase would've been shifted to zero. 
Also, the negative-frequency component is explicitly removed in Eq. (2.9) 
because the complex conjugate does not occur in the complex field envelope 
(see Fig. 2.2). This is done occasionally, and a few plots in this book will use 
this definition. 

Most the time, we won't do this simply because ultrafast optics researchers 
generally don't. We're sorry if it may be a bit confusing that the time-domain 
field in general use is the complex field envelope, while the frequency-domain 
field is the Fourier transform, not of the complex field envelope, but of the 
full real electric field (in which the negative frequency component is ignored). 
The reason for this usage is that people like their spectra centered on the actual 
center wavelength-not zero-but they don't like their temporal waveforms 
rapidly oscillating, as would be required to be rigorously consistent. Just 
memorize this, and don't complain; it's a lot easier than remembering all 
those PIN numbers banks keep sending you. 

Notice that the spectrum is given by: 

(2.10) 

The spectral phase is given by expressions analogous to those for the 
temporal phase: 

1 Im[8(w)] l cp(w) = - arctan _ 
Re[8(w)] 

(2.11) 

or, equivalently: 

cp(w) = -Im{ln[8(w)]} (2.12) 



Ultrashort Laser Pulses 15 

Finally, the spectrum can also be written in tenns ofthe wavelength. SA()") 
and Sw(w) can be quite different for broadband functions because, for exam­
ple, the frequency range extending from zero to some very low frequency 
extends in wavelength from a finite wavelength out to infinity. So the spec­
trum plotted vs. wavelength must take on considerably lower values for such 
large wavelengths to make sense. 

We must be able to transfonn between frequency and wavelength because 
theoretical work (involving Fourier transfonns) uses the frequency, while 
experiments (involving spectrometers) use the wavelength. The phase vs. 
wavelength is related to the phase vs. frequency: 

(2.13) 

since w = 2nc/).., and where we've added subscripts to indicate the relevant 
domain (frequency or wavelength). This result simply rescales the phase. But 
because the frequency scale and wavelength scale aren't linearly related, the 
phase looks different in the two cases (see Fig. 2.3). 

The spectrum is a little trickier. The easiest way to see how these two 
quantities are related is to note that the spectral energy is equal whether we 
calculate it vs. frequency or wavelength: i: SA ()")d)" = i: Sw(w)dw (2.14) 

Let's now rewrite the left side of this equation by transforming variables, 
w = 2nc/).., and noting that dw = -2nc/)..2d)". We have: 

(2.15) 

(2.16) 

This means that: 

(2.17) 
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Fig. 2.3: Two identical spectra and spectral phases of a few-fs (i.e., broadband) pulse, plotted 
vs. frequency (left) and vs. wavelength (right). Note the different shapes of both curves. due 
to rescaling between frequency and wavelength. 
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The Phase, Instantaneous Frequency, and Group Velocity 

The temporal phase, ¢(t), contains frequency vs. time information, and the 
pulse instantaneous angular frequency, Winst(t), is defined as: 

Winst(t) == Wo - d¢/dt (2.18) 

This is easy to see. At some time, t, consider the total phase of the wave. Call 
this quantity ¢o: 

¢o = wot - ¢(t) (2.19) 

Exactly one period, T, later, the total phase will (by definition) increase to 
¢o + 2n: 

¢o + 2n = wo(t + T) - ¢(t + T) (2.20) 

where ¢(t + T) is the slowly varying phase at the time, t + T. Subtracting 
Eq. (2.19) from Eq. (2.20): 

2n = woT - [¢(t + T) - ¢(t)] (2.21) 

Dividing by T and recognizing that 2n / T is a frequency, call it Winst (t): 

Winst(t) = 2n/T = Wo - [¢(t + T) - ¢(t)]/T (2.22) 

But T is small, so [¢(t + T) - ¢(t)]/T is the derivative, d¢/dt. So we're 
done! 

Usually, however, we'll think in terms of the instantaneous frequency, 
Vinst(t), so we'll need to divide by 2n: 

I Vinst(t) = Vo - [d¢/dt]/2n I (2.23) 

We can write a Taylor series for the ¢(t) about the time t = 0: 

(2.24) 

where only the first few terms are required to describe well-behaved pulses. 
While the temporal phase contains frequency vs. time information, the 

spectral phase contains time vs. frequency information. So we can define the 
group delay vs.frequency, tgroup(w), given by: 

I tgroup(w) = dcp/dw I (2.25) 

A similar derivation to the above one for the instantaneous frequency can show 
that this definition is reasonable. Also, we'll typically use this result, which 
is a real time (the rad's cancel out), and never dcp/dv, which isn't. Lastly, 
always remember that tgroup(w) is not the inverse of Winst(t). 
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It's also common practice to write a Taylor series for <peW): 

I <pew) = <Po + (w - wo) <PI + (w - wo)2 <pd2 + ... I (2.26) 

where, as in the time domain, only the first few terms are typically required to 
describe well-behaved pulses. Of course, we'll want to measure badly behaved 
pulses, which have higher-order terms in </J(t) and <pew). 

Unfortunately, these definitions aren't completely satisfying. In particular, 
they don't always correspond to our intuitive ideas of what the instantaneous 
frequency and group delay should be for light. Consider the simple case of 
light with two frequencies: 

B(t) = exp(iwlt) + exp(iw2t) + C.c. (2.27) 

Recalling that this is a simple case of "beats," the instantaneous frequency 
obtained by the definition given above is: 

(2.28) 

a frequency that never actually occurs in the beam (only WI and W2 do). But, 
for most ultrashort-pulse applications, there's a broad continuous range of 
frequencies, and the above definitions prove reasonable. 

Phase Distortions in Time and Frequency 

Phase Wrapping, Unwrapping, and Blanking 

Before we discuss the various phase distortions that occur in ultrashort 
pulses, we should mention a couple of points that you should always keep in 
mind when you deal with the phase. 

First, because exp[i</J] = exp[i(</J + 2iT)] = exp[i(</J + 4iT)] = ... , the 
phase could be different by any integer times 2iT, and the light pulse will still 
be exactly the same. What this means is that infinitely many different phases 
vs. time (or frequency) correspond to precisely the same pulse. So how do we 
decide which phase to use? 

There are two preferred methods. The first is to simply force the phase to 
always remain between 0 and 2iT (or -iT and +iT). This way, there's only one 
possible phase that yields a given pulse (once the intensity is determined). 
This is the method you'll be implementing if you simply ask your computer 
to compute the phase, given the real and imaginary parts of the pulse using 
Eqs. (2.4), (2.5), (2.11), or (2.12). 

The problem with this approach is that, well, it's ugly. When the phase 
exceeds 2iT, it jumps to zero, and a great big discontinuity opens up in the 
phase. See Fig. 2.4. And this can happen many times over the pulse's life. 
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Fig. 2.4: Left: A pulse whose phase has not been phase-unwrapped. Right: The same pulse 
after phase-unwrapping. Note the different phase scales in each plot. 

The solution to this aesthetics problem is to phase-unwrap. It involves adding 
or subtracting the appropriate number of multiples of 2n to the phase at each 
discontinuity, so that it remains continuous over its entire range. This yields 
much prettier phases, but the price you pay is the need for a phase-unwrapping 
routine, which makes these decisions. Fortunately, phase-unwrapping rou­
tines work well, and this is the preferred approach in ultrafast optics labs 
everywhere (including this book). 

But be careful, as under-sampling a phase that varies a lot will confuse 
any phase-unwrapping routine. At a discontinuity, the routine has to decide 
whether to add 2n to or subtract 2n from the next point. This is easy if the 
previous two points were 6.276 and 6.280, respectively, and the next point is 
0.001: in this case, the routine adds 2n to the 0.001. But if the next point is 
2.9 because you didn't sample the points densely enough, it'll just guess. As 
a result, you could get a really strange-looking phase plot. It'd still be correct, 
but no one would take you seriously. 

Another issue to keep in mind is that, when the intensity goes to zero, the 
phase is completely meaningless. After all, if an arrow has zero length, what 
possible meaning could there be in its direction? None. Unfortunately, com­
puters are still too dumb to just ignore the phase in this case, and they'll 
typically simply spew out a blather of random numbers (or worse, error 
messages) for the phase, even when the intensity is zero. 

When this happens, here's something you should never do. Do not try to fit 
the resulting random numbers to a polynomial and then call me complaining 
that your pulse's phase is so complex that even a SOOth-order polynomial 
didn't quite do it (yes, someone did this). Okay, you can do the polynomial 
fit if you really want to; just don't call me. 

The solution to this problem is to phase-blank. When the intensity is zero 
(or so close to zero that it's in the noise), it's customary to simply not plot 
the phase, instead of plotting random numbers. See Fig. 2.5. The commercial 
FROG code allows you to decide at what intensity the phase becomes mean­
ingless for your data and hence when to phase-blank. But you can always 
simply erase these points from your plot. 

Finally, there are additional subtleties involving the phase of a pulse. It 
turns out that a given pulse doesn't necessarily have a unique representation 
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Fig. 2.5: Left: A typical pulse (spectrum and spectral phase) that has not been phase-blanked. 
The phase takes on random values where the intensity is near zero because the phase is not 
defined where the intensity is zero. Right: The same pulse after phase-blanking. 

in terms of intensity and phase. In other words, different combinations of 
intensities and phases can yield the same real electric field. Even beyond 
the above ambiguities, the phase can have additional possible values if we 
also allow the intensity to vary to compensate. For example, if we artificially 
modify the intensity slightly by introducing a little bump in it for a very short 
range of times (think less than one period of the light wave), we can simply 
adjust the phase at those times to compensate to yield the same real electric 
field. Don't think too hard about this issue, or you'll have to transfer to a 
mathematics department. 

In fact, to keep us all on the same wavelength, let's all agree to use 
Sew) = 18(w)12 for the spectrum, let) = IE(t)1 2 for the intensity, and the 
corresponding formulas for the phase and spectral phase. 

Zeroth-order Phase: The Absolute Phase 

First, it's important to realize that the zeroth-order phase is the same in 
both domains: </>0 = CPo. This is because the Fourier Transform is linear, and 
a constant times a function Fourier-Transforms to the same constant times 
the Fourier Transform of that function. Thus, the zeroth-order phase term, 
which corresponds to multiplication by a complex constant, is the same in 
both domains: E(t) exp(i</>o) Fourier-Transforms to E(w) exp(i</>o). 

The zeroth-order phase term is often called the absolute phase. It's some­
thing of a misnomer, as it's really a relative phase: the relative phase of the 
carrier wave with respect to the envelope. Simply stated, it's the phase of the 
carrier at the peak of the pulse envelope or some other reference time. 

Having said that we desire to measure all orders of the phase, including 
high ones, we now point out that, in reality, we don't usually care much about 
the lowest-order term. This is because, when the pulse is many carrier-wave 
cycles long, variation in the absolute phase shifts the carrier wave from the 
peak of the envelope to a value only slightly different and hence changes the 
pulse field very little. Figure 2.6 (top) shows the full real field of a 5-cycle 
pulse with both a 0 and rr values of the absolute phase. Note that it is quite 
difficult to distinguish the two pulses. 



Fig. 2.6: Top: the full real electric field of two lO-fs near-IR pulses, one with zero absolute 
phase and the other with Jr absolute phase. Bottom: the full real field of single-cycle near-IR 
pulses with various absolute phases. Note how different single-cycle pulses look when their 
absolute phase shifts. 

When the pulse is only one cycle long, however, the absolute phase matters. 
While this effect could be important, we won't consider it in this text. 

First-order Phase: A Shift in Time or Frequency 

Recall the Fourier Transform Shift Theorem, which says that: E (t - r) 
Fourier Transforms to E(w) exp( -iwr). So a linear term in the spectral 
phase, <PI == r, corresponds to a shift in time, i.e., a delay (see Fig. 2.7). 
Generally, we care only about the pulse's shape, not when it arrives. Indeed, 
if our measurement technique were sensitive a delay of the pulse, we'd have to 
maintain high stability of its path length, and hence of all beam-steering optics 
between the source and measurement device. And that would just further 
complicate our already complicated lives. 

Occasionally, the delay is of interest, and interferometric methods can be 
used in this case (see chapters 22-24). But the first-order term in the spectral 
phase, <PI, is generally uninteresting. 

Since the Shift Theorem also applies to the inverse Fourier Transform, as 
well, E(w - wo) inverse-Fourier-Transforms to E(t) exp(iwo t). So a linear 
term in the temporal phase, <PI, corresponds to frequency shift (see Fig. 2.7 
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Fig. 2.7: Effect of linear phase_ Top row: A Gaussian-intensity, flat-phase pulse_ Middle row: 
the same pulse, but delayed in time, corresponding to a linear spectral phase_ Bottom row: 
the same pulse, but with a linear phase in time, corresponding to a shift of the spectrum. In 
these plots and all others in this chapter, the frequency scales are measured in cycles per fs, not 
radians per fs. 

bottom row). A spectral shift is often interesting. It is, however, easily 
measured with a spectrometer. 

Second-order Phase_' Linear Chirp 

Quadratic variation of <P (t), that is, a nonzero value of <P2, represents a linear 
ramp of frequency vs. time and so we say that the pulse is linearly chirped. (See 
Fig. 2.8). Consider a pulse with a Gaussian intensity and quadratic temporal 
phase: 

(2.29) 

where Eo is a constant, 1/ J a is roughly the pulse duration, and b is the chirp 
parameter. Here the intensity is: 

(2.30) 
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Fig. 2.8: (a) 20-fs Gaussian-intensity pulse wi quadratic temporal phase, <Pz = -0.032 rad fsz 
or f/!z = 290 rad fsz. Here the quadratic phase has stretched what would have been a 3-fs 
pulse (given the spectrum) to a 13.9-fs one. Top left: the field. Note the increase in fre­
quency with time. Top right: the intensity, phase, and instantaneous frequency vs. time. Bottom 
row: the spectrum, spectral phase, and group delay vs. frequency and wavelength. Like their 
time-domain relatives here, the spectrum, spectral phase, and group delay vs. frequency are 
also Gaussian, quadratic, and linear, respectively, but, plotted vs. wavelength, they are some­
what distorted. (b) Same as Fig. 2.8a, but for a pulse with negative chirp, <P2 = 0.032 rad/fs2 
or f/!2 = -290 rad fS2. 

and the temporal phase is simply: 

c/>(t) = -bt2 (2.31) 

The Fourier transform of this field is: 

- In [ w2 
] E(w) = -- exp ----

a-ib 4(a-ib) 
(2.32) 
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Separated into the spectrum and spectral phase, the frequency-domain field 
can be written: 

(2.33) 

which is also a Gaussian. And the spectral phase is also quadratic: 

b 2 
<p(w)= 2 2w (2.34) 

a +b 
As a result, quadratic variation of ¢(t) corresponds to quadratic variation of 
<p(w). Note that ¢2 and <P2 have opposite signs. This is a result of the various 
sign conventions, which are fairly standard. 

Propagation through materials usually causes (positive) linear chirp, so if 
an ultrashort laser pulse doesn't have linear chirp at one point, it will a little 
further on. In fact, a negatively chirped pulse will shorten as it propagates 
through material. 

Third-order Phase: Quadratic Chirp 

Materials have higher-order dispersion, so they also induce higher-order 
phase distortions, as well. Above second order, distortions in the phase are 
usually considered in the frequency domain. This is because the spectrum is 
easily measured, and the intensity vs. time is not, so determination of the 
spectral phase yields the full pulse field, whereas the temporal phase doesn't. 
Also, it's quite intuitive to think in terms of how much delay is required for a 
given frequency to compensate for its distortion in spectral phase. 

Third-order spectral phase means a quadratic group delay vs. frequency. 
This means that the central frequency of the pulse arrives first, say, while 
frequencies on either side of the central frequency, Wo ± ow, arrive later. 
The two slightly different frequencies cause beats in the intensity vs. time, 
so pulses with cubic spectral phase distortion have oscillations after a main 
pulse (or before it, if the sign of the third-order coefficient, <P3, is negative). 
See Figs. 2.9a and b. Also, you might want to take a peak at Chapter 17, where 
we'll measure the mother of all cubic-spectral-phase pulses. 

Higher-order Phase 

Higher-order terms yield additional distortions, which can give rise to 
extremely complex pulses. Figures 2.10 and 2.11 show pulse shapes with 
quartic (fourth-order) and quintic (fifth-order) spectral phase. 

For example, the nonlinear-optical process, self-phase modulation, yields 
a temporal phase proportional to the input pulse intensity vs. time. This dis­
tortion can be quite complex, especially when considered in the frequency 
domain (see Figure 2.12). 
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Fig. 2.9: (a) Cubic Spectral phase. Top left: the electric field vs. time for a pulse with a 
Gaussian spectrum and cubic spectral phase, with 'P3 = 3 X 104 rad fs3• Top right: the intensity, 
phase, and instantaneous frequency vs. time. Note that phase jumps correspond to meaningless 
discontinuities in the instantaneous frequency. Bottom row: The spectrum, spectral phase, and 
group delay vs. frequency (left) and wavelength (right). (b) Same as Fig. 2.9a, but with negative 
cubic spectral phase of the same magnitude as in Fig. 2.9a. 

Also, propagation through long distances of fiber can result in higher-order 
dispersion of the fiber becoming evident in the form of higher-order pulse 
phase distortions, and nonlinear-optical processes can further distort the pulse 
phase, as well as the intensity, in both domains. 

Finally, to repeat a point we made earlier, it's often tempting to take a 
phase vs. time or frequency and fit it to a high-order polynomial, as inspired 
by Eqs. (2.24) or (2.26). While this may be reasonable, it is important to realize 
that when the intensity is zero, the phase is undefined and hence meaningless. 
And, when the intensity is near zero, the phase is nearly meaningless, which 
is probably not too different from totally meaningless. Thus, it's important 
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Fig. 2.10: (a) Quartic phase. Top left: the electric field vs. time for a pulse with Gaussian 
spectrum and positive quartic spectral phase, ip4 = 4 X 105 rad fs4. Top right: The intensity, 
phase, and instantaneous frequency vs. time. Bottom row: and the spectrum, spectral phase, 
and group delay vs. frequency (left) and wavelength (right). (b) Same as Fig. 2.lOa, but with 
negative quartic spectral phase of the same magnitude as in Fig. 2. lOa. 

to crop the phase (to phase-blank) at values of the intensity that are within 
an error bar of zero, often at about 1 % of the peak intensity. Or better, when 
fitting the phase to a high-order polynomial, use an intensity-weighted fit, 
which places low emphasis on the phase at times or frequencies where the 
intensity is weak. 

Relative Importance of the Intensity and Phase 

Finally, while it's obviously true that both the intensity and phase (in either 
domain) are required to fully specify a function, in some sense the more 
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Fig. 2.11: (a) Quintic spectral phase. To~ left: the electric field vs. time for a pulse with 
Gaussian spectrum and IPs = 7 x 106 rad fs . Top right: The intensity, phase, and instantaneous 
frequency vs. time. Bottom: the spectrum, spectral phase, and group delay vs. frequency 
and wavelength. (b) Same as Fig. 2.lla, but with negative quintic spectral phase of the same 
magnitude as in Fig. 2.l1a. 

important of the two quantities is the phase. To see this [5], take the magnitude 
of the two-dimensional Fourier Transform of a photograph and combine it 
with the phase from the two-dimensional Fourier Transform of a different 
photograph. This composite image, transformed back to the space domain, 
tends to look much more like the photograph that supplies the Fourier phase 
than the photograph that supplies the Fourier magnitude. We've reproduced 
this example in Fig. 2.13 using different photographs. Note that the composite 
images look almost nothing like the pictures that supply the Fourier magnitude, 
and instead both look very much like the picture supplying the Fourier phase! 

This fact is also evident in recent work in the generation of near-single­
cycle pulses. Spectra of such pulses are often quite structured, but, as long 
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Gaussian temporal intensity. The pulse is slightly spectrally broadened. (b) Top: Temporal 
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The pulse is massively spectrally broadened. 

as a nearly constant spectral phase is achieved, a few-cycle pulse can be 
produced. The spectral structure causes only small ripples in the wings of the 
pulse intensity vs. time. See Chapter 14. 

Pulse Propagation 

We've set up all this terminology to describe potentially very complex ultra­
short light pulses. Why have we done this? How do pulses become distorted? 
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The answer is that light is often created with complex intensity and phase, 
but, even if it's a simple flat-phase Gaussian pulse to begin with, propagation 
through materials will distort it. 

Fig. 2.13: Top: Photographs of the Rick Trebino (left) and his wife, Linda (right). If we 
2D-Fourler-transform (FT) each of these pictures, and use the 2D FT magnitude of one pho­
tograph in conjunction with the other photograph's FT phase, after inverse FT, we make the 
composite photographs shown on the bottom row. Bottom left: Photograph produced using 
the FT-magnitude of Linda and FT-phase of Rick. Bottom right: Photograph produced using 
the FT-magnitude of Rick and FT-phase of Linda. Note that these composite photographs look 
nothing like the photographs whose FT-magnitude was used, and they look very similar to the 
photograph whose FT phase was used. 

When a pulse propagates through a medium, its various frequencies have 
different phase and group velocities due to the medium's frequency-dependent 
refractive index, n (w), that is, its dispersion. The absorption coefficient, a (w), 
varies also. These effects are easily and accurately modeled. If L is the length 
of the medium, the frequency-domain output field, Eout (w), will be related to 
the frequency-domain input field, Ein(w), by: 

Eout(w) = Ein(W) exp[ -a(w)L/2] exp[in(w)kL] 

= Ein(w) exp[ -a(w)L/2] exp [in(w)~L ] 

(2.35) 

(2.36) 
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Absorption will modify the pulse's spectrum, and dispersion will modify the 
pulse's spectral phase: 

Sout(W) = SineW) exp[-a(w)L] 

. w 
fPout(w) = fPin(W) + tn(w)-L 

c 

(2.37) 

(2.38) 

Absorption can narrow the spectrum, which could broaden the pulse. On 
the other hand, occasionally someone attempts to broaden a pulse spectrum 
by preferentially absorbing its peak frequencies. 

We've seen that phase is usually the more interesting quantity. To a rea­
sonably good approximation, propagation through a medium adds first- and 
second-order terms to the pulse phase. Since, as we have seen, first-order 
phase vs. w corresponds to a simple delay, it isn't very interesting. Thus, it's 
fairly accurate to say that propagation through a material introduces (posi­
tive) chirp into a pulse. A flat-phase pulse becomes positively chirped, and a 
negatively chirped pulse actually shortens. If the pulse is particularly broad­
band, however, then third, fourth, and possibly fifth-order phase terms must 
be considered. 

Also, if a pulse propagates through some material on its way to your pulse­
measurement device, and you really desire to know the pulse's intensity and 
phase before it propagates through the material, then you can compensate 
for the distortions introduced by the material using this result. Of course, 
you can only do this if you're measuring the complete pulse field, E(t) or, 
equivalently, E(w). 

The Pulse Length and Spectral Width 

Our goal is to measure the pulse complex amplitude E(t) (or E(w» com­
pletely, that is, to measure both the intensity and phase, expressed in either 
domain. We must be able to do so even when the pulse has significant inten­
sity structure and highly nonlinear chirp. In addition, we'd like not to have to 
make assumptions about the pulse. 

Unfortunately, this has turned out to be difficult. As a result, researchers 
have had to make do with considerably less information than they would've 
liked for many years. A modest request is to be able simply to measure about 
how long the pulse is. Analogously, we'd like to be able to know how broad the 
spectrum is. Unfortunately, researchers haven't settled on a single definition 
of the pulse length (also referred to as the pulse width) and the spectral width 
(but, for some reason, never referred to as the "spectral length"). Several 
definitions exist, and each has its advantages and adherents. Here are the 
most common definitions. 

Full-width-half-maximum (rFWHM): This is the time between the most­
separated points that have half of the pulse's peak intensity (see Fig. 2.14). This 
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Fig. 2.15: Left: A pulse and its half-width-lle (HWlIe). Right: This is also a good measure of 
the pulse width, except when pulse structure exists. 

is the most intuitive definition, and it's the rule in experimental measurements, 
since it's easy to pull TFWHM off a plot It's not the most convenient for calcu­
lations, however. Also, small variations in the pulse can yield huge changes 
in TFWHM. Consider, for example, a pulse with a satellite pulse .49 times as 
large as the main pulse; if the satellite pulse increases by I %, the pulse length 
can increase by a large factor. 

For a simple Gaussian-intensity pulse, these issues aren't a problem, and 
the electric field can be written in terms of TFWHM: 

E(t) = Eo exp[ -21n 2(t /TFWHM)2] = Eo exp[ -1.38(t /TFWHM)2] (2.39) 

Half-width-lle (THWlje): This pulse width (see Fig. 2.15) is the amount of 
time between the pulse's maximum intensity and the time the intensity drops 
to 1/e (about 0.36) of the maximum value_ Especially useful when the pulse 
is a Gaussian in time or frequency, this definition allows us to write a simple 
expression for the pulse, with no messy constants. Theorists like this because 
it makes it easier to write down expressions in calculations. In terms of this 
definition, a Gaussian pulse field is written: 

E(t) = Eoexp[-~(t/THWl/e)2] (2.40) 

The factor of 1/2 is required so the intensity will lack such constants: 

l(t) = IEoI2exp[-(t/THWl/e)2] (2.41) 
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Keep in mind that the HWl/e width is considerably less than the FWHM, so 
be careful to specify which pulse width definition you're using, especially in 
a conversation between theorists and experimentalists. 

Root-mean-squared puLse width (Inns): This width is the easiest to prove 
theorems about. It's the second-order moment about the mean arrival time of 
the pulse: 

(2.42) 

where: 

(tn) == i: tn [(t)dt (2.43) 

and [(t) is assumed normalized so that its time integral is 1 (so it should 
have dimensions of inverse time). While the FWHM ignores any values of 
the pulse intensity as long as they're less than one half the pulse maximum 
intensity, the rms width emphasizes values far from the center of the pulse, 
and therefore is a good indicator of "wings" in the pulse. 

EquivaLent puLse width (Ie): This definition (see Fig. 2.16) considers that 
the pulse has a width (Ie) and a height (lmax). And the product of these two 
quantities should be the area under the intensity (the integral of [(t)): 

1 100 
Ie = - [(t)dt 

[max -00 

(2.44) 

This pulse-width definition is most useful when the pulse is complicated, with 
many sub-pulses and structure. 

We define spectral widths, WFwHM, WHwlje, Wnns , and We, analogously. And 
spectral widths in cycles per second are VFWHM = WFwHM/2:rr, etc. 

The Time-Bandwidth Product 

Now that we've defined the temporal and spectral widths, we can define the 
time-bandwidth product, or TBP, of a pulse, which is just what it sounds like: 
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Fig. 2.16: Illustration of the equivalent pulse width for two different pulses. The peak of the 
dashed rectangular "equivalent" pulse is set equal to the peak of the pulse. The width of the 
dashed rectangular pulse is then chosen so that its area is equal to that of the solid curve pulse. 
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the product of the temporal width and the spectral width. If all you can have 
about a pulse is a single parameter, the parameter you'd like to have is the 
TBP. Since the units of the pulse width are seconds, and those of the spectral 
width (WfWHM) are rad/s, or inverse seconds, the TBP is dimensionless. As 
a result, it's a good figure of merit for a pulse. The smaller the TBP, the 
"cleaner" or simpler the pulse. In addition, since the pulse coherence time, 
rc (roughly the length of the shortest structure within a pulse), is the reciprocal 
of the bandwidth, the TBP is the ratio of the pulse width and the coherence 
time. So the TBP is the approximate number of sub-pulses in the pulse. For 
pulses whose main distortion is a low-order phase distortion, however, such 
as linear chirp, the TBP can be large even when there is no substructure in the 
pulse. Whatever the source of distortions, laser builders and manufacturers 
and researchers try very hard to make the simplest pulses with the lowest TBP. 

Depending on the definition chosen, the minimum possible TBP ranges 
from about .1 to 1, and it increases with increasing pulse complexity (see 
Figs. 2.17 and 2.18). 

It would seem reasonable that a pulse with a flat phase would have a smaller 
TBP than a pulse with a complicated phase. Is this always the case? Or 
is it possible to have a pulse with, say, a complicated spectrum, for which 
some complicated spectral phase yields a smaller pulse length and hence a 
smaller TBP than does a constant phase? It turns out that, for any spectrum, 
the shortest pulse in time, and hence the smallest TBP, always occurs for a 
flat spectral phase. Similarly, for any pulse intensity vs. time, the narrowest 
spectrum, and hence the smallest TBP, always occurs for a flat temporal 
phase. These conclusions require that we use the rms temporal and spectral 
widths and follow easily from the result given by Cohen in his excellent book, 
Time-Frequency Analysis [6,7]: 

(2.45) 

where the real amplitude A (t) = J I (t), intensity is assumed normalized 
to have unity time integral, the prime means the derivative, and the mean 
frequency is assumed subtracted from <P' (t). 

This result writes the rms bandwidth as something like the Pythagorean sum 
of a contribution due to variations in the amplitude and a contribution due to 
variations in the phase (weighted by the intensity). Note that both integrands 
and integrals are always positive, so variations in the amplitude only increase 
the bandwidth and, likewise, variations in the phase also only increase the 
bandwidth. 

Since the Fourier Transform is symmetrical, the same holds for the rms 
pulse width in terms of the spectral variations: 

(2.46) 
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Fig. 2.17: (a) Gaussian-intensity pulse with constant phase and minimal TBP. The intensity 
and phase vs. time (left); the spectrum and spectral phase vs. frequency (right). For the dif­
ferent definitions of the widths: TBPnns = 'nns Wnns = 0.5, TBPe = 3.14, TBPHW1/e = 1, 
TBPFWHM = 2.76. Divide by 2n for 'nns Vnns, etc. (b) Same as Fig. 2.l7a, except a longer pulse 
(note the change in scale of the phase axis) with chirp and hence a larger TBP. TBP nns = 1.13, 
TBPe = 7.01, TBPHW1 / e = 2.26, TBPFWHM = 6.28. Divide by 2n for 'nnsVnns, etc. (c) 
Same as Fig. 2.17a, except an even longer pulse (note the change in scale of the time axis) 
with more chirp and hence a larger TBP. TBPnns = 5.65, TBPe = 35.5, TBPHW1 / e = 11.3, 
TBPFWHM = 31.3. Divide by 2n for 'nns Vnns, etc. 

where the spectral amplitude is B(w) = ,JS(w), Sew) is assumed normalized 
to have unity area, prime means derivative, and the mean pulse time is assumed 
subtracted from cp' (w ) . 

Thus, for a given spectrum, Sew), variations in the spectral phase can only 
increase the rms pulse width over that corresponding to a fiat spectral phase. 

Spatio-Temporal Pulse Characteristics 

In writing Eq. (2.1), we've ignored the spatial dependence of the beam. 
More specifically, we've tacitly assumed that the complex pulse field, which 
is actually a function of both time and space, separates into the product of 
spatial and temporal factors, and we have simply ignored the spatial compo­
nent. This assumption is valid for the fairly smooth pulses emitted by most 
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Fig. 2.18: (a) A pulse with random intensity and phase structure. The intensity and phase vs. 
time (left) the spectrum and spectral phase vs. frequency (right). This pulse has a near-unity 
TBP. For the various definitions of the pulse and spectral widths, the TBP is: TBPrms = 6.09, 
TBPe = 4.02, TBPHW1je = 0.82, TBPFWHM = 2.57. Divide by 27f for frmsVrms , etc. (b) Same 
as Fig. 2.18a, except a pulse with more structure and hence a larger TBP. TBPrms = 32.9, 
TBPe = 10.7, TBPHW1je = 35.2, TBPFWHM = 116. Divide by 27f for frmsVrms , etc. (c) 
Same as Fig. 2.18a, except a pulse with even more structure and hence an even larger TBP. 
TBPrms = 122, TBPe = 44.8, TBPHW1je = 213, TBPFWHM = 567. Divide by 27f for 
f rms Vrms, etc. 

ultrafast lasers. It is, however, fairly easy to generate pulses that violate this 
assumption (for example, pulse compressors and shapers can introduce angu­
lar dispersion into the pulse, so the pulse winds up with its redder colors on 
one side and the bluer colors on the other, a distortion called spatial chirp), 
and nearly all pulse-measurement techniques get confused in this case. We'll 
talk about how to measure such complicated pulses later when we discuss the 
spatio-temporal measurement of a pulse (Chapter 22), but in the meantime, 
we'll ignore this problem. (If you suspect your pulse has this problem before 
you get to Chapter 22, just aperture it, and measure a small piece of the beam.) 

We've also assumed polarized light, but this also is not necessary. We'll get 
to the measurement of a polarization-varying pulse later (we'll just measure 
each polarization independently, but we'll have to measure the relative phase 
of the two polarizations, as well-see Chapter 23). 
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3. Nonlinear Optics 

Rick Trebino and John Buck 

Linear vs. Nonlinear Optics 

The great thing about ultrashort laser pulses is that all their energy is 
crammed into a very short time, so they have very high power and inten­
sity. A typical ultrashort pulse from a Ti : Sapphire laser oscillator has a paltry 
nanojoule of energy, but it's crammed into 100 fs, so its peak power is 10,000 
Watts. And it can be focused to a micron or so, yielding an intensity of 
1012 W jcm2 ! And it's easy to amplify such pulses by a factor of 106 ! 

What this means is that ultrashort laser pulses easily experience high­
intensity ejfects---effects that we don't ordinarily see because even sunlight on 
the brightest day doesn't approach the above intensities. And all high-intensity 
effects fall under the heading of nonlinear optics [1-12]. Some of these effects 
are undesirable, such as optical damage. Others are very desirable, such as 
second-harmonic generation, which allows us to make light at a new fre­
quency, twice that of the input light. Or like four-wave mixing, which allows 
us to generate light with an electric field proportional to EI (t) E2*(t) E3(t), 
where EI (t), E2 (t), and E3(t) are the complex electric-field amplitudes of 
three different light waves. Whereas linear optics requires that light beams 
pass through each other without affecting each other, nonlinear optics allows 
the opposite. This chapter will describe the basics of nonlinear optics for any­
one who hasn't experienced this field, so you can understand the basics of 
FROG, which is an inherently nonlinear-optical phenomenon. 

The fundamental equation of optics-whether linear or nonlinear-is the 
wave equation: 

a28 I a28 a2:p 
az2 - c2 at2 = /-t0ai2 

o 
(3.1) 

where /-to is the magnetic permeability of free space, Co is the speed of light 
in vacuum, 8 is the real electric field, and :P is the real induced polarization. 
The induced polarization contains the light's effects on the medium and the 
medium's effect back on the light wave. It drives the wave equation. 

The induced polarization contains linear-optical effects (the absorption 
coefficient and refractive index) and also nonlinear-optical effects. At low 
intensity (or low field strength), the induced polarization is proportional to 
the electric field that is already present: 

(3.2) 

where co is the electric permittivity of free space, and the linear susceptibility, 
X (I), describes the linear-optical effects. This expression follows from the 
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Fig. 3.1: Linear optics. Left: A molecule excited by a light wave oscillates at that frequency 
and emits only that frequency. Right: This process can be diagrammed by showing the input 
light wave as exciting ground-state molecules up to an excited level, which re-emits the same 
frequency. 

fact that the light electric field, 8, forces electric dipoles in the medium into 
oscillation at the frequency of the field; the dipole oscillators then emit an 
additional electric field at the same frequency. The total electric field (incident 
plus emitted) is what appears as 8 in Eqs. (3.1) and (3.2). If we assume a 
lossless medium, for example, we find that the electric and polarization field 
expressions, 8(z, t) ex Eo cos(evt -kz) and /P = 80 X(1) Eo cos(evt -kz), will 
solve the wave equation, provided that ev = c k, and c = co/(l + X(I)1/2. 

In linear optics, (where Eq. (3.2) applies), the wave equation is linear, so if 
8 is a sum of more than one beam (field), then so is /P. As a result, /P drives 
the wave equation to produce light with only those frequencies present in /P, 
and these arise from the original input beams. In other words, light doesn't 
change color (see Fig. 3.1). Also, with a linear wave equation, the principle 
of superposition holds, and beams of light can pass through each other and 
don't affect each other. 

Life at low intensity is dull. 

Nonlinear-Optical Effects 

At high intensity, the induced polarization ceases to be a simple linear 
function of the electric field. Put simply, like a cheap stereophonic amplifier 
driven at too much volume, the medium doesn't follow the field perfectly (see 
Figs. 3.2 through 3.4), and higher-order terms must be included: 

(3.3) 

where X (2) and X (3) are called the second- and third-order susceptibilities. X (n) 

is called the nth-order susceptibility. 
What do nonlinear-optical effects look like? They're easy to calculate. 

Recall that the real field, 8, is given by: 

8(t) = ~E(t)exp(ievt) + ~E*(t)exp(-ievt) (3.4) 
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Fig.3.2: Nonlinear optics. Left: A molecule excited by a light wave oscillates at other frequen­
cies and emits those new frequencies. Right: This process can be diagrammed by showing the 
input light wave as exciting ground-state molecules up to highly excited levels, which re-emit 
the new frequencies. 
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Fig. 3.3: Nonlinear electronic effects in a cheap audio amplifier. The input wave from the 
audio source is taken here to be a sine wave. In an expensive amplifier, the sine wave is 
accurately reproduced at higher volume, but, because the cheap amplifier cannot achieve the 
desired volume, the output wave saturates and begins to look more like a square wave. This 
produces new frequency components at harmonics of the input wave. Nonlinear-optical effects 
are analogous: a sine-wave electric wave drives a molecular system, which also does not 
reproduce the input sine wave accurately, producing new frequencies at harmonics of the input 
wave. Whereas audiophiles spend a great deal of money to avoid the above nonlinear electronic 
effects, optical scientists spend a great deal of money to achieve nonlinear-optical effects. 
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Fig. 3.4: Potential surface of a molecule, showing the energy vs. separation between nuclei. 
Note that the potential is nearly parabolic near the bottom, but it is far from parabolic for 
excitations that hit the molecule harder forcing it to vibrate with larger ranges of nuclear 
separations. This molecule will emit frequencies other than that driving it. 
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Fig. 3.5: Second-hannonic generation. Left: Collinear beam geometry. Right: Noncollinear 
beam geometry with an angle, e, between the two input beams. Such noncollinear beam 
geometries are possible in nonlinear optics because more than one field is required at the input. 

where we have temporarily suppressed the space dependence, and E (t) is the 
complex field. So squaring this field yields: 

8 2(t) = ~E2(t)exp(2iwt) + ~E(t)E*(t) + ~E*2(t)exp(-2iwt) (3.5) 

Notice that this expression includes terms that oscillate at 2w, the sec­
ond harmonic of the input light frequency. These terms then drive the wave 
equation to yield light at this new frequency. This process is very important; 
it's called second-harmonic generation (SHG). Optical scientists, especially 
ultrafast scientists, make great use of SHG to create new frequencies. And 
it is the single most important effect used to measure ultrashort laser pulses. 
Figure 3.5 shows a schematic of SHG. 

The above expression also contains a zero-frequency term, so light can 
induce a dc electric field. This effect is called optical rectification; it's 
generally pretty weak, so we won't say much more about it. 

If we consider the presence of two beams and this time don't sup-
press the spatial dependence, 8(r,t) = ~El(r.t)exp[i(wlt - kl · r)] + 
~E2(r, t) exp[i(w2t - k2 . r)] + c.c. In this case, we have: 

8 2(r,t) = ~EI2exp[2i(wlt -kl .r)] 

+ ~EIEI* + ~ E/ exp [-2i(wlt - kl . r)] 

+ ~El exp [2i(w2t - k2 · r)] + ~ E2E2* 

+ ~E;2 exp [-2i(w2t - k2 . r)] 

+ ~EIE2 exp {i[(wl + (2)t - (kl + k2) . r]} 

+ ~EI* E2* exp {-i[(wl + (2)t - (kl + k2) . r]} 

+ ~EI E2* exp {i[ (WI - (2)t - (kl - k2) . r]} 
+ ~EI* E2 exp {-i[(Wl - (2)t - (kl + k2) . r]} (3.6) 

Okay, this looks like a mess. But the first two lines are already familiar; they're 
the SHG and optical-rectification terms for the individual fields. The next line 



Nonlinear Optics 41 

Fig.3.6: Intensity pattern produced when two beams cross. When the beams cross in a medium, 
the medium is changed more at the intensity peaks than at the troughs, producing a laser-induced 
grating [13]. 

is new: it yields light at the frequency, WI + W2, the sum frequency, and hence 
is called sum-frequency generation (SFG). The last line is also new: it yields 
light at the frequency, WI - W2, the difference frequency, and hence is called 
difference-frequency generation (DFG). These two processes are also quite 
important, and they playa key role in techniques to measure pulses, as well. 

Notice something else. The new beams are created in new directions, ki +k2 
and ki - k2. This can be very convenient if we desire to see these new­
potentially weak-beams in the presence of intense input beams that create 
them. 

Third-order effects are collectively referred to asfour-wave-mixing (4WM) 
effects because three waves enter the nonlinear medium, and an additional 
one is created in the process, for a total of four. We won't waste a page and 
write out the entire third-order induced polarization, but, in third order, as 
you can probably guess, we see effects including third-harmonic generation 
(THG) and a variety of terms like: 

:Pi = ~80X (3) El E; E3 exp {i[ (WI - W2 + (3)t - (ki - k2 + k3) . r]} (3.7) 

Notice that, if the factor of the electric field envelope is complex -conjugated, 
its corresponding frequency and k-vector are both negative, while, if the field 
is not complex-conjugated, the corresponding frequency and k-vector are 
both positive. Such third-order effects, in which one k-vector is subtracted, 
are often called induced grating effects because the intensity due to two of 
the beams, say, EI and E2, has a sinusoidal spatial dependence (see Fig. 3.6). 
The sinusoidal intensity pattern affects the medium in some way, creating a 
sinusoidal modulation of its properties, analogous to those of a diffraction 
grating. The process can then be modeled as diffraction of the third beam off 
the induced grating. 

Third-order effects include a broad range of interesting phenomena (some 
useful, some irritating), many beyond the scope of this book. But we'll con­
sider a few that are important for pulse measurement. For example, suppose 
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Fig. 3.7: Two-beam coupling. One beam can affect the other in passing through a sample 
medium. The pulse at the output indicates the signal beam, here collinear with one of the beams 
and at the same frequency. This idea is the source of a variety of techniques for measuring the 
properties of the sample medium. 
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Fig. 3.8: Polarization gating. If the polarizers are oriented at 0° and 90°, respectively, the 
45°-polarized beam (at frequency Ctil) induces polarization rotation of the OO-polarized beam 
(at frequency alJ), which can then leak through the second 900 polarizer. The pulse at the 
output indicates the signal pulse, again collinear with one of the input beams, but here with the 
orthogonal polarization. 

that the second and third beams in the above expression are the same: E2 = E3 
and k2 = k3 . In this case, the above induced polarization becomes: 

This yields a beam that has the same frequency and direction as beam #1, but 
allows it to be affected by beam #2 through its mag-squared factor. So beams 
that pass through each other can affect each other! Of course, the strength of 
all such effects is zero in empty space (X (3) of empty space is zero), but the 
strength can be quite high in a solid, liquid, or gas. It's often called two-beam 
coupling (see Fig. 3.7). 

A particularly useful implementation of the above third-order effect is 
polarization gating (see Fig. 3.8), which involves the use of orthogonal polar­
izations for E2 and E3• This typically means that these two co-propagating 
beams combine together to yield a beam polarized at 45° to that of E 1, which 
is, say, horizontally polarized. The two vertically polarized beams form a 
grating, and the horizontally polarized beam diffracts off it, and the diffracted 
beam maintains horizontal polarization. This creates an induced polarization 
for the horizontal polarization, i.e., the polarization orthogonal to that of E 1• 

This new beam is created in the same direction as beam #1, and with the same 
frequency, too. As a result, crossed polarizers can be used to separate the new 
beam from the input beam E1. This beam geometry is convenient and easy to 
set up, and it's much more sensitive than two-beam coupling. 
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By the way, another process is simultaneously occurring in polarization 
gating called induced birefringence, in which the electrons in the medium 
oscillate along with the incident field at +450 , which stretches the formerly 
spherical electron cloud into an ellipsoid elongated along the +450 direction. 
This introduces anisotropy into the medium, typically increasing the refractive 
index for the +450 direction and decreasing it for the -450 direction. The 
medium then acts like a wave plate, slightly rotating the polarization of the 
field, E1, allowing some it to leak through the crossed polarizers. 

However you look at it, you get the same answer when the medium responds 
rapidly. 

Another type of induced-grating process is self diffraction (see Fig. 3.9). It 
involves beams #1 and #2 inducing a grating, but beam #1 also diffracting off 
it. Thus beams #1 and #3 are the same beam. This process has the induced­
polarization term: 

It produces a beam with frequency 2W1 - W2 and k-vector ik1 - k2. This beam 
geometry is also convenient because only two input beams are required. 

And it is also possible to perform third-harmonic generation using more 
than one beam (or as many as three). An example beam geometry is shown 
in Fig. 3.10, using two input beams. 

Signal #1 

Nonli~ear ~"""2C01-C02 
medium ...... . 

I"::::::"! 
Signal #~"'~~ ..... 2co2-C01 

Fig. 3.9: Self diffraction. The two beams yield a sinusoidal intensity pattern, whieh induces 
a grating in the medium. Then each beam diffracts off the grating. The pulses at the output 
indicate the signal pulses, here in the 2kl - kz and 2kz - kl directions. 

m~~i~m Signal #1 
"-~ 20)1 +0)2 Iw··t .... ·· .. · .. ·· .. · .. .. ! ......................... .. 

A--- 20) +0) 
Signal #2 2 1 

Fig. 3.10: Third-harmonic generation. While each beam individually can produce third har­
monie, it can also be produced by two factors of one field and one of the other. These latter 
two effects are diagrammed here. 
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Some General Observations about Nonlinear Optics 

Nonlinear-optical effects are usually diagrammed as in Fig. 3.11. Upward­
pointing arrows indicate fields without complex conjugates and with fre­
quency and k-vector contributions with plus signs. Downward-pointing 
arrows indicate complex -conjugated fields in the polarization and negative 
signs in the contributions to the frequency and k-vector of the light created. 
Unless otherwise specified, Wo and ko denote the output or signal frequency 
and k-vector. 

Notice that, in all of these nonlinear-optical processes, the polarization 
propagates through the medium just like the light wave does. It has a frequency 
and k-vector. For a given process of Nth order, the signal frequency Wo is 
given by: 

I Wo = ±Wl ± W2 ± ... ± WN I 
where the signs obey the above complex-conjugate convention. 

The polarization has a k-vector with an analogous expression: 

I ko = ± kl ± k2 ± ... ± kN I 
where the same signs occur in both Eqs. (3.10) and (3.11). 

(3.10) 

(3.11) 

In all of these nonlinear-optical processes, terms with products of the E-field 
complex envelopes, such as Er E2, are created. It is these products that allow 
us to measure ultrashort laser pulses. Whether it is simple autocorrelation, 
FROG, or some new, as yet undiscovered method, it will take advantage of 
these effects. What we'll be doing, for example, is taking two beams (pulses) 
and delaying one with respect to the other and considering processes with the 
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Fig. 3.11: Sample complex nonlinear-optical process, :P ex EI E2 E3 E: Es. Here, 

Wo = WI + W2 + W3 - W4 + Ws and ko = kl + k2 + k3 - k4 + ks. The k-vectors are shown adding 
in two-dimensional space, but, in third- and higher-order processes, space's third dimension is 
potentially also involved. The different frequencies (colors) of the beams are shown as different 
shades of gray. 
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product, E1 (t) E2(t - r), where r is the delay. This multiplication of electric 
fields will allow one pulse to gate out a temporal piece of another. 

The Mathematics of Nonlinear Optics 

The Slowly Varying Envelope Approximation 

Okay, so there are some interesting induced polarizations going on, but 
how do we calculate what their effects are? Well, we must substitute into the 
wave equation, Eq. (3.1), and solve the nonlinear differential equation that 
results. While this is hard to do exactly, a few tricks and approximations make 
it quite easy in most cases of practical interest. 

The first approximation is that we consider only a range of frequencies 
near one frequency at a time. We'll write the wave equation for one particular 
signal frequency, wo, and only consider a small range of nearby frequencies. 
Anything happening at distant frequencies will alternately be in phase and then 
out of phase with the fields and polarizations in this range and so should have 
little effect. We'll also assume that the nonlinear optical process is fairly weak, 
so it won't affect the input beams. Thus we'll only consider the one signal field 
of interest. If you're interested in more complex situations, you're probably 
not measuring pulses, and you should check out a full text on nonlinear optics 
(see, for example, the list at the end of this chapter). 

The second is the Slowly Varying Envelope Approximation (SVEA), which, 
despite its name, remains a remarkably good approximation for all but the 
shortest pulses (we'll see it break down in the chapter on few-femtosecond 
pulses, but the fix will be remarkably simple). It takes advantage of the fact 
that, as short as they are, most ultrashort laser pulses are still not as short as an 
optical cycle (about 2 fs for visible wavelengths). Thus the pulse electric field 
can be written as the product of the carrier sine wave and a relatively slowly 
varying envelope function. This is what we've been doing, but we haven't 
explicitly used this fact; now we will. Since the measure of the change of 
anything is the derivative, we'll now neglect second derivatives of the slowly 
varying envelope compared to those of the more rapidly varying carrier sine 
wave. And the wave equation, which is what we must solve to understand any 
optics problem, is drowning in derivatives. 

Assume that the driving polarization propagates along the z-axis, and write 
the electric field and polarization in terms of slowly varying envelopes: 

8Cr, t) = ~ ECr, t) exp[i(wo t - koz)] + c.c. 

!PCr, t) = ~ P(r, t) exp[i(wot - koz)] + c.c. 

(3.12) 

(3.13) 

where we've chosen to consider the creation of light at the same frequency 
as that of the induced polarization, woo But we've also assumed that the light 
field and polarization have the same k-vectors, ko, which is a big-and often 
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unjustified-assumption, as discussed above. But bear with us for now, and 
we'll come clean in a little while. 

Recall that the wave equation calls for taking second derivatives of 8 and 
:P with respect to t and/or z. Let's calculate them: 

a28 1 [a 2E aE ] 
-2 = - -2 + 2iwo- - w~E exp[i(wot - koz)] + c.c. 
at 2 at at 

(3.14) 

a28 1 [a2 E a E ] 
-2 = - -2 - 2iko- - k~E exp[i(wo t - ko z)] + C.c. 
az 2 az az 

(3.15) 

a2:p 1 [a 2 p ap ] 
-2- = - -2 + 2iwo- - w~P exp[i(wo t - ko z)] + c.c. 
at 2 at at 

(3.16) 

As we mentioned above, we'll assume that derivatives are small and that 
derivatives of derivatives are even smaller: 

(3.17) 

Letting Wo = 2n / T, we find that this condition will be true as long as: 

I a2 E I I 2n a E I 14n2 I - «2-- « -E at2 T at T 
(3.18) 

where T is the optical period of the light, again about 2 fs for visible light. 
These conditions hold if the field envelope is not changing on a time scale of 
a single cycle, which is nearly always true. So we can neglect the smallest 
term and keep the larger two. 

The same is true for the spatial derivatives. We'll also neglect the second 
spatial derivative of the electric field envelope. 

And the same derivatives arise for the polarization. But since the polar­
ization is small to begin with, we'll neglect both the first and second 
derivatives. 

The wave equation becomes: 

[ a E 2iwo a E 2 W5] -2iko- - -- - ko E + -E exp[i(wot - koz)] 
dz c2 at c2 

= -fJ.oW5P exp[i(wo t - koz)] (3.19) 

since we can factor out the complex exponentials. 
We can also cancel the exponentials. Recalling that E satisfies the wave 

equation by itself, k5 E = (w5/ c2 ) E, and those two terms can also be canceled. 
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Then dividing through by - 2ik yields: 

a E 1 a E . /-LoW6 
-+--=-1--P 
dz c at 2ko 

(3.20) 

This expression is actually a bit oversimplified. A more accurate inclusion 
of dispersion (see Diels' and Rudolph's book) yields the same equation, but 
with the phase velocity of light, c, replaced with the group velocity, Vg: 

aE 1 aE . /-LoW6 
-+--=-1--P 
dz Vg at 2ko 

(3.21) 

We can now simplify this equation further by transforming the time co­
ordinate to be centered on the pulse. This involves new space and time co­
ordinates, Zv and tv, given by: Zv = z and tv = t - z/Vg. To transform to these 
new co-ordinates requires replacing the derivatives: 

aE aE azv aE atv 
-=--+--az azv az atv az 
aE aE azv aE atv 
-=--+-­
at azv at atv at 

Computing the simple derivatives and substituting, we find: 

aE aE aE [ 1] az = azv + atv - Vg 

aE aE 
-=0+-
at atv 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

The time derivative of the polarization is also easily computed. This yields: 

a E a E [ 1] 1 [ a E ] . /-LOW6 
azv + atv - Vg + Vg atv = -1 2ko P (3.26) 

Canceling the identical terms leaves: 

aE . /-LOW6 
-=-1--P az 2ko 

(3.27) 

where we've dropped the subscripts on t and z for simplicity. This nice simple 
equation is the SVEA equation for most nonlinear-optical processes in the 
simplest case. Assumptions that we've made to get here include that: (1) the 
nonlinear effects are weak; (2) the input beams are not affected by the fact 
that they're creating new beams (okay, so we're violating Conservation of 
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Energy here, but only by a little); (3) the group velocity is the same for all 
frequencies in the beams; (4) the beams are uniform spatially; (5) there is no 
diffraction; and (6) pulse variations occur only on time scales longer than a 
few cycles in both space and time. And we've assumed that the electric field 
and the polarization have the same frequency and k-vector. While the other 
assumptions mentioned above are probably reasonable in practical situations, 
this last assumption will be wrong in many cases-in fact it's actually difficult 
to satisfy, and we go to some trouble in order to do so-and we'll consider it 
in the next section. But the rest of these assumptions are quire reasonable in 
most pulse-measurement situations. 

Solving the Wave Equation in the Slowly Varying Envelope Approximation 

If the polarization envelope is constant, then the wave equation in the SVEA 
is the world's easiest differential equation to solve, and here's the solution: 

fJ, {J} 
E(z, t) = -i~P z 

2ko 
(3.28) 

and we see that the new field grows linearly with distance. Since the intensity 
is proportional to the mag -squared of the field, the intensity then simply grows 
quadratically with distance: 

Phase-matching 

c lI {J} 
fez, t) = _",,_0_0 IPl2 Z2 

4 
(3.29) 

There is a ubiquitous effect that must always be considered when we per­
form nonlinear optics and is another reason why nonlinear optics isn't part of 
our everyday lives. This is phase-matching. What it refers to is the tendency, 
when propagating through a nonlinear-optical medium, of the generated wave 
to become out of phase with the induced polarization after some distance. If 
this happens, then the induced polarization will create new light that's out 
of phase with the light it created earlier, and, instead of making more such 
light, the two contributions will cancel out. The way to avoid this is for the 
induced polarization and the light it creates to have the same phase velocities. 
Since they necessarily have the same frequencies, this corresponds to having 
the same k-vectors, the issue we discussed a couple of sections ago. Then the 
two waves are always in phase, and the process is orders of magnitude more 
efficient. In this case, we say that the process is phase-matched. 

We've been implicitly assuming phase-matching so far by using the vari­
able ko for both k-vectors. But because they can be different, let's reserve the 
variable, ko, for the k-vector of the light at frequency Wo [ko = won(wo)/co, 
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where Co is the speed of light in vacuum], and we'll now refer to the induced 
polarization's k-vector, as given by Eq. (3.11), as kp • We must recognize 
that kp won't necessarily equal ko, the k-vector of light with the polariza­
tion's frequency wo-light that the induced polarization itself creates. Indeed, 
there's no reason whatsoever for the sum of the k-vectors above, all at dif­
ferent frequencies with their own refractive indices and directions, to equal 
won(wo)jco. 

Equation (3.27) now becomes: 

aE 
2iko- exp[i(wot - koz)] = J-tow~P exp[i(wot - kpz)] (3.30) 

dz 

Simplifying: 
aE . J-tow~ . - = -1-- P exp(l tlk z) 
az 2k 

(3.31) 

where: 
tlk == ko - kp (3.32) 

We can solve this differential equation simply also: 

. J-tow~ exp(i tlk z) ] L 
E(L t) = -l--P --=---

, 2ko i tlk 0 
(3.33) 

= _iJ-tow~ P [eXP(i tlk L) - 1] (3.34) 
2ko i tlk 

. J-tow~L . [eXP(i tlk Lj2) - exp( -itlk L j2)] = -1 P exp(l tlk Lj2) 
ko 2i tlk L 

(3.35) 

The expression in the brackets is sin(tlkLj2)j(tlkLj2), which is just the 
function called sinc(tlk Lj2). Ignoring the phase factor, the light electric 
field after the nonlinear medium will be: 

J-toui 
E(L, t) = _i __ o P L sinc(tlk Lj2) 

ko 
(3.36) 

Mag-squaring to obtain the light irradiance or intensity, I, we have: 

(3.37) 

Since the function, sinc2 (x), is maximal at x = 0, and also highly peaked 
there (see Fig. 3.12), the nonlinear-optical effect of interest will experience 
much greater efficiency if tlk = O. This confirms what we said earlier, that 
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Fig. 3.12: Left: Plot of sinc2(t.kL/2) vs. t.kL. Note that the sharp peak at t.k L = O. Right: 
Plot of the generated intensity vs. L, the nonlinear-medium thickness for various values of 
t.k. Note that, when t.k -=1= 0, the efficiency oscillates sinusoidally with distance and remains 
minimal for all values of L. 

the nonlinear-optical efficiency will be maximized when the polarization and 
the light it creates remain in phase throughout the nonlinear medium, that is, 
when the process is phase-matched. 

Phase-matching is crucial for creating more than just a few photons in a 
nonlinear-optical process. To summarize, the phase-matching conditions for 
an N-wave-mixing process are (see Fig. 3.11): 

Wo = ± WI ± W2 ± ... ± WN 

ko = ± kl ± k2 ± ... ± kN 

(3.38) 

(3.39) 

where ko is the k-vector of the beam at frequency, wo, which mayor may not 
naturally equal the sum of the other k-vectors, and it's our job to make it so. 

Note that, if we were to multiply these equations by Ii, they would corre­
spond to energy and momentum conservation for the photons involved in the 
nonlinear-optical interaction. 

Let's consider phase-matching in collinear SHG. Let the input beam 
(often called the fundamental beam) have frequency WI and k -vector, k 1 = 
Wln(Wl)/Co. The second harmonic occurs at Wo = 2Wl, which has the k­
vector, ko = 2Wl n(2wl)/CO. But the induced polarization's k-vector has 
magnitude, kp = 2kl = 2wln(w1)/co. The phase-matching condition 
becomes: 

ko = 2kl (3.40) 

which, after canceling common factors (2Wl/CO) simplifies to: 

(3.41) 

Thus, in order to phase-match SHG, it's necessary to find a nonlinear 
medium whose refractive indices at W and 2w are the same (to several decimal 
places). Unfortunately-and this is another reason you don't see things like 
this everyday-all media have dispersion, the tendency of the refractive index 
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Fig. 3.13: Refractive index vs. wavelength for a typical medium. Because phase-matching 
SHG requires the refractive indices of the medium to be equal for both w and 2w, it is not 
possible to generate much second harmonic in normal media. 

m 
Frequency 

2m 

Fig. 3.14: Refractive index vs. wavelength for a typical birefringent medium. The two 
polarizations (say, vertical and horizontal, corresponding to the ordinary and extraordinary 
polarizations) see different refractive index curves. As a result, phase-matching of SHG is 
possible. This is the most common method for achieving phase-matching in SHG. The extra­
ordinary refractive index curve depends on the beam propagation angle (and temperature), 
and thus can be shifted by varying the crystal angle in order to achieve the phase-matching 
condition. 

to vary with wavelength (see Fig. 3.13). This effect quite effectively prevents 
seeing SHG in nearly all everyday situations. 

It turns out to be possible to achieve phase-matching for birefringent 
crystals, whose refractive-index curves are different for the two orthogonal 
polarizations (see Fig. 3.14). 

In noncollinear SHG, we must consider that there's an angle, (), between the 
two beams (see Fig. 3.5). The input vectors have longitudinal and transverse 
components, but, by symmetry, the transverse components cancel out, leaving 
only the longitudinal component of the phase-matching equation: 

kl cos«() /2) + kl cos«() /2) = ko (3.42) 

Simplifying, we have 2kl cos«() /2) = ko as our phase-matching condition. 
Substituting for the k-vectors, the phase-matching becomes: 

(3.43) 
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Far from phase-matching Closer to phase-matching 

Six coherence lengths Two coherence lengths 

Fig. 3.15: Light inside a SHG crystal for two different amounts of phase-mismatch (i.e., 
for two different crystal angle orientations). Note that, as the crystal angle approaches the 
phase-matching condition, the periodicity of the intensity with position decreases, and the 
intensity increases. At phase-matching, the intensity increases quadratically along the crystal, 
achieving nearly 100% conversion efficiency in practice [14]. 

Fig. 3.16: Interesting non-collinear phase-matching effects in second-harmonic generation. 
(Picture taken by Rick Trebino.) 

Figure 3.16 shows a nice display of noncollinear SHG phase-matching 
processes involving one intense beam and scattered light in essentially all 
directions. This picture doesn't yield any particular insights for pulse mea­
surement, but it's really pretty, and we thought you might like to see it. By the 
way, the star isn't really nonlinear-optical; it's just due to the high intensity 
of the spot at its center (and the "star filter" on the camera lens when the 
picture was taken). The ring is real, however, and there can be as many as 
three of them. 

Finally, whether a collinear or non-collinear beam geometry, it's also pos­
sible to achieve phase-matching using two orthogonal polarizations for the 
(two) input beams. In other words, the input beam is polarized at a 45° angle 
to the output SH beam. This is referred to as Type II phase-matching, while 
the above process is called Type I phase-matching. Type II phase-matching is 
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more complex than Type I because the two input beams have different refrac­
tive indices, phase velocities, and group velocities, which must be kept in 
mind when performing measurements using it. 

Phase-matching is easier to achieve in third order, largely because we have 
an extra k-vector to play with. In fact, it can be so easy that it happens auto­
matically. In two-beam coupling and polarization gating, the phase-matching 
equations become: 

Wo = WI - W2 + W2 

ko = kl - k2 + k2 

(3.44) 

(3.45) 

These equations are automatically satisfied when the signal beam has the 
same frequency and k-vector as beam 1: WI and kl' respectively. 

For other third-order processes, phase-matching is not automatic, but it 
can be achieved with a little patience. For some processes, however, it can 
be impossible, as is the case for self-diffraction. In the latter case, sufficient 
efficiency can be achieved for most purposes, provided that the medium is 
kept thin to minimize the phase-mismatch. 

Phase-Matching Bandwidth 

Direct Calculation 

While at most one frequency can be exactly phase-matched at anyone time, 
some nonlinear-optical processes are more forgiving about this condition than 
others. Since it'll tum out to be important in pulse measurement to achieve 
efficient SHG (or other nonlinear-optical process) for all frequencies in the 
pulse, phase-matching bandwidth is an important issue. Figures 3.17 a, b show 
the SHG efficiency vs. wavelength for two different crystals and for different 
incidence angles. Notice the huge variations in phase-matching efficiency for 
different crystal angles and thicknesses. 

We can easily calculate the range of frequencies that will be approximately 
phase-matched in, for example, SHG. Assuming that the SHG process is 
exactly phase-matched at the wavelength, AO, the phase-mismatch, Ilk, will 
be a function of wavelength: 

Ilk(A) = 2kl - k2 (3.46) 

Ilk(A) = 2 [2n n~A)] - [2n n~:22)] (3.47) 

4n 
!:l.k(A) = T [n(A) - n(A/2)] (3.48) 
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Fig. 3.17: (a) Phase-matching efficiency vs. wavelength for the nonlinear-optical crystal, 
beta-barium borate (BBO). Top left: a 10 11m thick crystal. Top right: a 100 11m thick crystal. 
Bottom: a 1000 11m thick crystal. These curves also take into account the w5 and L 2 factors 
in Eq. (3.25). While the curves are scaled in arbitrary units, the relative magnitudes can be 
compared among the three plots. (These curves do not, however, include the nonlinear suscepti­
bility, X (2) , so comparison of the efficiency curves in Figs. 3.17 a and b requires inclusion ofthis 
factor.) (b) Same as Fig. 3.17a, except for the nonlinear-optical crystal, potassium di-hydrogen 
phosphate (KDP). Top left: a 10 11m thick crystal. Top right: a 100 11m thick crystal. Bottom: 
a 1000 11m thick crystal. The curves for the thin crystal don't fall to zero at long wavelengths 
because KDP simultaneously phase-matches for two wavelengths, that shown and a longer 
(IR) wavelength, whose phase-matching ranges begin to overlap when the crystal is thin. 
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Expanding 1/)... and the material dispersion to first order in the wavelength, 

!:J.k(8A) = - 1 - - n()...o) + 0)... n ()...o) - n()...0/2) - -n ()...0/2) 4;r [ 0)...] [ , 0)... , ] 
~ ~ 2 

(3.49) 
where 8A = )... - )...0, n'()...) = dn/d)... and we have taken into account the 
fact that, when the input wavelength changes by 8)"" the second-harmonic 
wavelength changes by only 0).../2. 

Recalling that the process is phase-matched for the input wavelength, )...0, 

we note that n()...0/2) - n()...o) = 0, and we can simplify this expression: 

!:J.k(8)"') = - 8A n ()...o) - -n ()...0/2) 4;r [, 8)", , ] 
)...0 2 

(3.50) 

where we have neglected second-order terms. 
The sinc2 curve will decrease by a factor of 2 when !:J.k L/2 = ±1.39. So 

solving for the wavelength range that yields I !:J.k I < 2.78/ L, we find that the 
phase-matching bandwidth 8)...FWHM will be: 

8)... _ 0.44 )...0/ L 
FWHM - -In-' (-)...-o)------:!-n-' (-)...0-/-2-) I (3.51) 

Notice that O)...FWHM is inversely proportional to the thickness of the nonlinear 
medium. Thus, in order to increase the phase-matching bandwidth, we must 
use a medium with dispersion such that n'()...o) - !n'()...0/2) ~ 0, or more 
commonly decrease the medium's thickness (see Fig. 3.18). 

Finally, note the factor of 112 multiplying the second-harmonic refractive 
index derivative in Eq. (3.51). This factor does not appear in results appearing 
in some journal articles. These articles use a different derivative definition for 
the second harmonic [that is, dn/d()"'/2)] because the second harmonic neces­
sarily varies by only one half as much as the fundamental wavelength. We, on 
the other hand, have used the same definition-the standard one, dn / d)...-for 
both derivatives, which, we think, is less confusing, but it yields the factor 

0~~~~~--~-9-=--=-=-T=~ 

500 600 700 800 900 1000 
Wavelength (nm) Wavelength (nm) 

Fig. 3.18: Phase matching bandwidth vs. wavelength for BBO (left) and KDP (right). 
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of 112. It's easy to see that the factor of 112 is correct: assuming that the 
process is phase-matched at AO, maintaining a phase-matched process [i.e., 
n(A/2) = n(A)] requires that the variation in refractive index per unit wave­
length near Ao/2 be twice as great as that near AO, since the second harmonic 
wavelength only changes only half as fast as the fundamental wavelength. 

Group-velocity Mismatch 

There is an alternative approach for calculating the phase-matching band­
width, which seems like a completely different effect until you realize that 
you get the same answer, and that it's just a time-domain approach, while the 
previous approach was in the frequency domain. Consider that the pulse enter­
ing the SHG crystal and the SH it creates may have the same phase velocities 
(they're phase-matched), but they could have different group velocities. This 
is called group-velocity mismatch (GVM). If so, then the two pulses could 
cease to overlap after propagating some distance into the crystal; in this case, 
the efficiency will be reduced because SH light created at the back of the 
crystal will not coherently combine with SH light created in the front. This 
effect is illustrated in Fig. 3.19. 

We can calculate the bandwidth of the light created when significant GYM 
occurs. Assuming that a very short pulse enters the crystal, the length of the 
SH pulse, 8t, will be detennined by the difference in light-travel times through 
the crystal: 

L L 
8t = - -- = L GYM 

vg(Ao/2) Vg(AO) 
(3.52) 

where GYM == 1/vg(Ao/2) - l/vg(Ao). This expression can be rewritten 
using expressions for the group velocity: 

cO/n(A) 
v g (A) = -} ---(A-/'---n-(A-) )-n '-(A-) (3.53) 

As the pulse just as pulse enters crystal tt Second harmonic created 

enters the crys~ (overlaps the input pulse) 

Crystal 

As the pulse ~hind Input pulse due to GVM [= Second harmonic pulse lags 

leaves the crystal : _ 

Fig. 3.19: Group-velocity mismatch. The pulse entering the crystal creates SH at the entrance, 
but this light travels at a different group velocity from that of the fundamental light, and light 
created at the exit does not coherently add to it. 
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Substituting for the group velocities in Eq. (3.52), we find: 

8t = Ln(AO/2) [1 _ Ao/2 n' (Ao /2)] _ Ln(AO) [1 - ~n' (AO)] 
Co n(Ao/2) Co n(AO) 

(3.54) 
Now, recall that we wouldn't doing this calculation for a process that wasn't 
phase-matched, so we can take advantage of the fact that n(Ao/2) = n(AO). 
Things then simplify considerably: 

LAO [ , 1, ] 8t = - n (AO) - -n (Ao/2) 
Co 2 

(3.55) 

Take the second-harmonic pulse to have a Gaussian intensity, for 
which ot OV = 0.44. Rewriting in terms of the wavelength, ot OA = 
ot ov [dvldA]-1 = 0.44 [dvldA]-1 = 0.44A2Ico, where we've neglected 
the minus sign since we're computing the bandwidth, which is inherently 
positive. So the bandwidth is: 

0.44 AolL 
OAFWHM ~ I 

In' (AO) - zn' (Ao/2) I 
(3.56) 

Note that the bandwidth calculated from GVM considerations precisely 
matches that calculated from phase-matching bandwidth considerations. 

Phase-matching Bandwidth Conclusions 

As we mentioned, in pulse-measurement devices, it's important to achieve 
efficient (or at least uniform) phase-matching for the entire bandwidth of the 
pulse. Since ultrashort laser pulses can have extremely large bandwidths (a 
10 fs pulse at 800 nm has a bandwidth of over a hundred nm), it'll be necessary 
to use extremely thin SHG crystals. Crystals as thin as 5 I-lm have been used 
to measure few-fs pulses. 

But also recall that the intensity of the phase-matched SH produced is 
proportional to L 2. So a very thin crystal yields very little signal intensity. 
Thus there is a nasty trade-off between efficiency and bandwidth. Fortunately, 
we can usually find a compromise-of just enough bandwidth and efficiency 
simultaneously. But, as with most compromises, we're not happy about it. 
As a result, we've spent much time thinking of tricks to beat this trade-off. 
Chapters 11 and 17 will discuss two different approaches. 

Nonlinear-Optical Strengths 

Just how strong are nonlinear-optical effects? Clearly they're not so strong 
that sunlight, even on the brightest day, efficiently produces enough of them 
for us to see. Of course, phase-matching also isn't happening. 
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Anyway, what sort of laser intensities are necessary to see these effects? 
We start with Eq. (3.36), which can be rewritten (with Wo = 2w) in the fonn: 

Zw . 2f.LOW2 L . . 
E (L, t) = -1 k P exp(lb.kL/2) smc(b.kL/2) (3.57) 

where P = tcox(2)(EW)2. Then, we relate intensity to electric field strength 

through I = (n/21]0)IEI 2, where 1]0 = Jf.Lo/co. With these, we re-write 
Eq. (3.57) in tenns of intensities to find: 

n w2(X (2»)2(IW)2 L 2 
IZw = ·,0 2 3 sinc2(b.kL/2) 

2co n 
(3.58) 

Next, suppose we consider the best case, in which the process is phase­
matched (sinc2(0) = 1) and re-write Eq. (3.58) in tenns of a SHG efficiency: 

12w 21]ow2d2 I W L 2 

Iw co2n3 
(3.59) 

where we define the d-coefficient as d = t X (2). d is what we usually find 
quoted in handbooks. It will depend not only on the material, but also on the 
field configuration-how the fields are polarized with respect to the crystal 
orientation. Again, we refer you to a more detailed treatment of nonlinear 
optics to fully understand these issues. Our concern now is just to get some feel 
for the numbers involved and what we can hope to achieve in SHG efficiency 
in the lab. As a quick calculation, suppose we use beta-barium borate (BBO) 
as our nonlinear crystal, in which d ~ 2 X 10- 12 m/V, and where n ~ 1.6 
(note that we can get away with approximate values for n when it appears in 
an amplitude calculation, but we must have very accurate values for n when 
computing phase-or phase mismatch). If we wish to frequency-double an 
input beam of wavelength, A = 0.8!-Lm, we find from Eq. (3.59): 

(3.60) 

where I is in W /m2 and L is in m. 
From the small coefficient in front, some pretty high intensities are needed 

for modest crystal lengths in order to get anything in the way of a decent 
efficiency! Suppose we consider an ultrafast laser. Basically, if you have an 
un amplified Ti : Sapphire laser, which produces nanojoule (nl) pulses, lOafs 
long, you have pulses with intensities on the order of 1014 W / m2 (when focus­
ing to a about a IO!-Lm spot diameter). Butof course when focusing this tightly, 
the beam doesn't stay focused for long, which limits the crystal length we can 
use. Additionally, because ultrashort pulses are broadband, the requirement 
of phase matching the entire bandwidth limits the SHG crystal thickness to 



Nonlinear Optics 59 

considerably less than 1 mm, and usually less than 100 \-Lm. Choosing a crys­
tal length of 100 \-Lm, and using the other numbers, we would achieve an 
efficiency of about 5%. This again is best-case for this configuration because 
1) the beam does not stay focused to its minimum size throughout the entire 
length (as the above calculation assumes), and 2) d is reduced somewhat 
below its maximum value; this is because the fields are not necessarily at the 
best orientation within the crystal to most effectively excite the anharmonic 
oscillators. Phase matching decides the field orientation, and the price is paid 
through a slightly reduced nonlinear coefficient (known as deff). So we end up 
trying to optimize all of these parameters until we're satisfied with the SHG 
power we are getting. Then we stop. 

This brings us to X (3). To get an idea of its order of magnitude for non­
resonant materials, consider glass. Single mode optical fibers, made of glass, 
guide light with a cross-sectional beam diameter of slightly less than 10 \-Lm. 
So we can achieve similar intensities that we saw before in our SHG example, 
but over much longer distances. In silica glass, X (3) ~ 2.4 x 10-22 m2 I V 2. 

One can make a comparison to a second order process by calculating the 
second and third order polarizations that result at a given light intensity. In 
our 100 fs 1 nJ pulse, focused to 10 \-Lm diameter, the field strength is E ~ 
2.5 X 108 V 1m. Then X(3) E ~ 6 X 10-14 m/V. Compare this to X (2) = 2d ~ 
4 x 10-12 m/V for BBO. From here, the nonlinear polarizations for both 
processes are found by multiplying these results by the light intensity. As this 
example demonstrates, third-order processes in non-resonant materials are 
substantially weaker than second order processes. But this can be made up for 
sometimes by (1) tuning the frequency of one or more of the interacting waves 
near a material resonance (but at some cost in higher losses for those waves 
that are near resonance), or (2) taking advantage of long interactions lengths 
that may be possible in phase-matched situations (such as in optical fibers). 
Turning up the intensity will also help. Microjoule pulses can yield more than 
adequate signal energies from most of the third order nonlinear optical effects 
mentioned in this chapter. Third order bulk media typically used are fused 
silica and any glass for the various induced grating effects. 

The above illustrations assumed 100 fs pulse intensities on the order of 
1012 W Icm2 • However, with the less tight focusing that's practical in the lab, 
intensities more like 109 W Icm2 are typically available. While this seems 
high, it's only enough to create barely detectable amounts of second harmonic. 
How about performing third-order nonlinear optics with such pulses? You can 
just barely do this in some cases, and it's a struggle. It's better to have a stage of 
amplification, especially from a regenerative amplifier ("regen"). Microjoule 
pulses can yield more than adequate signal energies from most of the third­
order nonlinear-optical effects mentioned in this chapter. Third-order media 
typically used are fused silica and any glass for the various induced-grating 
effects. These media are actually not known for their high nonlinearities, but 
they are optically very clean and hence are the media of choice for pulse 
measurement applications. 
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Okay, that was a lot to digest. So what's the minimum you need to know 
to understand the basic ideas of ultrashort-pulse measurement? Not much 
actually. For the next few chapters, we'll assume perfectly phase-matched 
interactions, and we won't worry about multiplicative constants, so all you 
need to remember is that the electric field of the nonlinear-optically generated 
light wave in this case is given by: 

Esig(t) ex P (3.61) 

which is a simplified version ofEq. (3.28), and we're referring to the generated 
wave as the signal field, Esig(t). Also, for pulse-measurement applications, 
we'll typically be splitting a pulse into two using a beam-splitter (usually a 
50%-refiecting mirror) and performing nonlinear optics with the pulse, E(t) 
and another delayed version of itself, E (t - r), where r is the relative delay 
between the two pulses. For the various processes we've considered so far, 
the generated field will be: 

{ 

E(t) E(t - r) 

E(t) IE(t - r)1 2 

Esig(t, r) ex E(t)2 E*(t _ r) 

E(t)2 E(t - r) 

for SHG 
forPG 

forSD 
forTHG 

(3.62) 

where we've included the delay in the functional dependence of the signal 
field. Finally, because we'll be mainly interested only in the pulse shape, we'll 
often neglect proportionality constants and just write, for example, E(t) = 
E(t) E(t - r) for SHG. 

That's all you really need to know. But you may still wish to read more on 
this fascinating subject, so here's a list of relevant books. 
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