2. Ultrashort Laser Pulses

Rick Trebino and Erik Zeek

The Basics

What exactly is an ultrashort laser pulse anyway? Quite simply, it’s a very
very short burst of electro-magnetic energy.

The pulse, like any light wave, is defined by its electric field as a function
of space and time, & (x, y, z, t). You may be more familiar with a continuous
beam, whose electric field is sinusoidal in time. The difference is that an ultra-
short pulse comprises only a few cycles of a sine wave (more precisely, less
than about a million for visible light). Indeed, our expression for an ultrashort
pulse will be the product of a sine wave and a pulse-envelope function. So
ultrashort laser pulses are not really much different from other types of laser
light, just shorter. A lot shorter.

New issues do arise, however, in dealing with ultrashort pulses, and, in
particular, in measuring them. For example, the shorter the pulse, the broader
its spectrum, that is, the greater the range of colors (the bandwidth) present.
And, despite the incredibly short duration of these pulses, the color can change
rapidly during one. Indeed, the pulse can begin as one color and end as quite
another. Simply passing through a material—even air—can modify the color
variation of a pulse in time. We’ll need to be able to measure this variation—
which is contained in the pulse phase—as well as variations in the pulse
intensity.

We won’t concern ourselves with how such pulses are created, a subject
that could fill another entire book (and has! [1-4]). Their measurement will
prove adequate subject matter for us.

The Intensity and Phase vs. Time

For the sake of simplicity, we’ll treat the electric field as linearly polarized,
so we need consider only one component of it. This is called the scalar
approximation, in which we ignore the pulse electric field’s vector character.
The electric field of the pulse can potentially be a complicated function of
space and time, but, as we’re mainly interested in the temporal features of
the pulse, we’ll ignore the spatial portion of the field and write the temporal
dependence of the pulse electric field as:

E(t) =3 VI@t) expli[wt — p()]} + c.c. 2.1)
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where ¢ is time in the reference frame of the pulse, wy is a carrier angular
frequency on the order of 103 sec™!, and I (t) and ¢ (¢) are the time-dependent
intensity and phase of the pulse.

Notice that we’ve removed the rapidly varying carrier wave exp(iwgt) from
the intensity and phase. This saves us the trouble of plotting all the oscillations
of the pulse field.

Sometimes, we refer to I (¢) and ¢ (¢) as the temporal intensity and phase of
the pulse to distinguish them for their spectral counterparts that we’ll define
next. We assume that, despite their ultrafast nature, I (t) and ¢ (¢) vary slowly
compared to exp(iwot)—a good assumption for all but the shortest pulses.
As usual, “c.c.” means complex conjugate and is required to make the pulse
field real. But, in this book (as in most other publications), we’ll make what’s
called the analytic signal approximation and ignore the complex-conjugate
term. This yields a complex pulse field, but it simplifies the mathematics
significantly.

We refer to the complex amplitude of this wave as:

E(r) = V1(t) exp[—i¢ ()] (22)

E(t) is simply &(¢) but without the “Re” and the rapidly varying exp(iwpt)
factor and multiplied by 2. Equation (2.2) is the quantity we’ll be measuring
for the rest of this book. Some people refer to /1 () as the “amplitude,” with
the word “real” suppressed (see Fig. 2.1).

We can solve for the intensity, given the field:

I(t) = |E@)[ (2.3)
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Fig. 2.1: The electric field, intensity, (real) amplitude, and intensity of a Gaussian pulse. The
intensity of a Gaussian pulse is /2 shorter than its real amplitude. The phase of this pulse is a
constant, ¢ (t) = 0, and is not plotted.
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where we don’t care about the absolute magnitude of the intensity (the irra-
diance); instead we only care about the shape, so, in Eq. (2.3), we’ve omitted
constants like the permittivity and the speed of light.

We can also solve for the phase:

_ Im[E(¢)
¢(t) = — arctan { Re[E () ] 2.4
An equivalent formula for the phase is:
¢(1) = —Im{In[E®)]} (2.5)

The Intensity and Phase vs. Frequency

The pulse field in the frequency domain is the Fourier transform the time-
domain field, &(z):

E(w) = f &(1) exp(—iwt) dt (2.6)

o0

where we’ll use the tilde (7) over a function to indicate that it’s the Fourier
transform. Also, the inverse Fourier transform is:

e@) = L f N & () exp(iwt) dw 2.7)
2n J_

o0

Separating & (w) into its intensity and phase yields:

€(w) = /S(w) exp[—ip(w)] (2.8)

where S(w) is the spectrum and ¢(w) is the spectral phase. Note that, while
the temporal phase (¢) and spectral phase (¢) are both called “phi,” we’ve
actually used different Greek characters to distinguish them. The spectrum
and spectral phase typically have nonzero regions for both positive and neg-
ative frequencies (see Fig. 2.2). Because & (¢) is real, the two regions contain
equivalent information, so everyone always ignores the negative-frequency
region.

We could’ve defined the spectrum and spectral phase in terms of the
Fourier transform of the complex pulse amplitude, E (¢), rather than the entire
field, &(¢):

E(w — wp) = V/S(w — wp) exp[—ig(w — wy)] 2.9)

where S(w — wy) would’ve been the spectrum, and ¢ (w — wg) would’ve been
the spectral phase. These are the same functions as above, but the center
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Fig. 2.2: The spectrum and spectral phase corresponding to the real pulse (gray) and the
complex amplitude (black). Note that the real pulse spectrum has both positive and negative
frequency components, centered on +wy and —awy, respectively (in this plot, wy = 0.38/fs).
The spectrum and spectral phase corresponding to the pulse complex amplitude have only one
component, centered on zero frequency.

frequency of the spectrum and spectral phase would’ve been shifted to zero.
Also, the negative-frequency component is explicitly removed in Eq. (2.9)
because the complex conjugate does not occur in the complex field envelope
(see Fig. 2.2). This is done occasionally, and a few plots in this book will use
this definition.

Most the time, we won’t do this simply because ultrafast optics researchers
generally don’t. We’re sorry if it may be a bit confusing that the time-domain
field in general use is the complex field envelope, while the frequency-domain
field is the Fourier transform, not of the complex field envelope, but of the
full real electric field (in which the negative frequency component is ignored).
The reason for this usage is that people like their spectra centered on the actual
center wavelength—not zero—but they don’t like their temporal waveforms
rapidly oscillating, as would be required to be rigorously consistent. Just
memorize this, and don’t complain; it’s a lot easier than remembering all
those PIN numbers banks keep sending you.

Notice that the spectrum is given by:

S(w) = |€(w)]? (2.10)

The spectral phase is given by expressions analogous to those for the
temporal phase:

(2.11)

or, equivalently:
¢(w) = —Im{In[€ ()]} (2.12)
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Finally, the spectrum can also be written in terms of the wavelength. S, (1)
and S, (w) can be quite different for broadband functions because, for exam-
ple, the frequency range extending from zero to some very low frequency
extends in wavelength from a finite wavelength out to infinity. So the spec-
trum plotted vs. wavelength must take on considerably lower values for such
large wavelengths to make sense.

We must be able to transform between frequency and wavelength because
theoretical work (involving Fourier transforms) uses the frequency, while
experiments (involving spectrometers) use the wavelength. The phase vs.
wavelength is related to the phase vs. frequency:

0 (A) = 9,2mc/}) (2.13)

since w = 2mc/X, and where we’ve added subscripts to indicate the relevant
domain (frequency or wavelength). This result simply rescales the phase. But
because the frequency scale and wavelength scale aren’t linearly related, the
phase looks different in the two cases (see Fig. 2.3).

The spectrum is a little trickier. The easiest way to see how these two
quantities are related is to note that the spectral energy is equal whether we
calculate it vs. frequency or wavelength:

f N S,(A)dA = f N S, ()dw (2.14)

o0 o0

Let’s now rewrite the left side of this equation by transforming variables,
w = 2mc/X, and noting that dw = —2mc/A2dA. We have:

o0 % —2mc
S, (A)dAa = So(2mc/A) > dA (2.15)
—00 20 )\
oo 2nc
- / So(2rc/h) So"dA (2.16)
oo A
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Fig. 2.3: Two identical spectra and spectral phases of a few-fs (i.e., broadband) pulse, plotted
vs. frequency (left) and vs. wavelength (right). Note the different shapes of both curves, due
to rescaling between frequency and wavelength.
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The Phase, Instantaneous Frequency, and Group Velocity

The temporal phase, ¢ (¢), contains frequency vs. time information, and the
pulse instantaneous angular frequency, wing(t), is defined as:

Wingt (t) = wp — d¢p/dt (2.18)

This is easy to see. At some time, ¢, consider the total phase of the wave. Call
this quantity ¢y:

¢o = wot — (1) (2.19)
Exactly one period, T, later, the total phase will (by definition) increase to

¢o + 2m:
do+2r =w(t+T)—-¢p(t+T) (2.20)

where ¢ (¢ + T) is the slowly varying phase at the time, ¢ 4+ T. Subtracting
Eq. (2.19) from Eq. (2.20):

2 = woT — [p(t +T) — ¢ (2)] 2.2
Dividing by T and recognizing that 27t/ T is a frequency, call it wig (2):
Winst(t) =27 /T =wo — [t +T) — ¢ )]/ T (2.22)

But T is small, so [¢(t + T) — ¢(¢)]/T is the derivative, d¢/dz. So we're
done!

Usually, however, we’ll think in terms of the instantaneous frequency,
Vinst (2), so we’ll need to divide by 27x:

Vinst (1) = vo — [d¢/dt]/27r (2.23)

We can write a Taylor series for the ¢ (¢) about the time ¢t = 0:

¢() = Go+ 1y + ¢2/2+ - (2.24)

where only the first few terms are required to describe well-behaved pulses.

While the temporal phase contains frequency vs. time information, the
spectral phase contains time vs. frequency information. So we can define the
group delay vs. frequency, tgoup(w), given by:

tgroup(w) =dy¢/dw (2.25)

A similar derivation to the above one for the instantaneous frequency can show
that this definition is reasonable. Also, we’ll typically use this result, which
is a real time (the rad’s cancel out), and never dg/dv, which isn’t. Lastly,
always remember that t4,.,(w) is not the inverse of wing (1).
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It’s also common practice to write a Taylor series for ¢ (w):

0(®) = ¢o + (@ — @) 91 + (@ — Wo)* 92/2 + - - - (2.26)

where, as in the time domain, only the first few terms are typically required to
describe well-behaved pulses. Of course, we’ll want to measure badly behaved
pulses, which have higher-order terms in ¢ (¢) and ¢ (w).

Unfortunately, these definitions aren’t completely satisfying. In particular,
they don’t always correspond to our intuitive ideas of what the instantaneous
frequency and group delay should be for light. Consider the simple case of
light with two frequencies:

&(t) = exp(iwt) + exp(iwyt) + c.c. 2.27

Recalling that this is a simple case of “beats,” the instantaneous frequency
obtained by the definition given above is:

winst(t) = (wl + 602)/2 (228)

a frequency that never actually occurs in the beam (only w; and w, do). But,
for most ultrashort-pulse applications, there’s a broad continuous range of
frequencies, and the above definitions prove reasonable.

Phase Distortions in Time and Frequency

Phase Wrapping, Unwrapping, and Blanking

Before we discuss the various phase distortions that occur in ultrashort
pulses, we should mention a couple of points that you should always keep in
mind when you deal with the phase.

First, because exp[i¢] = expli(¢ + 27)] = expli(¢ + 47)] = ..., the
phase could be different by any integer times 27, and the light pulse will still
be exactly the same. What this means is that infinitely many different phases
vs. time (or frequency) correspond to precisely the same pulse. So how do we
decide which phase to use?

There are two preferred methods. The first is to simply force the phase to
always remain between 0 and 27 (or — and +). This way, there’s only one
possible phase that yields a given pulse (once the intensity is determined).
This is the method you’ll be implementing if you simply ask your computer
to compute the phase, given the real and imaginary parts of the pulse using
Egs. (24), (2.5), (2.11), or (2.12).

The problem with this approach is that, well, it’s ugly. When the phase
exceeds 2, it jumps to zero, and a great big discontinuity opens up in the
phase. See Fig. 2.4. And this can happen many times over the pulse’s life.
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Fig. 2.4: Left: A pulse whose phase has not been phase-unwrapped. Right: The same pulse
after phase-unwrapping. Note the different phase scales in each plot.

The solution to this aesthetics problem is to phase-unwrap. It involves adding
or subtracting the appropriate number of multiples of 27 to the phase at each
discontinuity, so that it remains continuous over its entire range. This yields
much prettier phases, but the price you pay is the need for a phase-unwrapping
routine, which makes these decisions. Fortunately, phase-unwrapping rou-
tines work well, and this is the preferred approach in ultrafast optics labs
everywhere (including this book).

But be careful, as under-sampling a phase that varies a lot will confuse
any phase-unwrapping routine. At a discontinuity, the routine has to decide
whether to add 2 to or subtract 27 from the next point. This is easy if the
previous two points were 6.276 and 6.280, respectively, and the next point is
0.001: in this case, the routine adds 27 to the 0.001. But if the next point is
2.9 because you didn’t sample the points densely enough, it’ll just guess. As
aresult, you could get a really strange-looking phase plot. It’d still be correct,
but no one would take you seriously.

Another issue to keep in mind is that, when the intensity goes to zero, the
phase is completely meaningless. After all, if an arrow has zero length, what
possible meaning could there be in its direction? None. Unfortunately, com-
puters are still too dumb to just ignore the phase in this case, and they’ll
typically simply spew out a blather of random numbers (or worse, error
messages) for the phase, even when the intensity is zero.

When this happens, here’s something you should never do. Do not try to fit
the resulting random numbers to a polynomial and then call me complaining
that your pulse’s phase is so complex that even a 500th-order polynomial
didn’t quite do it (yes, someone did this). Okay, you can do the polynomial
fit if you really want to; just don’t call me.

The solution to this problem is to phase-blank. When the intensity is zero
(or so close to zero that it’s in the noise), it’s customary to simply not plot
the phase, instead of plotting random numbers. See Fig. 2.5. The commercial
FROG code allows you to decide at what intensity the phase becomes mean-
ingless for your data and hence when to phase-blank. But you can always
simply erase these points from your plot.

Finally, there are additional subtleties involving the phase of a pulse. It
turns out that a given pulse doesn’t necessarily have a unique representation
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Fig. 2.5: Left: A typical pulse (spectrum and spectral phase) that has not been phase-blanked.
The phase takes on random values where the intensity is near zero because the phase is not
defined where the intensity is zero. Right: The same pulse after phase-blanking.

in terms of intensity and phase. In other words, different combinations of
intensities and phases can yield the same real electric field. Even beyond
the above ambiguities, the phase can have additional possible values if we
also allow the intensity to vary to compensate. For example, if we artificially
modify the intensity slightly by introducing a little bump in it for a very short
range of times (think less than one period of the light wave), we can simply
adjust the phase at those times to compensate to yield the same real electric
field. Don’t think too hard about this issue, or you’ll have to transfer to a
mathematics department.

In fact, to keep us all on the same wavelength, let’s all agree to use
S(w) = |&(w)|* for the spectrum, I(t) = |E(t)|* for the intensity, and the
corresponding formulas for the phase and spectral phase.

Zeroth-order Phase: The Absolute Phase

First, it’s important to realize that the zeroth-order phase is the same in
both domains: ¢y = ¢g. This is because the Fourier Transform is linear, and
a constant times a function Fourier-Transforms to the same constant times
the Fourier Transform of that function. Thus, the zeroth-order phase term,
which corresponds to multiplication by a complex constant, is the same in
both domains: E(t) exp(i¢y) Fourier-Transforms to E () exp(igo).

The zeroth-order phase term is often called the absolute phase. It’s some-
thing of a misnomer, as it’s really a relative phase: the relative phase of the
carrier wave with respect to the envelope. Simply stated, it’s the phase of the
carrier at the peak of the pulse envelope or some other reference time.

Having said that we desire to measure all orders of the phase, including
high ones, we now point out that, in reality, we don’t usually care much about
the lowest-order term. This is because, when the pulse is many carrier-wave
cycles long, variation in the absolute phase shifts the carrier wave from the
peak of the envelope to a value only slightly different and hence changes the
pulse field very little. Figure 2.6 (top) shows the full real field of a 5-cycle
pulse with both a O and 7 values of the absolute phase. Note that it is quite
difficult to distinguish the two pulses.
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Fig. 2.6: Top: the full real electric field of two 10-fs near-IR pulses, one with zero absolute
phase and the other with 7 absolute phase. Bottom: the full real field of single-cycle near-IR
pulses with various absolute phases. Note how different single-cycle pulses look when their
absolute phase shifts.

When the pulse is only one cycle long, however, the absolute phase matters.
While this effect could be important, we won’t consider it in this text.

First-order Phase: A Shift in Time or Frequency

Recall the Fourier Transform Shift Theorem, which says that: E(t — 1)

Fourier Transforms to E (w) exp(—iwt). So a linear term in the spectral
phase, ¢; = 7, corresponds to a shift in time, i.e., a delay (see Fig. 2.7).
Generally, we care only about the pulse’s shape, not when it arrives. Indeed,
if our measurement technique were sensitive a delay of the pulse, we’d have to
maintain high stability of its path length, and hence of all beam-steering optics
between the source and measurement device. And that would just further
complicate our already complicated lives.

Occasionally, the delay is of interest, and interferometric methods can be
used in this case (see chapters 22—24). But the first-order term in the spectral
phase, ¢, is generally uninteresting.

Since the Shift Theorem also applies to the inverse Fourier Transform, as
well, E (w — ay) inverse-Fourier-Transforms to E () exp(iwg t). So a linear
term in the temporal phase, ¢;, corresponds to frequency shift (see Fig. 2.7
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Fig. 2.7: Effect of linear phase. Top row: A Gaussian-intensity, flat-phase pulse. Middle row:
the same pulse, but delayed in time, corresponding to a linear spectral phase. Bottom row:
the same pulse, but with a linear phase in time, corresponding to a shift of the spectrum. In
these plots and all others in this chapter, the frequency scales are measured in cycles per fs, not
radians per fs.

bottom row). A spectral shift is often interesting. It is, however, easily
measured with a spectrometer.

Second-order Phase: Linear Chirp

Quadratic variation of ¢ (¢), that is, a nonzero value of ¢, represents a linear
ramp of frequency vs. time and so we say that the pulse is linearly chirped. (See
Fig. 2.8). Consider a pulse with a Gaussian intensity and quadratic temporal
phase:

E(t) = [Egexp(—at®)] exp(ibt?) (2.29)

where Ej is a constant, 1/,/a is roughly the pulse duration, and b is the chirp
parameter. Here the intensity is:

1(t) = |Eo|* exp(—2at?) (2.30)
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Fig. 2.8: (a) 20-fs Gaussian-intensity pulse w/ quadratic temporal phase, ¢, = —0.032 rad fs’
or ¢, = 290rad fs?. Here the quadratic phase has stretched what would have been a 3-fs
pulse (given the spectrum) to a 13.9-fs one. Top left: the field. Note the increase in fre-
quency with time. Top right: the intensity, phase, and instantaneous frequency vs. time. Bottom
row: the spectrum, spectral phase, and group delay vs. frequency and wavelength. Like their
time-domain relatives here, the spectrum, spectral phase, and group delay vs. frequency are
also Gaussian, quadratic, and linear, respectively, but, plotted vs. wavelength, they are some-
what distorted. (b) Same as Fig. 2.8a, but for a pulse with negative chirp, ¢, = 0.032rad/ fs?
or ¢, = —290rad fs2.

and the temporal phase is simply:
¢ (1) = —bt* (2.31)

The Fourier transform of this field is:

RV, w?
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Separated into the spectrum and spectral phase, the frequency-domain field
can be written:

/4 aw?
S(w) = —5—— — 2.33
@ =GR [ 2a® + b2)] (233)
which is also a Gaussian. And the spectral phase is also quadratic:
b 2
p(w) = e 72® (2.34)

As a result, quadratic variation of ¢ (#) corresponds to quadratic variation of
¢(w). Note that ¢, and ¢, have opposite signs. This is a result of the various
sign conventions, which are fairly standard.

Propagation through materials usually causes (positive) linear chirp, so if
an ultrashort laser pulse doesn’t have linear chirp at one point, it will a little
further on. In fact, a negatively chirped pulse will shorten as it propagates
through material.

Third-order Phase: Quadratic Chirp

Materials have higher-order dispersion, so they also induce higher-order
phase distortions, as well. Above second order, distortions in the phase are
usually considered in the frequency domain. This is because the spectrum is
easily measured, and the intensity vs. time is not, so determination of the
spectral phase yields the full pulse field, whereas the temporal phase doesn’t.
Also, it’s quite intuitive to think in terms of how much delay is required for a
given frequency to compensate for its distortion in spectral phase.

Third-order spectral phase means a quadratic group delay vs. frequency.
This means that the central frequency of the pulse arrives first, say, while
frequencies on either side of the central frequency, wy + dw, arrive later.
The two slightly different frequencies cause beats in the intensity vs. time,
so pulses with cubic spectral phase distortion have oscillations after a main
pulse (or before it, if the sign of the third-order coefficient, g3, is negative).
See Figs. 2.9a and b. Also, you might want to take a peak at Chapter 17, where
we’ll measure the mother of all cubic-spectral-phase pulses.

Higher-order Phase

Higher-order terms yield additional distortions, which can give rise to
extremely complex pulses. Figures 2.10 and 2.11 show pulse shapes with
quartic (fourth-order) and quintic (fifth-order) spectral phase.

For example, the nonlinear-optical process, self-phase modulation, yields
a temporal phase proportional to the input pulse intensity vs. time. This dis-
tortion can be quite complex, especially when considered in the frequency
domain (see Figure 2.12).
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Fig. 2.9: (a) Cubic Spectral phase. Top left: the electric field vs. time for a pulse with a
Gaussian spectrum and cubic spectral phase, with g3 = 3 x 10% rad fs®. Top right: the intensity,
phase, and instantaneous frequency vs. time. Note that phase jumps correspond to meaningless
discontinuities in the instantaneous frequency. Bottom row: The spectrum, spectral phase, and
group delay vs. frequency (left) and wavelength (right). (b) Same as Fig. 2.9a, but with negative
cubic spectral phase of the same magnitude as in Fig. 2.9a.

Also, propagation through long distances of fiber can result in higher-order
dispersion of the fiber becoming evident in the form of higher-order pulse
phase distortions, and nonlinear-optical processes can further distort the pulse
phase, as well as the intensity, in both domains.

Finally, to repeat a point we made earlier, it’s often tempting to take a
phase vs. time or frequency and fit it to a high-order polynomial, as inspired
by Eqgs. (2.24) or (2.26). While this may be reasonable, it is important to realize
that when the intensity is zero, the phase is undefined and hence meaningless.
And, when the intensity is rnear zero, the phase is nearly meaningless, which
is probably not too different from totally meaningless. Thus, it’s important
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Fig. 2.10: (a) Quartic phase. Top left: the electric field vs. time for a pulse with Gaussian
spectrum and positive quartic spectral phase, ¢, = 4 x 10° rad fs*. Top right: The intensity,
phase, and instantaneous frequency vs. time. Bottom row: and the spectrum, spectral phase,
and group delay vs. frequency (left) and wavelength (right). (b) Same as Fig. 2.10a, but with
negative quartic spectral phase of the same magnitude as in Fig. 2.10a.

to crop the phase (to phase-blank) at values of the intensity that are within
an error bar of zero, often at about 1% of the peak intensity. Or better, when
fitting the phase to a high-order polynomial, use an intensity-weighted fit,
which places low emphasis on the phase at times or frequencies where the
intensity is weak.

Relative Importance of the Intensity and Phase

Finally, while it’s obviously true that both the intensity and phase (in either
domain) are required to fully specify a function, in some sense the more
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Fig. 2.11: (a) Quintic spectral phase. To? left: the electric field vs. time for a pulse with
Gaussian spectrum and ¢s = 7 x 10 rad fs°. Top right: The intensity, phase, and instantaneous
frequency vs. time. Bottom: the spectrum, spectral phase, and group delay vs. frequency
and wavelength. (b) Same as Fig. 2.11a, but with negative quintic spectral phase of the same
magnitude as in Fig. 2.11a.

important of the two quantities is the phase. To see this [5], take the magnitude
of the two-dimensional Fourier Transform of a photograph and combine it
with the phase from the two-dimensional Fourier Transform of a different
photograph. This composite image, transformed back to the space domain,
tends to look much more like the photograph that supplies the Fourier phase
than the photograph that supplies the Fourier magnitude. We’ve reproduced
this example in Fig. 2.13 using different photographs. Note that the composite
images look almost nothing like the pictures that supply the Fourier magnitude,
and instead both look very much like the picture supplying the Fourier phase!

This fact is also evident in recent work in the generation of near-single-
cycle pulses. Spectra of such pulses are often quite structured, but, as long
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Fig. 2.12: (a) Top: Temporal intensity, phase, and instantaneous frequency of a 10-fs, 800-nm
pulse that’s experienced self-phase modulation with a peak magnitude of 1 radian. Bottom:
spectrum, spectral phase, and group delay vs. frequency and wavelength. All plots use a
Gaussian temporal intensity. The pulse is slightly spectrally broadened. (b) Top: Temporal
intensity, phase, and instantaneous frequency of a 10-fs, 800-nm pulse that’s experienced
self-phase modulation with a peak magnitude of 10 radians. Bottom: spectrum, spectral phase,
and group delay vs. frequency and wavelength. All plots use a Gaussian temporal intensity.
The pulse is massively spectrally broadened.

as a nearly constant spectral phase is achieved, a few-cycle pulse can be
produced. The spectral structure causes only small ripples in the wings of the
pulse intensity vs. time. See Chapter 14.

Pulse Propagation

We’ve set up all this terminology to describe potentially very complex ultra-
short light pulses. Why have we done this? How do pulses become distorted?
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The answer is that light is often created with complex intensity and phase,
but, even if it’s a simple flat-phase Gaussian pulse to begin with, propagation
through materials will distort it.

Fig. 2.13: Top: Photographs of the Rick Trebino (left) and his wife, Linda (right). If we
2D-Fourier-transform (FT) each of these pictures, and use the 2D FT magnitude of one pho-
tograph in conjunction with the other photograph’s FT phase, after inverse FT, we make the
composite photographs shown on the bottom row. Bottom left: Photograph produced using
the FT-magnitude of Linda and FT-phase of Rick. Bottom right: Photograph produced using
the FT-magnitude of Rick and FT-phase of Linda. Note that these composite photographs look
nothing like the photographs whose FT-magnitude was used, and they look very similar to the
photograph whose FT phase was used.

When a pulse propagates through a medium, its various frequencies have
different phase and group velocities due to the medium’s frequency-dependent
refractive index, n(w), that s, its dispersion. The absorption coefficient, o (w),
varies also. These effects are easily and accurately modeled. If L is the length

of the medium, the frequency-domalin output field, Eout (w), will be related to
the frequency-domain input field, Ej, (w), by:
Eou(®) = Ein(o) exp[—a (o)L /2] explin(w)kL] (2.35)
= Bin(w) expl—a ()L /2] exp [in (w)fL] (2.36)
C
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Absorption will modify the pulse’s spectrum, and dispersion will modify the
pulse’s spectral phase:

Sou(®) = Sin(w) exp[—a(w)L] (2.37)

Pou (@) = @in() + in(w)-(gL (2.38)

Absorption can narrow the spectrum, which could broaden the pulse. On
the other hand, occasionally someone attempts to broaden a pulse spectrum
by preferentially absorbing its peak frequencies.

We’ve seen that phase is usually the more interesting quantity. To a rea-
sonably good approximation, propagation through a medium adds first- and
second-order terms to the pulse phase. Since, as we have seen, first-order
phase vs. w corresponds to a simple delay, it isn’t very interesting. Thus, it’s
fairly accurate to say that propagation through a material introduces (posi-
tive) chirp into a pulse. A flat-phase pulse becomes positively chirped, and a
negatively chirped pulse actually shortens. If the pulse is particularly broad-
band, however, then third, fourth, and possibly fifth-order phase terms must
be considered.

Also, if a pulse propagates through some material on its way to your pulse-
measurement device, and you really desire to know the pulse’s intensity and
phase before it propagates through the material, then you can compensate
for the distortions introduced by the material using this result. Of course,
you can only do this if you're measuring the complete pulse field, E(t) or,
equivalently, E (w).

The Pulse Length and Spectral Width

Our goal is to measure the pulse complex amplitude E(¢) (or E(w)) com-
pletely, that is, to measure both the intensity and phase, expressed in either
domain. We must be able to do so even when the pulse has significant inten-
sity structure and highly nonlinear chirp. In addition, we’d like not to have to
make assumptions about the pulse.

Unfortunately, this has turned out to be difficult. As a result, researchers
have had to make do with considerably less information than they would’ve
liked for many years. A modest request is to be able simply to measure about
how long the pulse is. Analogously, we’d like to be able to know how broad the
spectrum is. Unfortunately, researchers haven’t settled on a single definition
of the pulse length (also referred to as the pulse width) and the spectral width
(but, for some reason, never referred to as the “spectral length”). Several
definitions exist, and each has its advantages and adherents. Here are the
most common definitions.

Full-width-half-maximum (tewum): This is the time between the most-
separated points that have half of the pulse’s peak intensity (see Fig. 2.14). This
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Fig. 2.14: Left: A pulse and its full-width-half-maximum (FWHM). This is a good measure of
the pulse width, except when pulse structure exists. Right: A pulse with satellites with 49% of
the peak of the pulse, for which this pulse-width definition produces misleading information.
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Fig. 2.15: Left: A pulse and its half-width-1/e (HW 1/e). Right: This is also a good measure of
the pulse width, except when pulse structure exists.

is the most intuitive definition, and it’s the rule in experimental measurements,
since it’s easy to pull trwpm Off a plot. It’s not the most convenient for calcu-
lations, however. Also, small variations in the pulse can yield huge changes
in tewnm. Consider, for example, a pulse with a satellite pulse .49 times as
large as the main pulse; if the satellite pulse increases by 1%, the pulse length
can increase by a large factor.

For a simple Gaussian-intensity pulse, these issues aren’t a problem, and
the electric field can be written in terms of Trwum:

E(t) = Egexp[—21n2(t/tewnm)*] = Eo exp[—1.38(t/trwum)*]  (2.39)

Half-width-1/e (taw1e): This pulse width (see Fig. 2.15) is the amount of
time between the pulse’s maximum intensity and the time the intensity drops
to 1/e (about 0.36) of the maximum value. Especially useful when the pulse
is a Gaussian in time or frequency, this definition allows us to write a simple
expression for the pulse, with no messy constants. Theorists like this because
it makes it easier to write down expressions in calculations. In terms of this
definition, a Gaussian pulse field is written:

E(1) = Egexpl—3(t/tuwise)’] (2.40)

The factor of 1/2 is required so the intensity will lack such constants:

1(t) = |Eol* exp[—(t/tuw1/e)*] (2.41)
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Keep in mind that the HW 1/e width is considerably less than the FWHM, so
be careful to specify which pulse width definition you’re using, especially in
a conversation between theorists and experimentalists.

Root-mean-squared pulse width (t,): This width is the easiest to prove
theorems about. It’s the second-order moment about the mean arrival time of
the pulse:

2=t — (1)) =) — (1)’ (2.42)
where: o
(t") = / t" 1(t)dt (2.43)

and /() is assumed normalized so that its time integral is 1 (so it should
have dimensions of inverse time). While the FWHM ignores any values of
the pulse intensity as long as they’re less than one half the pulse maximum
intensity, the rms width emphasizes values far from the center of the pulse,
and therefore is a good indicator of “wings” in the pulse.

Equivalent pulse width (t.): This definition (see Fig. 2.16) considers that
the pulse has a width (z.) and a height (I,,,). And the product of these two
quantities should be the area under the intensity (the integral of I (¢)):

1 o0
Te = — I(t)dt (2.44)
max —0o0
This pulse-width definition is most useful when the pulse is complicated, with
many sub-pulses and structure.

We define spectral widths, wrwim, WHW1 /e, @ms, and we, analogously. And
spectral widths in cycles per second are vewnym = wrwrm/27, etc.

The Time-Bandwidth Product

Now that we’ve defined the temporal and spectral widths, we can define the
time-bandwidth product, or TBP, of a pulse, which is just what it sounds like:

1.0 0 =
~ N =w-1068] _ 1 — < =227fs
5 084 | \i |-_Equivalent| 5 08 - Equivalent
© ©
pe 0.6 > 0.6
2 044 2 044
g 2
£ 0.21 P £ 021
0.0 -y SRVANNLR NG ’ 0.0 -y . e Sy
40 20 0 20 40 40 20 0O 20 40
Time (fs) Time (fs)

Fig. 2.16: Illustration of the equivalent pulse width for two different pulses. The peak of the
dashed rectangular “equivalent” pulse is set equal to the peak of the pulse. The width of the
dashed rectangular pulse is then chosen so that its area is equal to that of the solid curve pulse.
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the product of the temporal width and the spectral width. If all you can have
about a pulse is a single parameter, the parameter you’d like to have is the
TBP. Since the units of the pulse width are seconds, and those of the spectral
width (wrwym) are rad/s, or inverse seconds, the TBP is dimensionless. As
a result, it’s a good figure of merit for a pulse. The smaller the TBP, the
“cleaner” or simpler the pulse. In addition, since the pulse coherence time,
7. (roughly the length of the shortest structure within a pulse), is the reciprocal
of the bandwidth, the TBP is the ratio of the pulse width and the coherence
time. So the TBP is the approximate number of sub-pulses in the pulse. For
pulses whose main distortion is a low-order phase distortion, however, such
as linear chirp, the TBP can be large even when there is no substructure in the
pulse. Whatever the source of distortions, laser builders and manufacturers
and researchers try very hard to make the simplest pulses with the lowest TBP.

Depending on the definition chosen, the minimum possible TBP ranges
from about .1 to 1, and it increases with increasing pulse complexity (see
Figs. 2.17 and 2.18).

It would seem reasonable that a pulse with a flat phase would have a smaller
TBP than a pulse with a complicated phase. Is this always the case? Or
is it possible to have a pulse with, say, a complicated spectrum, for which
some complicated spectral phase yields a smaller pulse length and hence a
smaller TBP than does a constant phase? It turns out that, for any spectrum,
the shortest pulse in time, and hence the smallest TBP, always occurs for a
flat spectral phase. Similarly, for any pulse intensity vs. time, the narrowest
spectrum, and hence the smallest TBP, always occurs for a flat temporal
phase. These conclusions require that we use the rms temporal and spectral
widths and follow easily from the result given by Cohen in his excellent book,
Time-Frequency Analysis [6,7]:

Wl = / A dr + / A1) ¢'(1)* dt (2.45)

o0

where the real amplitude A(r) = ,/I(t), intensity is assumed normalized
to have unity time integral, the prime means the derivative, and the mean
frequency is assumed subtracted from ¢'(¢).

This result writes the rms bandwidth as something like the Pythagorean sum
of a contribution due to variations in the amplitude and a contribution due to
variations in the phase (weighted by the intensity). Note that both integrands
and integrals are always positive, so variations in the amplitude only increase
the bandwidth and, likewise, variations in the phase also only increase the
bandwidth.

Since the Fourier Transform is symmetrical, the same holds for the rms
pulse width in terms of the spectral variations:

1= f B'(»)’do + f B(0)’ ¢'(w)* dw (2.46)

[e,¢] [e.]
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Fig. 2.17: (a) Gaussian-intensity pulse with constant phase and minimal TBP. The intensity
and phase vs. time (left); the spectrum and spectral phase vs. frequency (right). For the dif-
ferent definitions of the widths: TBPims = Trms @ms = 0.5, TBP, = 3.14, TBPywie = 1,
TBPrwam = 2.76. Divide by 27 for s Vims, tc. (b) Same as Fig. 2.17a, except a longer pulse
(note the change in scale of the phase axis) with chirp and hence a larger TBP. TBP,, = 1.13,
TBP. = 7.01, TBPuwie = 2.26, TBPrwum = 6.28. Divide by 27 for tymsVms, etc. (¢)
Same as Fig. 2.17a, except an even longer pulse (note the change in scale of the time axis)
with more chirp and hence a larger TBP. TBP,, = 5.65, TBP. = 35.5, TBPuwi,. = 11.3,
TBPrwiv = 31.3. Divide by 277 for Ty Vs, €tc.

where the spectral amplitude is B(w) = /S(w), S(w) is assumed normalized
to have unity area, prime means derivative, and the mean pulse time is assumed
subtracted from ¢’ (w).

Thus, for a given spectrum, S(w), variations in the spectral phase can only
increase the rms pulse width over that corresponding to a flat spectral phase.

Spatio-Temporal Pulse Characteristics

In writing Eq. (2.1), we’ve ignored the spatial dependence of the beam.
More specifically, we’ve tacitly assumed that the complex pulse field, which
is actually a function of both time and space, separates into the product of
spatial and temporal factors, and we have simply ignored the spatial compo-
nent. This assumption is valid for the fairly smooth pulses emitted by most
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Fig. 2.18: (a) A pulse with random intensity and phase structure. The intensity and phase vs.
time (left) the spectrum and spectral phase vs. frequency (right). This pulse has a near-unity
TBP. For the various definitions of the pulse and spectral widths, the TBP is: TBP,,, = 6.09,
TBP, = 4.02, TBPyw1/e = 0.82, TBPrwum = 2.57. Divide by 27 for TymsVms, etc. (b) Same
as Fig. 2.18a, except a pulse with more structure and hence a larger TBP. TBP,; = 32.9,
TBP. = 10.7, TBPuwie = 35.2, TBPrwam = 116. Divide by 27 for Tmvms, etc. (c)
Same as Fig. 2.18a, except a pulse with even more structure and hence an even larger TBP.
TBPy, = 122, TBP. = 44.8, TBPuwie = 213, TBPrwum = 567. Divide by 2n for
Trms Vrms» €1C.

ultrafast lasers. It is, however, fairly easy to generate pulses that violate this
assumption (for example, pulse compressors and shapers can introduce angu-
lar dispersion into the pulse, so the pulse winds up with its redder colors on
one side and the bluer colors on the other, a distortion called spatial chirp),
and nearly all pulse-measurement techniques get confused in this case. We’ll
talk about how to measure such complicated pulses later when we discuss the
spatio-temporal measurement of a pulse (Chapter 22), but in the meantime,
we’ll ignore this problem. (If you suspect your pulse has this problem before
you get to Chapter 22, just aperture it, and measure a small piece of the beam.)

We’ve also assumed polarized light, but this also is not necessary. We’ll get
to the measurement of a polarization-varying pulse later (we’ll just measure
each polarization independently, but we’ll have to measure the relative phase
of the two polarizations, as well—see Chapter 23).



Ultrashort Laser Pulses 35

References

1. Ippen, E.P. and C.V. Shank, Ultrashort Light Pulses—Picosecond Techniques and Applications,
ed. S.L. Shapiro. 1977, Berlin: Springer-Verlag.
2. Duling, ILN., ed. Compact Sources of Ultrashort Pulses. 1995, Cambridge Universty Press: Cambridge.
3. Rulliere, C., ed. Femtosecond Laser Pulses: Principles and Experiments. 1998, Springer: Heidelberg.
4. Kaiser, W., ed. Ultrashort Laser Pulses and Applications. Topics in Applied Physics. Vol. 60. 1988,
Springer-Verlag: Berlin.

. Stark, H., ed. Image Recovery: Theory and Application. 1987, Academic Press: Orlando.

. Cohen, L., Time-Frequency Distributions—A Review. Proceedings of the IEEE, 1989. 77(7): p. 941-81.
7. Cohen, L., Time-Frequency Analysis. 1995, Englewood Cliffs, NJ: Prentice-Hall.

N



3. Nonlinear Optics

Rick Trebino and John Buck

Linear vs. Nonlinear Optics

The great thing about ultrashort laser pulses is that all their energy is
crammed into a very short time, so they have very high power and inten-
sity. A typical ultrashort pulse from a Ti : Sapphire laser oscillator has a paltry
nanojoule of energy, but it’s crammed into 100 fs, so its peak power is 10,000
Watts. And it can be focused to a micron or so, yielding an intensity of
102 W/cm?! And it’s easy to amplify such pulses by a factor of 10!

What this means is that ultrashort laser pulses easily experience high-
intensity effects—effects that we don’t ordinarily see because even sunlight on
the brightest day doesn’t approach the above intensities. And all high-intensity
effects fall under the heading of nonlinear optics [1-12]. Some of these effects
are undesirable, such as optical damage. Others are very desirable, such as
second-harmonic generation, which allows us to make light at a new fre-
quency, twice that of the input light. Or like four-wave mixing, which allows
us to generate light with an electric field proportional to E;(t) E>*(t) E5(t),
where E(t), E,(t), and E;(t) are the complex electric-field amplitudes of
three different light waves. Whereas linear optics requires that light beams
pass through each other without affecting each other, nonlinear optics allows
the opposite. This chapter will describe the basics of nonlinear optics for any-
one who hasn’t experienced this field, so you can understand the basics of
FROG, which is an inherently nonlinear-optical phenomenon.

The fundamental equation of optics—whether linear or nonlinear—is the
wave equation:

326 103%€ 2P

9,2 2402 - Moo

0z cg ot ot
where 1 is the magnetic permeability of free space, ¢ is the speed of light
in vacuum, & is the real electric field, and & is the real induced polarization.
The induced polarization contains the light’s effects on the medium and the
medium’s effect back on the light wave. It drives the wave equation.

The induced polarization contains linear-optical effects (the absorption
coefficient and refractive index) and also nonlinear-optical effects. At low
intensity (or low field strength), the induced polarization is proportional to
the electric field that is already present:

3.1

P=gx"e (3.2)

where ¢ is the electric permittivity of free space, and the linear susceptibility,
xV, describes the linear-optical effects. This expression follows from the
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Fig. 3.1: Linear optics. Left: A molecule excited by a light wave oscillates at that frequency
and emits only that frequency. Right: This process can be diagrammed by showing the input
light wave as exciting ground-state molecules up to an excited level, which re-emits the same
frequency.

fact that the light electric field, &, forces electric dipoles in the medium into
oscillation at the frequency of the field; the dipole oscillators then emit an
additional electric field at the same frequency. The total electric field (incident
plus emitted) is what appears as &€ in Egs. (3.1) and (3.2). If we assume a
lossless medium, for example, we find that the electric and polarization field
expressions, &(z, t) o« Eqcos(wt —kz) and P = gy xV Ey cos(wt — kz), will
solve the wave equation, provided that @ = c k, and ¢ = co/(1 + x V)2,

In linear optics, (where Eq. (3.2) applies), the wave equation is linear, so if
€ is a sum of more than one beam (field), then so is &. As a result,  drives
the wave equation to produce light with only those frequencies present in P,
and these arise from the original input beams. In other words, light doesn’t
change color (see Fig. 3.1). Also, with a linear wave equation, the principle
of superposition holds, and beams of light can pass through each other and
don’t affect each other.

Life at low intensity is dull.

Nonlinear-Optical Effects

At high intensity, the induced polarization ceases to be a simple linear
function of the electric field. Put simply, like a cheap stereophonic amplifier
driven at too much volume, the medium doesn’t follow the field perfectly (see
Figs. 3.2 through 3.4), and higher-order terms must be included:

P=g[xVe+x?&+xY+.] (3.3)
where x @ and x® are called the second- and third-order susceptibilities. x ™
is called the nth-order susceptibility.

What do nonlinear-optical effects look like? They’re easy to calculate.

Recall that the real field, &, is given by:

(1) = 3E(t) exp(iwt) + 3 E*(t) exp(—iw ) (3.4)
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Fig. 3.2: Nonlinear optics. Left: A molecule excited by a light wave oscillates at other frequen-
cies and emits those new frequencies. Right: This process can be diagrammed by showing the
input light wave as exciting ground-state molecules up to highly excited levels, which re-emit
the new frequencies.
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Fig. 3.3: Nonlinear electronic effects in a cheap audio amplifier. The input wave from the
audio source is taken here to be a sine wave. In an expensive amplifier, the sine wave is
accurately reproduced at higher volume, but, because the cheap amplifier cannot achieve the
desired volume, the output wave saturates and begins to look more like a square wave. This
produces new frequency components at harmonics of the input wave. Nonlinear-optical effects
are analogous: a sine-wave electric wave drives a molecular system, which also does not
reproduce the input sine wave accurately, producing new frequencies at harmonics of the input
wave. Whereas audiophiles spend a great deal of money to avoid the above nonlinear electronic
effects, optical scientists spend a great deal of money to achieve nonlinear-optical effects.
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Fig. 3.4: Potential surface of a molecule, showing the energy vs. separation between nuclei.
Note that the potential is nearly parabolic near the bottom, but it is far from parabolic for
excitations that hit the molecule harder forcing it to vibrate with larger ranges of nuclear
separations. This molecule will emit frequencies other than that driving it.
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Fig. 3.5: Second-harmonic generation. Left: Collinear beam geometry. Right: Noncollinear
beam geometry with an angle, 9, between the two input beams. Such noncollinear beam
geometries are possible in nonlinear optics because more than one field is required at the input.

where we have temporarily suppressed the space dependence, and E (¢) is the
complex field. So squaring this field yields:

€X(t) = JE* () expQiwt) + JE(DE*(t) + LE™(t) exp(=2iw?)  (3.5)

Notice that this expression includes terms that oscillate at 2w, the sec-
ond harmonic of the input light frequency. These terms then drive the wave
equation to yield light at this new frequency. This process is very important;
it’s called second-harmonic generation (SHG). Optical scientists, especially
ultrafast scientists, make great use of SHG to create new frequencies. And
it is the single most important effect used to measure ultrashort laser pulses.
Figure 3.5 shows a schematic of SHG.

The above expression also contains a zero-frequency term, so light can
induce a dc electric field. This effect is called optical rectification; it’s
generally pretty weak, so we won’t say much more about it.

If we consider the presence of two beams and this time don’t sup-

press the spatial dependence, &(7,t) = lEl(r t) expli(wyt — k1 Nl +
1E2(r t) expli(wyt — ky - F)] + c.c. In this case, we have:
€27, 1) = LE\? exp [2i(wi t — k; - )]
+1EE" + LE exp[2i(wit — ki - 7))
+ 1E;? exp[2i(wt — ky - )] + 3 E2Ex*
+1E7 exp [<2i(wat — Ky - )]
+ 1EEyexp {i[ (w1 + wo)t — (I:l + iéz) -7}
+1E" B exp [—i[(@1 + o)t — (ky + &) - 7]}
+ LE Ex* exp [i[ (01 — w2t — (ki — k2) - 7]}
+ %EI*EZ exp {—i[(w) — @)t — (I:l + 122) ?]} (3.6)

Okay, this looks like a mess. But the first two lines are already familiar; they’re
the SHG and optical-rectification terms for the individual fields. The next line



Nonlinear Optics 41

Fig. 3.6: Intensity pattern produced when two beams cross. When the beams cross in a medium,
the medium is changed more at the intensity peaks than at the troughs, producing a laser-induced
grating [13].

is new: it yields light at the frequency, w; 4+ w,, the sum frequency, and hence
is called sum-frequency generation (SFG). The last line is also new: it yields
light at the frequency, w; — w,, the difference frequency, and hence is called
difference-frequency generation (DFG). These two processes are also quite
important, and they play a key role in techniques to measure pulses, as well.

Ngtice s_gmething else. The new beams are created in new directions, k; +k»
and k; — k,. This can be very convenient if we desire to see these new—
potentially weak—beams in the presence of intense input beams that create
them.

Third-order effects are collectively referred to as four-wave-mixing (4WM)
effects because three waves enter the nonlinear medium, and an additional
one is created in the process, for a total of four. We won’t waste a page and
write out the entire third-order induced polarization, but, in third order, as
you can probably guess, we see effects including third-harmonic generation
(THG) and a variety of terms like:

P = %aox(3)E1 EJE, exp {i[(a)1 —wy + w3)t — (131 —k+ 123) . ?]} 3.7

Notice that, if the factor of the electric field envelope is complex-conjugated,
its corresponding frequency and k-vector are both negative, while, if the field
is not complex-conjugated, the corresponding frequency and k-vector are
both positive. Such third-order effects, in which one k-vector is subtracted,
are often called induced grating effects because the intensity due to two of
the beams, say, E; and E», has a sinusoidal spatial dependence (see Fig. 3.6).
The sinusoidal intensity pattern affects the medium in some way, creating a
sinusoidal modulation of its properties, analogous to those of a diffraction
grating. The process can then be modeled as diffraction of the third beam off
the induced grating.

Third-order effects include a broad range of interesting phenomena (some
useful, some irritating), many beyond the scope of this book. But we’ll con-
sider a few that are important for pulse measurement. For example, suppose
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,
Fig. 3.7: Two-beam coupling. One beam can affect the other in passing through a sample
medium. The pulse at the output indicates the signal beam, here collinear with one of the beams

and at the same frequency. This idea is the source of a variety of techniques for measuring the
properties of the sample medium.
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Fig. 3.8: Polarization gating. If the polarizers are oriented at 0° and 90°, respectively, the
45°-polarized beam (at frequency w,) induces polarization rotation of the 0°-polarized beam
(at frequency w;), which can then leak through the second 90° polarizer. The pulse at the
output indicates the signal pulse, again collinear with one of the input beams, but here with the
orthogonal polarization.

that the second and third beams in the above expression are the same: E, = Ej
and k, = ks. In this case, the above induced polarization becomes:

P1 = 2eox VE | Eo) exp {i[wnt — Ky - 7]} + c.c. (3.8)

This yields a beam that has the same frequency and direction as beam #1, but
allows it to be affected by beam #2 through its mag-squared factor. So beams
that pass through each other can affect each other! Of course, the strength of
all such effects is zero in empty space (x® of empty space is zero), but the
strength can be quite high in a solid, liquid, or gas. It’s often called two-beam
coupling (see Fig. 3.7).

A particularly useful implementation of the above third-order effect is
polarization gating (see Fig. 3.8), which involves the use of orthogonal polar-
izations for £, and E;. This typically means that these two co-propagating
beams combine together to yield a beam polarized at 45° to that of E;, which
is, say, horizontally polarized. The two vertically polarized beams form a
grating, and the horizontally polarized beam diffracts off it, and the diffracted
beam maintains horizontal polarization. This creates an induced polarization
for the horizontal polarization, i.e., the polarization orthogonal to that of E;.
This new beam is created in the same direction as beam #1, and with the same
frequency, too. As a result, crossed polarizers can be used to separate the new
beam from the input beam E;. This beam geometry is convenient and easy to
set up, and it’s much more sensitive than two-beam coupling.
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By the way, another process is simultaneously occurring in polarization
gating called induced birefringence, in which the electrons in the medium
oscillate along with the incident field at +45°, which stretches the formerly
spherical electron cloud into an ellipsoid elongated along the +45° direction.
This introduces anisotropy into the medium, typically increasing the refractive
index for the +45° direction and decreasing it for the —45° direction. The
medium then acts like a wave plate, slightly rotating the polarization of the
field, E;, allowing some it to leak through the crossed polarizers.

However you look at it, you get the same answer when the medium responds
rapidly.

Another type of induced-grating process is self diffraction (see Fig. 3.9). It
involves beams #1 and #2 inducing a grating, but beam #1 also diffracting off
it. Thus beams #1 and #3 are the same beam. This process has the induced-
polarization term:

P =260 x® E? Ey*exp [i[ Qwr — wp)t — (2ki — kp) 7]} +cc. (3.9)

It produces a beam with frequency 2w; — @, and k-vector 2]21 — I_c'z. This beam
geometry is also convenient because only two input beams are required.

And it is also possible to perform third-harmonic generation using more
than one beam (or as many as three). An example beam geometry is shown
in Fig. 3.10, using two input beams.

Signal #1

Nonlinear )\/' ~¥20,-0,
medium .7

20,~0,

Fig. 3.9: Self diffraction. The two beams yield a sinusoidal intensity pattern, which induces
a grating in the medium. Then each beam diffracts off the grating. The pulses at the output
indicate the signal pulses, here in the 2k, — k, and 2k, — k; directions.

THG
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o, medium 1 e,
et SN »
..................... ’
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Fig. 3.10: Third-harmonic generation. While each beam individually can produce third har-
monic, it can also be produced by two factors of one field and one of the other. These latter
two effects are diagrammed here.



44 Rick Trebino and John Buck
Some General Observations about Nonlinear Optics

Nonlinear-optical effects are usually diagrammed as in Fig. 3.11. Upward-
pointing arrows indicate fields without complex conjugates and with fre-
quency and k-vector contributions with plus signs. Downward-pointing
arrows indicate complex-conjugated fields in the polarization and negative
signs in the contributions to the frequency and k-vector of the light created.
Unless otherwise specified, wy and ko denote the output or signal frequency
and k-vector.

Notice that, in all of these nonlinear-optical processes, the polarization
propagates through the medium just like the light wave does. It has a frequency
and k-vector. For a given process of N order, the signal frequency wy is
given by:

a)0=:i:a)1:|:w2:|:---:|':w1v (310)

where the signs obey the above complex-conjugate convention.
The polarization has a k-vector with an analogous expression:

ko=dk + ky £--- % ky (3.11)

where the same signs occur in both Egs. (3.10) and (3.11).

In all of these nonlinear-optical processes, terms with products of the E-field
complex envelopes, such as E? E3, are created. It is these products that allow
us to measure ultrashort laser pulses. Whether it is simple autocorrelation,
FROG, or some new, as yet undiscovered method, it will take advantage of
these effects. What we’ll be doing, for example, is taking two beams (pulses)
and delaying one with respect to the other and considering processes with the
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Fig. 3.11: Sample complex nonlinear-optical process, # o« E;E;E3E;Es. Here,
wy = w1 +wy + w3 — w4+ ws and I_c'o = El + I:z + 123 — ;4 + I_c's. The k-vectors are shown adding
in two-dimensional space, but, in third- and higher-order processes, space’s third dimension is
potentially also involved. The different frequencies (colors) of the beams are shown as different
shades of gray.
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product, E|(t) E,(t — t), where 7 is the delay. This multiplication of electric
fields will allow one pulse to gate out a temporal piece of another.

The Mathematics of Nonlinear Optics
The Slowly Varying Envelope Approximation

Okay, so there are some interesting induced polarizations going on, but
how do we calculate what their effects are? Well, we must substitute into the
wave equation, Eq. (3.1), and solve the nonlinear differential equation that
results. While this is hard to do exactly, a few tricks and approximations make
it quite easy in most cases of practical interest.

The first approximation is that we consider only a range of frequencies
near one frequency at a time. We’ll write the wave equation for one particular
signal frequency, wy, and only consider a small range of nearby frequencies.
Anything happening at distant frequencies will alternately be in phase and then
out of phase with the fields and polarizations in this range and so should have
little effect. We’ll also assume that the nonlinear optical process is fairly weak,
so it won’t affect the input beams. Thus we’ll only consider the one signal field
of interest. If you’re interested in more complex situations, you’re probably
not measuring pulses, and you should check out a full text on nonlinear optics
(see, for example, the list at the end of this chapter).

The second is the Slowly Varying Envelope Approximation (SVEA), which,
despite its name, remains a remarkably good approximation for all but the
shortest pulses (we’ll see it break down in the chapter on few-femtosecond
pulses, but the fix will be remarkably simple). It takes advantage of the fact
that, as short as they are, most ultrashort laser pulses are still not as short as an
optical cycle (about 2 fs for visible wavelengths). Thus the pulse electric field
can be written as the product of the carrier sine wave and a relatively slowly
varying envelope function. This is what we’ve been doing, but we haven’t
explicitly used this fact; now we will. Since the measure of the change of
anything is the derivative, we’ll now neglect second derivatives of the slowly
varying envelope compared to those of the more rapidly varying carrier sine
wave. And the wave equation, which is what we must solve to understand any
optics problem, is drowning in derivatives.

Assume that the driving polarization propagates along the z-axis, and write
the electric field and polarization in terms of slowly varying envelopes:

E(F, 1) =1 EF, t)expli(wot — koz)] + c.c. (3.12)
P, 1) =1 PF, 1) explilwot — koz)] + c.c. (3.13)

where we’ve chosen to consider the creation of light at the same frequency
as that of the induced polarization, w,. But we’ve also assumed that the light
field and polarization have the same k-vectors, kg, which is a big—and often
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unjustified—assumption, as discussed above. But bear with us for now, and
we’ll come clean in a little while.

Recall that the wave equation calls for taking second derivatives of & and
P with respect to ¢ and/or z. Let’s calculate them:

%€ 1[d’E _ OE

=5 =537 + 21(005 — ) ] explilwot —ko2)] +c.c. (3.14)
926  1[d%E .. JdE .

F) = 792 2iky— 5 ——k(Z)E] expli(wot — ko 2)] + c.c. (3.15)
2P 1[3*P _. 9P .

57 =552 + 21w0¥ - w(z,P] expli(wot —ko2)] +c.c.  (3.16)

As we mentioned above, we’ll assume that derivatives are small and that
derivatives of derivatives are even smaller:

9’E

7| <

21w0—’ < |G E| (3.17)

Letting wy = 27/ T, we find that this condition will be true as long as:

4Jt2
—E 3.1
T (3.18)

271 3E
at2

where T is the optical period of the light, again about 2 fs for visible light.
These conditions hold if the field envelope is not changing on a time scale of
a single cycle, which is nearly always true. So we can neglect the smallest
term and keep the larger two.

The same is true for the spatial derivatives. We’ll also neglect the second
spatial derivative of the electric field envelope.

And the same derivatives arise for the polarization. But since the polar-
ization is small to begin with, we’ll neglect both the first and second
derivatives.

The wave equation becomes:

. 0E 2wy 0FE ) co% )
[_21k0d_z — 75 - ko E + ?E Cxp[l((l)()t - k()Z)]
= — oy P expli(wy t — koz)] (3.19)

since we can factor out the complex exponentials.
We can also cancel the exponentials. Recalling that E satisfies the wave
equation by itself, k2 E = (w?/c?) E, and those two terms can also be canceled.
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Then dividing through by —2ik yields:

0E 10E 2
0 L 205 _i/vLOwo
dz ¢ ot 2ko

P (3.20)

This expression is actually a bit oversimplified. A more accurate inclusion
of dispersion (see Diels’ and Rudolph’s book) yields the same equation, but
with the phase velocity of light, c, replaced with the group velocity, v,:

dE 1 0E .Moa)%
—+——=—-1——P 3.21
dz v, 0t 2ko (3:21)

We can now simplify this equation further by transforming the time co-
ordinate to be centered on the pulse. This involves new space and time co-
ordinates, z, and t,, given by: z, = zand t, = t — z/v,. To transform to these
new co-ordinates requires replacing the derivatives:

0E _ OE 3z,  9E dr,

= 44 = 3.22
9z 0z, 02 at, 0z ( )
0E 0EJdz, OEot,

—_— = —— 3.23
or 0z, ot * ot, ot S

Computing the simple derivatives and substituting, we find:
0E OE E 1
—=— oET_1 (3.24)
0z 0z, ot | v,
0E oE
o = Fr (3.25)

The time derivative of the polarization is also easily computed. This yields:

dE JE[ 1 1 [8E  Low]
L I e Y 3.26
a%+an[%]+%[%] 2k, (5.20)

Canceling the identical terms leaves:

OE _iuow% p

—= 3.27
0z 2k() ( )

where we’ve dropped the subscripts on ¢ and z for simplicity. This nice simple
equation is the SVEA equation for most nonlinear-optical processes in the
simplest case. Assumptions that we’ve made to get here include that: (1) the
nonlinear effects are weak; (2) the input beams are not affected by the fact
that they’re creating new beams (okay, so we’re violating Conservation of
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Energy here, but only by a little); (3) the group velocity is the same for all
frequencies in the beams; (4) the beams are uniform spatially; (5) there is no
diffraction; and (6) pulse variations occur only on time scales longer than a
few cycles in both space and time. And we’ve assumed that the electric field
and the polarization have the same frequency and k-vector. While the other
assumptions mentioned above are probably reasonable in practical situations,
this last assumption will be wrong in many cases—in fact it’s actually difficult
to satisfy, and we go to some trouble in order to do so—and we’ll consider it
in the next section. But the rest of these assumptions are quire reasonable in
most pulse-measurement situations.

Solving the Wave Equation in the Slowly Varying Envelope Approximation

If the polarization envelope is constant, then the wave equation in the SVEA
is the world’s easiest differential equation to solve, and here’s the solution:

2
Howy

2k,

E(z,t) = -1 Pz (3.28)

and we see that the new field grows linearly with distance. Since the intensity
is proportional to the mag-squared of the field, the intensity then simply grows
quadratically with distance:

2
1z, 1) = C‘Zﬂ PP 22 (3.29)

Phase-matching

There is a ubiquitous effect that must always be considered when we per-
form nonlinear optics and is another reason why nonlinear optics isn’t part of
our everyday lives. This is phase-matching. What it refers to is the tendency,
when propagating through a nonlinear-optical medium, of the generated wave
to become out of phase with the induced polarization after some distance. If
this happens, then the induced polarization will create new light that’s out
of phase with the light it created earlier, and, instead of making more such
light, the two contributions will cancel out. The way to avoid this is for the
induced polarization and the light it creates to have the same phase velocities.
Since they necessarily have the same frequencies, this corresponds to having
the same k-vectors, the issue we discussed a couple of sections ago. Then the
two waves are always in phase, and the process is orders of magnitude more
efficient. In this case, we say that the process is phase-matched.

We’ve been implicitly assuming phase-matching so far by using the vari-
able & for both k-vectors. But because they can be different, let’s reserve the
variable, kg, for the k-vector of the light at frequency wq [ko = won(wp)/co,
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where ¢ is the speed of light in vacuum], and we’ll now refer to the induced
polarization’s k-vector, as given by Eq. (3.11), as kp. We must recognize
that kp won’t necessarily equal &, the k-vector of light with the polariza-
tion’s frequency wy—Ilight that the induced polarization itself creates. Indeed,
there’s no reason whatsoever for the sum of the k-vectors above, all at dif-
ferent frequencies with their own refractive indices and directions, to equal
won(wp)/co.
Equation (3.27) now becomes:

dE
2iko—— expli(wnt — ko2)] = powy P expli(wot — kp2)] (3.30)
Simplifying:
JE 2
5= —1%1) exp(i Ak 2) (3.31)
where:
Ak = ko — kp (3.32)

We can solve this differential equation simply also:

2 : L
Mow)y  exp(i Ak z)
E(L,t)=— P - 3.33
T Ak |, (533
2 .
. Mowp explAkL)—1
= - P .
ke [ i Ak (334
prowy L

= -

Pexp(i Ak L/2) [exf’(i Ak L/2) — exp(—iAk L /2)]

0 21 Ak L

(3.35)

The expression in the brackets is sin(AkL/2)/(AkL/2), which is just the
function called sinc(Ak L/2). Ignoring the phase factor, the light electric
field after the nonlinear medium will be:

2
E(L,1) = —i“sz

P Lsinc(Ak L/2) (3.36)

Mag-squaring to obtain the light irradiance or intensity, /, we have:

2
I(L,t) = % |P|? L?sinc(Ak L/2) (3.37)

Since the function, sinc? (x), is maximal at x = 0, and also highly peaked
there (see Fig. 3.12), the nonlinear-optical effect of interest will experience
much greater efficiency if Ak = 0. This confirms what we said earlier, that
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Fig. 3.12: Left: Plot of sinc>(AkL/2) vs. AkL. Note that the sharp peak at Ak L = 0. Right:
Plot of the generated intensity vs. L, the nonlinear-medium thickness for various values of
Ak. Note that, when Ak # 0, the efficiency oscillates sinusoidally with distance and remains
minimal for all values of L.

the nonlinear-optical efficiency will be maximized when the polarization and
the light it creates remain in phase throughout the nonlinear medium, that is,
when the process is phase-matched.

Phase-matching is crucial for creating more than just a few photons in a
nonlinear-optical process. To summarize, the phase-matching conditions for
an N-wave-mixing process are (see Fig. 3.11):

a)0=:l:w1iw2:|:---:|:w1v (338)
ko=dk t hky£---+ky (3.39)

where kj is the k-vector of the beam at frequency, wp, which may or may not
naturally equal the sum of the other k-vectors, and it’s our job to make it so.

Note that, if we were to multiply these equations by #, they would corre-
spond to energy and momentum conservation for the photons involved in the
nonlinear-optical interaction.

Let’s consider phase-matching in collinear SHG. Let the input beam
(often called the fundamental beam) have frequency w; and k-vector, k; =
win(wy)/co. The second harmonic occurs at wy = 2w;, which has the k-
vector, kg = 2w; n(2w;)/co. But the induced polarization’s k-vector has
magnitude, kp = 2k; = 2win(wl)/co. The phase-matching condition
becomes:

ko =2k (3.40)

which, after canceling common factors (2w /cp) simplifies to:

n(wy) = n2w,) (3.41)

Thus, in order to phase-match SHG, it’s necessary to find a nonlinear
medium whose refractive indices at @ and 2w are the same (to several decimal
places). Unfortunately—and this is another reason you don’t see things like
this everyday—all media have dispersion, the tendency of the refractive index
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Fig. 3.13: Refractive index vs. wavelength for a typical medium. Because phase-matching
SHG requires the refractive indices of the medium to be equal for both w and 2w, it is not
possible to generate much second harmonic in normal media.
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Fig. 3.14: Refractive index vs. wavelength for a typical birefringent medium. The two
polarizations (say, vertical and horizontal, corresponding to the ordinary and extraordinary
polarizations) see different refractive index curves. As a result, phase-matching of SHG is
possible. This is the most common method for achieving phase-matching in SHG. The extra-
ordinary refractive index curve depends on the beam propagation angle (and temperature),
and thus can be shifted by varying the crystal angle in order to achieve the phase-matching
condition.

to vary with wavelength (see Fig. 3.13). This effect quite effectively prevents
seeing SHG in nearly all everyday situations.

It turns out to be possible to achieve phase-matching for birefringent
crystals, whose refractive-index curves are different for the two orthogonal
polarizations (see Fig. 3.14).

In noncollinear SHG, we must consider that there’s an angle, 6, between the
two beams (see Fig. 3.5). The input vectors have longitudinal and transverse
components, but, by symmetry, the transverse components cancel out, leaving
only the longitudinal component of the phase-matching equation:

ki cos(8/2) + ky cos(8/2) = ko (3.42)

Simplifying, we have 2k; cos(6/2) = ky as our phase-matching condition.
Substituting for the k-vectors, the phase-matching becomes:

n(w;) cos(0/2) = n(2w) (3.43)
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Far from phase-matching Closer to phase-matching
Six coherence lengths Two coherence lengths

Fig. 3.15: Light inside a SHG crystal for two different amounts of phase-mismatch (i.e.,
for two different crystal angle orientations). Note that, as the crystal angle approaches the
phase-matching condition, the periodicity of the intensity with position decreases, and the
intensity increases. At phase-matching, the intensity increases quadratically along the crystal,
achieving nearly 100% conversion efficiency in practice [14].

Fig. 3.16: Interesting non-collinear phase-matching effects in second-harmonic generation.
(Picture taken by Rick Trebino.)

Figure 3.16 shows a nice display of noncollinear SHG phase-matching
processes involving one intense beam and scattered light in essentially all
directions. This picture doesn’t yield any particular insights for pulse mea-
surement, but it’s really pretty, and we thought you might like to see it. By the
way, the star isn’t really nonlinear-optical; it’s just due to the high intensity
of the spot at its center (and the “star filter” on the camera lens when the
picture was taken). The ring is real, however, and there can be as many as
three of them.

Finally, whether a collinear or non-collinear beam geometry, it’s also pos-
sible to achieve phase-matching using two orthogonal polarizations for the
(two) input beams. In other words, the input beam is polarized at a 45° angle
to the output SH beam. This is referred to as Type II phase-matching, while
the above process is called Type I phase-matching. Type 11 phase-matching is
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more complex than Type I because the two input beams have different refrac-
tive indices, phase velocities, and group velocities, which must be kept in
mind when performing measurements using it.

Phase-matching is easier to achieve in third order, largely because we have
an extra k-vector to play with. In fact, it can be so easy that it happens auto-
matically. In two-beam coupling and polarization gating, the phase-matching
equations become:

Wy =W — W)+ wy (344)
ko = ki — ko + K (3.45)

These equations are automatically satisfied when the signal beam has the
same frequency and k-vector as beam 1: w; and &, respectively.

For other third-order processes, phase-matching is not automatic, but it
can be achieved with a little patience. For some processes, however, it can
be impossible, as is the case for self-diffraction. In the latter case, sufficient
efficiency can be achieved for most purposes, provided that the medium is
kept thin to minimize the phase-mismatch.

Phase-Matching Bandwidth
Direct Calculation

While at most one frequency can be exactly phase-matched at any one time,
some nonlinear-optical processes are more forgiving about this condition than
others. Since it’ll turn out to be important in pulse measurement to achieve
efficient SHG (or other nonlinear-optical process) for all frequencies in the
pulse, phase-matching bandwidth is an important issue. Figures 3.17a, b show
the SHG efficiency vs. wavelength for two different crystals and for different
incidence angles. Notice the huge variations in phase-matching efficiency for
different crystal angles and thicknesses.

We can easily calculate the range of frequencies that will be approximately
phase-matched in, for example, SHG. Assuming that the SHG process is
exactly phase-matched at the wavelength, A0, the phase-mismatch, Ak, will
be a function of wavelength:

Ak(A) = 2k, — k; (3.46)
_ nA) | _|,,"*/2)
Ak(k)_2[2n : ] [2n v ] (3.47)

Ak(A) = 4771' [n(A) —n(A/2)] (3.48)
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Fig. 3.17: (a) Phase-matching efficiency vs. wavelength for the nonlinear-optical crystal,
beta-barium borate (BBO). Top left: a 10 um thick crystal. Top right: a 100 wm thick crystal.
Bottom: a 1000 pm thick crystal. These curves also take into account the w3 and L? factors
in Eq. (3.25). While the curves are scaled in arbitrary units, the relative magnitudes can be
compared among the three plots. (These curves do not, however, include the nonlinear suscepti-
bility, x @, so comparison of the efficiency curves in Figs. 3.17a and b requires inclusion of this
factor.) (b) Same as Fig. 3.17a, except for the nonlinear-optical crystal, potassium di-hydrogen
phosphate (KDP). Top left: a 10 wm thick crystal. Top right: a 100 wm thick crystal. Bottom:
a 1000 wm thick crystal. The curves for the thin crystal don’t fall to zero at long wavelengths
because KDP simultaneously phase-matches for two wavelengths, that shown and a longer
(IR) wavelength, whose phase-matching ranges begin to overlap when the crystal is thin.
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Expanding 1/A and the material dispersion to first order in the wavelength,

4n A , SA
Ak(6A) = " [1 - A_] [n(xo) +8An'(Ao) — n(Xo/2) — n (20/2)

0 0
(3.49)

where A = A — A, n’(A) = dn/dA and we have taken into account the
fact that, when the input wavelength changes by A, the second-harmonic
wavelength changes by only 64 /2.

Recalling that the process is phase-matched for the input wavelength, A,
we note that n(Ay/2) — n(Ao) = 0, and we can simplify this expression:
Ak(Sr) = 1—7[ |:8A n'(ho) — %n’(koﬂ)] (3.50)

0

where we have neglected second-order terms.

The sinc? curve will decrease by a factor of 2 when Ak L/2 = £1.39. So
solving for the wavelength range that yields |Ak| < 2.78/L, we find that the
phase-matching bandwidth §Agwum will be:

B 0.44 1o/L
(o) — 3n'(ho/2)]

SAFWHM (3.51)

Notice that §Agwynm is inversely proportional to the thickness of the nonlinear
medium. Thus, in order to increase the phase-matching bandwidth, we must
use a medium with dispersion such that n'(Ag) — %n’()\o /2) =~ 0, or more
commonly decrease the medium’s thickness (see Fig. 3.18).

Finally, note the factor of 1/2 multiplying the second-harmonic refractive
index derivative in Eq. (3.51). This factor does not appear in results appearing
in some journal articles. These articles use a different derivative definition for
the second harmonic [that is, dn/d(A/2)] because the second harmonic neces-
sarily varies by only one half as much as the fundamental wavelength. We, on
the other hand, have used the same definition—the standard one, dn /dA—for
both derivatives, which, we think, is less confusing, but it yields the factor
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Fig. 3.18: Phase matching bandwidth vs. wavelength for BBO (left) and KDP (right).
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of 1/2. It’s easy to see that the factor of 1/2 is correct: assuming that the
process is phase-matched at A¢, maintaining a phase-matched process [i.e.,
n(A/2) = n())] requires that the variation in refractive index per unit wave-
length near A/2 be twice as great as that near X, since the second harmonic
wavelength only changes only half as fast as the fundamental wavelength.

Group-velocity Mismatch

There is an alternative approach for calculating the phase-matching band-
width, which seems like a completely different effect until you realize that
you get the same answer, and that it’s just a time-domain approach, while the
previous approach was in the frequency domain. Consider that the pulse enter-
ing the SHG crystal and the SH it creates may have the same phase velocities
(they’re phase-matched), but they could have different group velocities. This
is called group-velocity mismatch (GVM). If so, then the two pulses could
cease to overlap after propagating some distance into the crystal; in this case,
the efficiency will be reduced because SH light created at the back of the
crystal will not coherently combine with SH light created in the front. This
effect is illustrated in Fig. 3.19.

We can calculate the bandwidth of the light created when significant GVM
occurs. Assuming that a very short pulse enters the crystal, the length of the
SH pulse, &¢, will be determined by the difference in light-travel times through

the crystal:
L L

ve(h0/2)  vg(ho)

where GVM = 1/v,(X0/2) — 1/v,(Xo). This expression can be rewritten
using expressions for the group velocity:

co/n(})

= LGVM (3.52)

V(X)) = (3.53)
) I — (A/n()n'(3)
Second harmonic created
As the pulse just as pulse enters crystal
enters the crystal: (overlaps the input pulse)
—y-
Crystal
Second harmonic pulse lags
As the pulse A behind input pulse due to GVM
leaves the crystal:

| N—

Fig. 3.19: Group-velocity mismatch. The pulse entering the crystal creates SH at the entrance,
but this light travels at a different group velocity from that of the fundamental light, and light
created at the exit does not coherently add to it.
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Substituting for the group velocities in Eq. (3.52), we find:

&_Ln(xo/z) [1_ Xo/2 Ln (ko) [1_ Ao
- n(k0/2) n(Ao)

n’(Ao/z)] — n’(ko)]

(3.54)
Now, recall that we wouldn’t doing this calculation for a process that wasn’t
phase-matched, so we can take advantage of the fact that n(Ay/2) = n(Xo).
Things then simplify considerably:

Co Co

ot = L [n’(ko) — ln’()\()/2)] (3.55)
Co 2

Take the second-harmonic pulse to have a Gaussian intensity, for
which §t6v = 0.44. Rewriting in terms of the wavelength, 6230 =
§t8v[dv/dA]™! = 0.44 [dv/dA]™' = 0.44 A%/cy, where we’ve neglected
the minus sign since we’re computing the bandwidth, which is inherently
positive. So the bandwidth is:

0.44 Ao/L
In'(ho) — 1n'(Ao/2)]

Note that the bandwidth calculated from GVM considerations precisely
matches that calculated from phase-matching bandwidth considerations.

SAFWHM ~ (356)

Phase-matching Bandwidth Conclusions

As we mentioned, in pulse-measurement devices, it’s important to achieve
efficient (or at least uniform) phase-matching for the entire bandwidth of the
pulse. Since ultrashort laser pulses can have extremely large bandwidths (a
10 fs pulse at 800 nm has a bandwidth of over a hundred nm), it’ll be necessary
to use extremely thin SHG crystals. Crystals as thin as 5 wm have been used
to measure few-fs pulses.

But also recall that the intensity of the phase-matched SH produced is
proportional to L. So a very thin crystal yields very little signal intensity.
Thus there is a nasty trade-off between efficiency and bandwidth. Fortunately,
we can usually find a compromise—of just enough bandwidth and efficiency
simultaneously. But, as with most compromises, we’re not happy about it.
As a result, we’ve spent much time thinking of tricks to beat this trade-off.
Chapters 11 and 17 will discuss two different approaches.

Nonlinear-Optical Strengths

Just how strong are nonlinear-optical effects? Clearly they’re not so strong
that sunlight, even on the brightest day, efficiently produces enough of them
for us to see. Of course, phase-matching also isn’t happening.
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Anyway, what sort of laser intensities are necessary to see these effects?
We start with Eq. (3.36), which can be rewritten (with wy = 2w) in the form:
2

20w L
E*(L, 1) = —isH%%

P exp(iAkL/2)sinc(AkL/2) (3.57)

where P = %80 x @ (E®)%. Then, we relate intensity to electric field strength
through I = (n/2no)|E|?, where no = /i0/€. With these, we re-write
Eq. (3.57) in terms of intensities to find:

_ no@* (x P (UL

2w
I
2c02n3

sinc?(AkL/2) (3.58)

Next, suppose we consider the best case, in which the process is phase-
matched (sinc?(0) = 1) and re-write Eq. (3.58) in terms of a SHG efficiency:

20 2 21wy 2
I_ _ 2now d 1L (3.59)
Iv co2n’
where we define the d-coefficient as d = 1x@. d is what we usually find
quoted in handbooks. It will depend not only on the material, but also on the
field configuration—how the fields are polarized with respect to the crystal
orientation. Again, we refer you to a more detailed treatment of nonlinear
optics to fully understand these issues. Qur concern now is just to get some feel
for the numbers involved and what we can hope to achieve in SHG efficiency
in the lab. As a quick calculation, suppose we use beta-barium borate (BBO)
as our nonlinear crystal, in which d ~ 2 x 107'2m/V, and where n &~ 1.6
(note that we can get away with approximate values for n when it appears in
an amplitude calculation, but we must have very accurate values for n when
computing phase—or phase mismatch). If we wish to frequency-double an
input beam of wavelength, A = 0.8 wm, we find from Eq. (3.59):

12w
7o~ 5x107%1°L? (3.60)

where I is in W/m? and L is in m.

From the small coefficient in front, some pretty high intensities are needed
for modest crystal lengths in order to get anything in the way of a decent
efficiency! Suppose we consider an ultrafast laser. Basically, if you have an
unamplified Ti : Sapphire laser, which produces nanojoule (nJ) pulses, 100 fs
long, you have pulses with intensities on the order of 104 W/m? (when focus-
ing to aabouta 10 wm spot diameter). But of course when focusing this tightly,
the beam doesn’t stay focused for long, which limits the crystal length we can
use. Additionally, because ultrashort pulses are broadband, the requirement
of phase matching the entire bandwidth limits the SHG crystal thickness to
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considerably less than 1 mm, and usually less than 100 wm. Choosing a crys-
tal length of 100 wm, and using the other numbers, we would achieve an
efficiency of about 5%. This again is best-case for this configuration because
1) the beam does not stay focused to its minimum size throughout the entire
length (as the above calculation assumes), and 2) d is reduced somewhat
below its maximum value; this is because the fields are not necessarily at the
best orientation within the crystal to most effectively excite the anharmonic
oscillators. Phase matching decides the field orientation, and the price is paid
through a slightly reduced nonlinear coefficient (known as deg). So we end up
trying to optimize all of these parameters until we’re satisfied with the SHG
power we are getting. Then we stop.

This brings us to x®. To get an idea of its order of magnitude for non-
resonant materials, consider glass. Single mode optical fibers, made of glass,
guide light with a cross-sectional beam diameter of slightly less than 10 pm.
So we can achieve similar intensities that we saw before in our SHG example,
but over much longer distances. In silica glass, x® ~ 2.4 x 1072 m?/ V2.
One can make a comparison to a second order process by calculating the
second and third order polarizations that result at a given light intensity. In
our 100fs 1nJ pulse, focused to 10 wm diameter, the field strength is £ ~
2.5 x 108 V/m. Then x®E 2 6 x 10~ m/V. Compare this to x ¥ = 2d ~
4 x 1072m/V for BBO. From here, the nonlinear polarizations for both
processes are found by multiplying these results by the light intensity. As this
example demonstrates, third-order processes in non-resonant materials are
substantially weaker than second order processes. But this can be made up for
sometimes by (1) tuning the frequency of one or more of the interacting waves
near a material resonance (but at some cost in higher losses for those waves
that are near resonance), or (2) taking advantage of long interactions lengths
that may be possible in phase-matched situations (such as in optical fibers).
Turning up the intensity will also help. Microjoule pulses can yield more than
adequate signal energies from most of the third order nonlinear optical effects
mentioned in this chapter. Third order bulk media typically used are fused
silica and any glass for the various induced grating effects.

The above illustrations assumed 100fs pulse intensities on the order of
1012 W /cm?. However, with the less tight focusing that’s practical in the lab,
intensities more like 10° W/cm? are typically available. While this seems
high, it’s only enough to create barely detectable amounts of second harmonic.
How about performing third-order nonlinear optics with such pulses? You can
just barely do this in some cases, and it’s a struggle. It’s better to have a stage of
amplification, especially from a regenerative amplifier (“regen”). Microjoule
pulses can yield more than adequate signal energies from most of the third-
order nonlinear-optical effects mentioned in this chapter. Third-order media
typically used are fused silica and any glass for the various induced-grating
effects. These media are actually not known for their high nonlinearities, but
they are optically very clean and hence are the media of choice for pulse
measurement applications.
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Nonlinear Optics in 25 Words or Less

Okay, that was a lot to digest. So what’s the minimum you need to know
to understand the basic ideas of ultrashort-pulse measurement? Not much
actually. For the next few chapters, we’ll assume perfectly phase-matched
interactions, and we won’t worry about multiplicative constants, so all you
need to remember is that the electric field of the nonlinear-optically generated
light wave in this case is given by:

Egy(t) P (3.61)

which is a simplified version of Eq. (3.28), and we’re referring to the generated
wave as the signal field, E,(t). Also, for pulse-measurement applications,
we’ll typically be splitting a pulse into two using a beam-splitter (usually a
50%-reflecting mirror) and performing nonlinear optics with the pulse, E(¢)
and another delayed version of itself, E(t — 7), where 7 is the relative delay
between the two pulses. For the various processes we’ve considered so far,
the generated field will be:

EQOEt—1) for SHG
E@®) |E¢t — 1) forPG
EM®)?E*(t —t) forSD
EMW*E(t—1) for THG

Esig(t’ T) X (362)

where we’ve included the delay in the functional dependence of the signal
field. Finally, because we’ll be mainly interested only in the pulse shape, we’ll
often neglect proportionality constants and just write, for example, E(¢t) =
E(t) E(t — 1) for SHG.

That’s all you really need to know. But you may still wish to read more on
this fascinating subject, so here’s a list of relevant books.
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