

QUANTIFICATION OF MR SPECTRA

Cristina Cudalbu

CIBM MRI EPFL AIT

cristina.cudalbu@epfl.ch

PhD course 2023

FURTHER READING

MRSHub

Home

Learning MRS

Software & Code

Forum

Data Links

News

9

Home

Learning MRS

Software & Code

Forum

Data

Links

News

SOFTWARE & CODE

How to access code

Contribute your code

SOFTWARE PACKAGES

COMPLETE LIST
Analysis & Quantification
Data Simulation & Basis Set
Generation
Deidentification
Input/Output
Processing
Reconstruction
Reproducible Workflows

Visualization

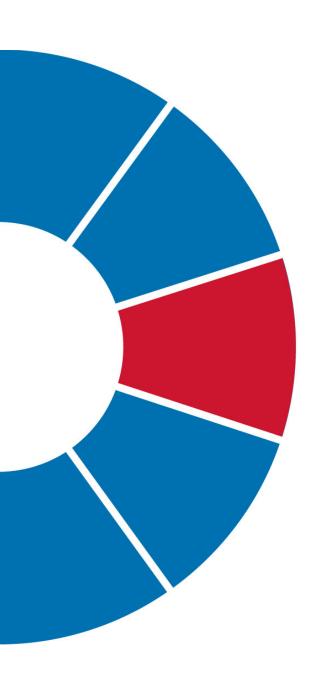
Software & Code

How to access code

You can browse the various software packages by clicking on a topic in the column to the left. Each topic takes you to a list of associated software packages.

Links in each package entry will take you to either an external web site (typical for applications that already have a website) or to various GitHub repositories that 'live' on the MRSHub.

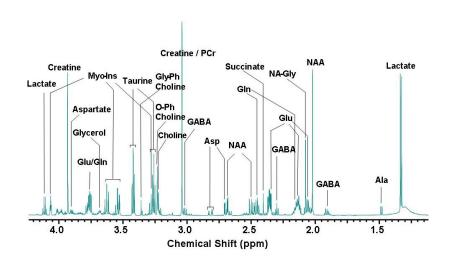
You don't have to be familiar with GitHub to download code from this site. Three quick clicks and you can have a ZIP file downloaded to your computer:


CIBM.CH

© CIBM | Center for Biomedical Imaging

OUTLINE

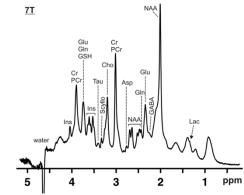
- Quantification
- Clinical vs preclinical data
- Quality Management Quality control
- Prepocessing steps
- Quantification software



QUANTIFICATION

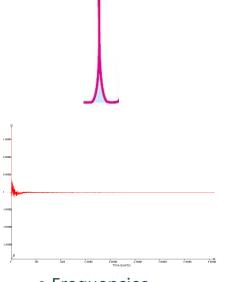
MAGNETIC RESONANCE SPECTROSCOPY

NMR Spectroscopy

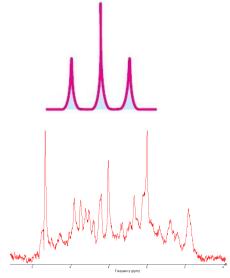


MAGNETIC RESONANCE SPECTROSCOPY

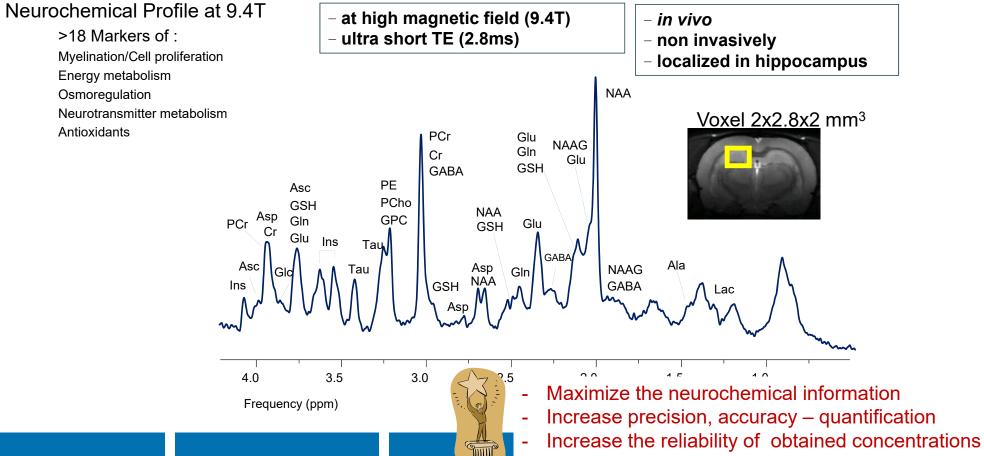
- In Vivo MR spectroscopy (MRS)
- Measurement of different metabolites- metabolism
- Different organs
- Different nuclei: 1H, 13C, 31P, 15N, ...
- Different magnetic fields
- Different acquisition parameters


CIBM.CH

© CIBM | Center for Biomedical Imaging


QUANTIFICATION

MRS – principal goal – quantification of changes in concentration of known metabolites


- Frequencies
- Amplitudes
- Damping factor
- Phase
- Beginning time

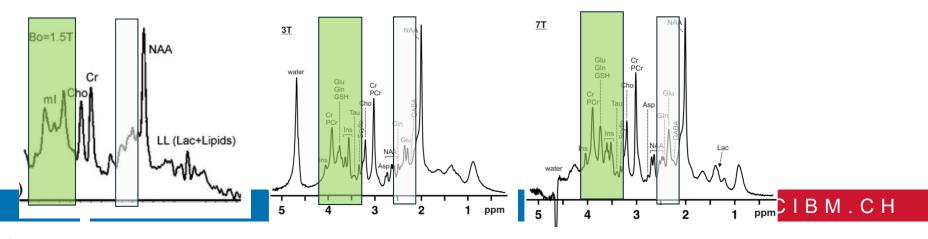
- Frequencies
- Surface
- Linewidths
- Zero order phase.
- first order phase

WHY IN VIVO 1H MR SPECTROSCOPY?

Accepted: 21 May 2020

DOI: 10.1002/nbm.4347

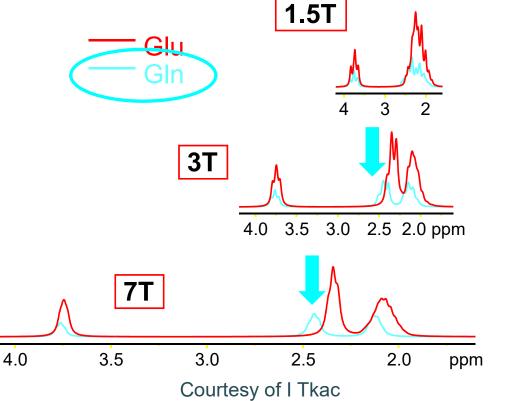
SPECIAL ISSUE REVIEW ARTICLE


Terminology and concepts for the characterization of in vivo MR spectroscopy methods and MR spectra: Background and experts' consensus recommendations

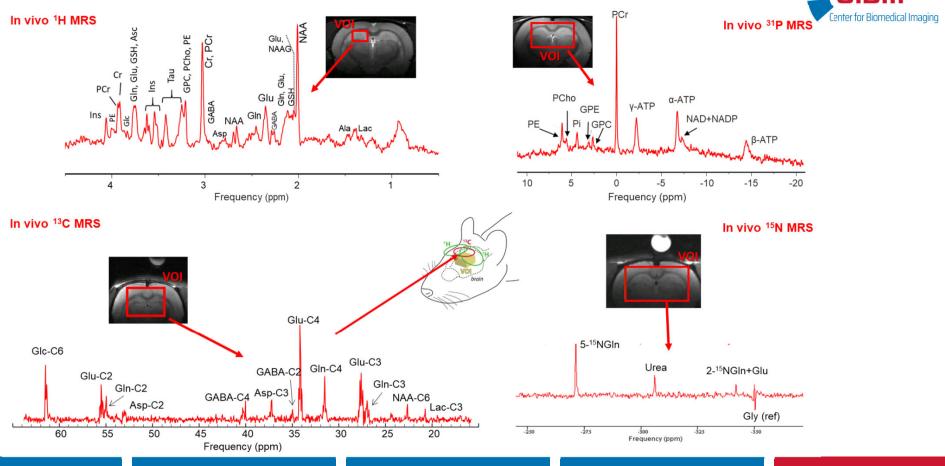
```
Roland Kreis<sup>1</sup> | Vincent Boer<sup>2</sup> | In-Young Choi<sup>3</sup> | Cristina Cudalbu<sup>4</sup> |
Robin A. de Graaf<sup>5</sup> | Charles Gasparovic<sup>6</sup> | Arend Heerschap<sup>7</sup> |
Martin Krššák<sup>8</sup> ○ | Bernard Lanz<sup>9,10</sup> ○ | Andrew A. Maudsley<sup>11</sup> ○ |
Martin Meyerspeer<sup>12,13</sup> | Jamie Near<sup>14</sup> | Gülin Öz<sup>15</sup> | Stefan Posse<sup>16</sup> |
Johannes Slotboom<sup>17</sup> | Melissa Terpstra<sup>15</sup> | Ivan Tkáč<sup>15</sup> | Martin Wilson<sup>18</sup> |
Wolfgang Bogner 19   Experts' Working Group on Terminology for MR Spectroscopy
```

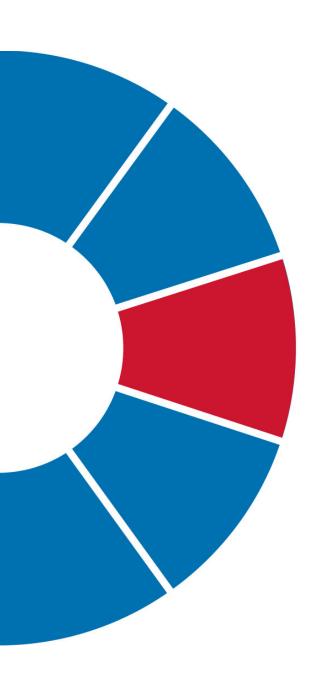
WHY HIGH MAGNETIC FIELD?

- More signal
- More spectral resolution
- And more sensitivity



WHY HIGH B₀?




Enormous progress

- ↑ SNR 😃
- decreased strong J-coupling effects
- Improve quantification precision and accuracy
- ¬ ↓ T₂* ↑ spectral lw in Hz

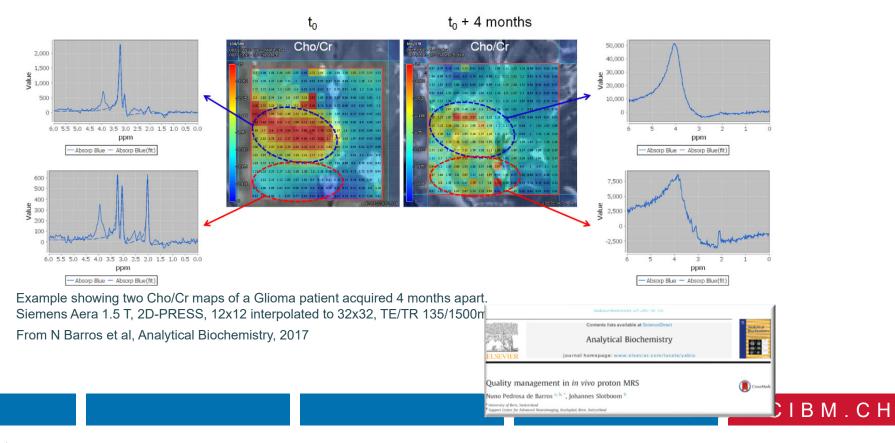
X NUCLEI MRS - 9.4T

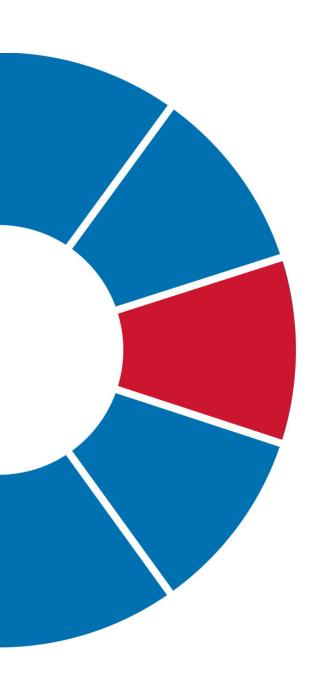
CLINICAL VS PRECLINICAL MRS

CLINICAL VS PRECLINICAL DATA

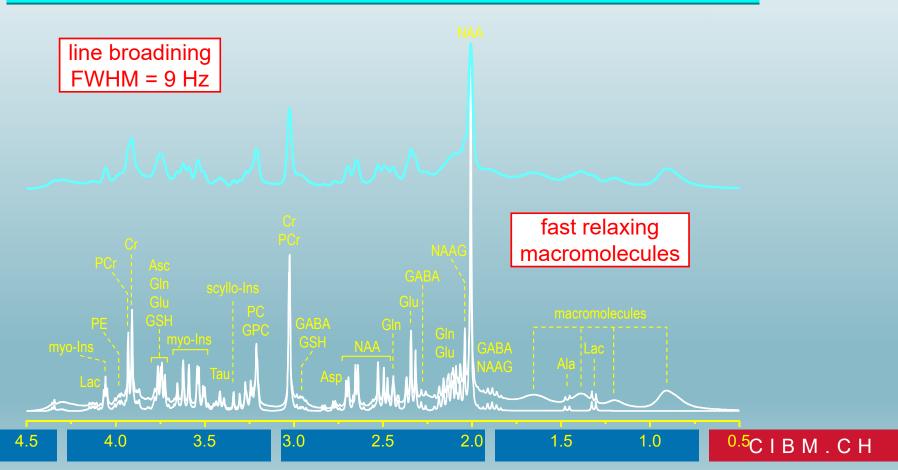
	Preclinical	Clinical
Subjects	Animal (rat/mouse) - anesthesia	Human – no anesthesia
Motion	©	? ⊗
Time for scanning	☺ Shim, WS, OVS,	☺
@scanner	MRS experts	Not necessary MRS experts
Amount of data	+++	+++++

(Lots) Data with sometimes artifacts

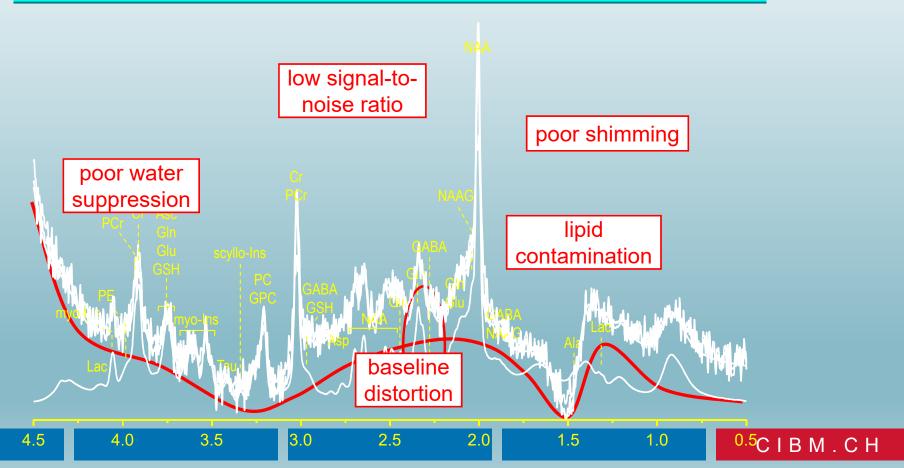

- Need to be identified
- · Corrected or data discarded
- Preprocessed
 - Quantified


- Draw incorrect decisions
- Standard quantification software – NO quality check
- ⊗ CRLB

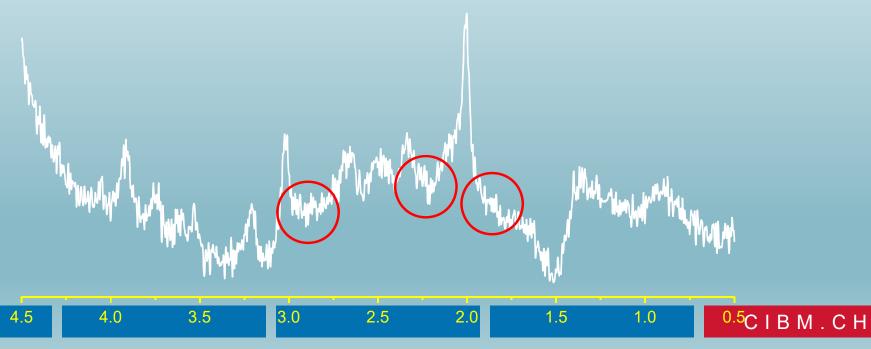
CLINICAL VS PRECLINICAL DATA

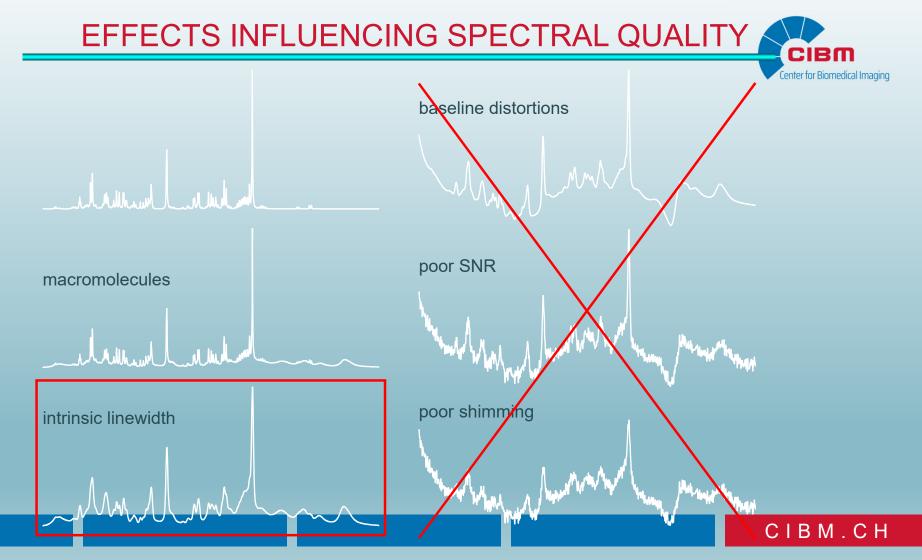

© CIBM | Center for Biomedical Imaging

ARTIFACTS IN 1H MRS


SIMULATED HIGH-RESOLUTION 1H NMR SPECTRUM OF THE HUMAN BRAIN AT 7T

DISTORTIONS OF 1H NMR SPECTRUM OF THE HUMAN BRAIN AT 7T

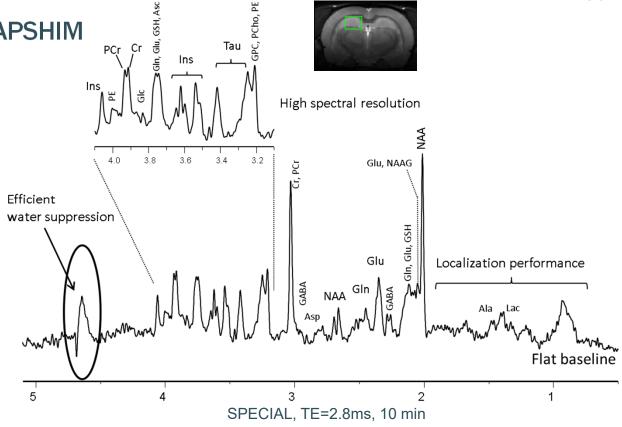

TKAC, University of Minnesota


IS RELIABLE QUANTIFICATION OF GABA AND GLU POSSIBLE?

GLUTAMATE? DIFFICULT, LIMITED PRECISION

GABA? IMPOSSIBLE FROM THIS TYPE OF SPECTRA!!

GOOD QUALITY DATA AT SHORT TE


Shimming: e.g. FASTMAP, MAPSHIM

Pulse sequence at short TE

Provide undistorted multiplets and no T₂ weighting Increased no of metabolites Improved quantification

Mouse MRS:

- √ Small organ size (low SNR)
- ✓ Susceptibility (artifacts)
- ✓ Field inhomoheneities

ACQUISITION SEQUENCES

SPECIAL ISSUE REVIEW ARTICLE

NMR INRIOMEDICINE WILEY

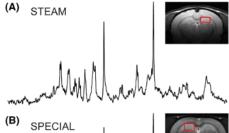
WILEY NMR

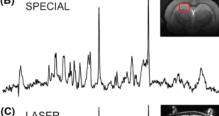
Reduced CSDE

Good localization:

– double : OVS+Seg or LASER

- Strong crusher gradients
- Good WS


Received: 11 November 2019 Revised: 29 March 2020 Accepted: 30 April 2020


Magnetic resonance spectroscopy in the rodent brain: Experts' consensus recommendations

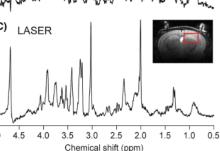

LANZ ET AL.

FIGURE 3 Example ¹H MR spectra obtained in rodent brains at 9.4 T with STEAM (A), SPECIAL (B) and LASER (C) sequences. A, STEAM spectrum: rat brain, $2.3 \times 1.3 \times 2.5$ mm³ voxel placed in the hippocampus, TR = 5 s, TE = 2 ms, TM = 20 ms, number of averages = 448. Spectrum is shown with Gaussian factor = 0.15. B, SPECIAL spectrum: rat brain, 2 × $2.8 \times 2 \text{ mm}^3$ voxel placed in the hippocampus, TR = 4, TE = 2.8 ms, number of averages = 160. C, LASER spectrum: mouse brain, 1.7 × 2.25 × 2.25 mm³ voxel placed in hippocampus, TR = 4 s, TE = 27 ms, number of averages = 384. The STEAM spectrum was provided by Ivan Tkáč

Received: 23 March 2020 Accepted: 23 November 2020 DOI: 10.1002/nbm.4459

SPECIAL ISSUE REVIEW ARTICLE

recommendations

NMR WILEY

Advanced single voxel ¹H magnetic resonance spectroscopy techniques in humans: Experts' consensus recommendations

Gülin Öz¹ Dinesh K. Deelchand¹ Jannie P. Wijnen² | Vladimír Mlynárik³ | the Experts' Working Group on Advanced Single Voxel ¹H MRS

Ivan Tkáč¹ | Dinesh Deelchand¹ | Wolfgang Dreher² | Hoby Hetherington³ | Roland Kreis⁴ | Chathura Kumaragamage⁵ | Michal Považan⁶ |

Water and lipid suppression techniques for advanced ¹H MRS

and MRSI of the human brain: Experts' consensus

Daniel M. Spielman Bernhard Strasser Robin A. de Graaf O

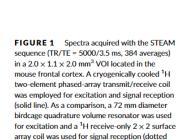
CIBM.CH

22

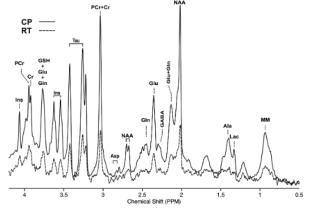

© CIBM | Center for Biomedical Imaging

Received: 15 March 2019 Revised: 29 October 2019 Accepted: 7 November 2019

SPECIAL ISSUE REVIEW ARTICLE


DOI: 10.1002/nhm 4236

RF COILS



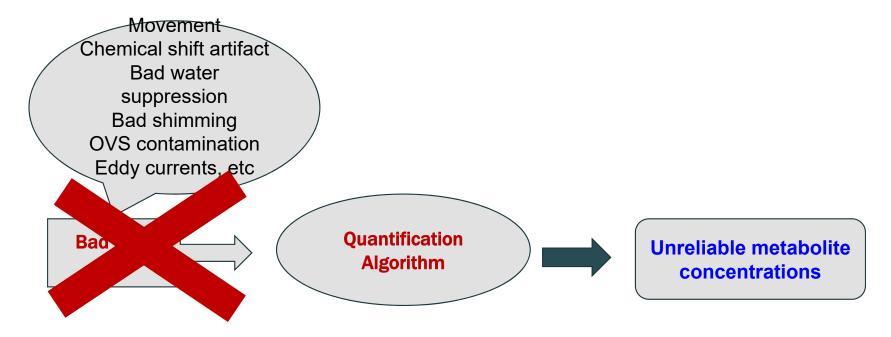
line). A 5.2-fold higher SNR was obtained with the cryoprobe (CP) compared with the room-

temperature probe (RT)

| Received: 11 November 2019 | Revised: 29 March 2020 | Accepted: 30 April 2020 | DOI: 10.1002/nbm.4325

SPECIAL ISSUE REVIEW ARTICLE

Magnetic resonance spectroscopy in the rodent brain: Experts' consensus recommendations


CIBM.CH

23

Center for Biomedical Imaging

© CIBM | Center for Biomedical Imaging

ISMRM 2010, Potentials and Challenges at High Field MRS

R Kreis, NMR Biomed 2004, 17:361 Tkáč I, et al, Appl Magn Reson. 2005 29:139.

MINIMUM QUALITY CRITERIA

- SNR >3 for major resonances
- Linewidth shimming
- Lineshape symmetric
- WS
- No lipid contamination
- No other visible artifacts
 - Not so obvious artifacts (Chemical shift artifact, localization inaccuracies, signal cancellation, etc)
- CRBs
- Residuals with unexplained features

Advanced single voxel ¹H magnetic resonance spectroscopy techniques in humans: Experts' consensus recommendations

Gülin Öz 1 $^{\odot}$ | Dinesh K. Deelchand 1 $^{\odot}$ | Jannie P. Wijnen 2 | Vladimír Mlynárik 3 | Lijing Xin 4 $^{\odot}$ | Ralf Mekle 5 | Ralph Noeske 6 | Tom W.J. Scheenen $^{7.8}$ | Ivan Tkáč 1 | the Experts' Working Group on Advanced Single Voxel 1 H MRS

Signal

SPECIAL ISSUE REVIEW ARTICLE

Quantification

1. Acquisition part:

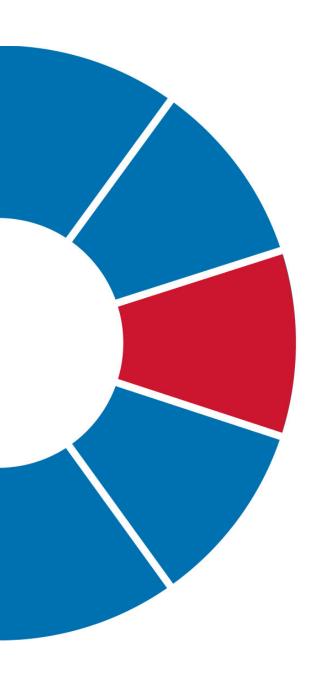
- The MRS Consensus Group. (2014) Clinical Proton MR Spectroscopy in Central Nervous System Disorders, Radiology, 270(3):658-79.
 - Facilitate the wider use of MRS for brain diseases
 - Highlight the clinical benefits of using MRS as a part of a standard MR exam
 - Spectral quality standards
 - Encourage across-vendors standardization
 - Clos the gap between standard MRS and optimized methodology used in research centers
 - Recommendations: Standardization of data acquisition, analysis and reporting of results
 Automation of preparation phases for MRS acquisition and processing
- Methodological consensus on clinical proton MRS of the brain: Review and recommendations, Magn Reson Med. 2019 Aug;82(2):527-550.
 - Guidance on the best practices for clinical MRS
 - Highlight the shortcomings of current commercially available MRS sequences
 - Highlight research efforts to improve these shortcomings

1. Acquisition part:

Received: 15 March 2019 Revised: 29 October 2019 Accepted: 7 November 2019

DOI: 10.1002/nbm.4236

SPECIAL ISSUE REVIEW ARTICLE



Advanced single voxel ¹H magnetic resonance spectroscopy techniques in humans: Experts' consensus recommendations

2. Processing part:

QUALITY MANAGEMENT-QUALITY CONTROL

- 2. Quality control (Quality Management)
- 3. Preprocessing
- 4. Quantification
- 5. Results display

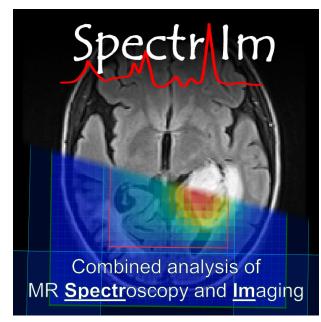
AUTOMATED

QUALITY MANAGEMENT

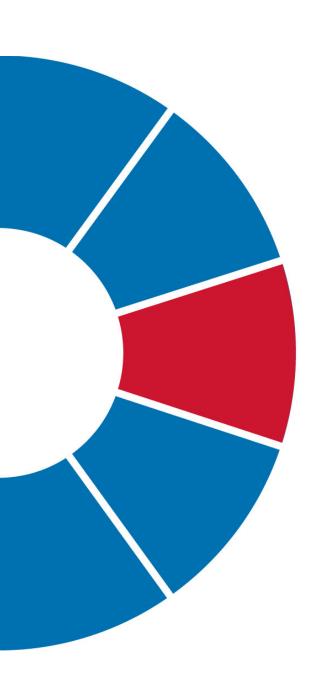
- Quality Planning quality targets
- Quality Assurance identification of what might go wrong battery of tests on well defined phantoms - identify the not so obvious artifacts
- Quality Control detection of artifacts (rejection or correction)
 - Signal Quality Control
 - Quantification Quality Control
- Quality improvement

BM.CH

QUALITY CONTROL



- Manual quality control not an option
 - Time demanding
 - Needs MRS experts
 - Subjective
- Automatic quality control
 - Semi-automatic INTERPRET project¹
 - Automatic several published pattern recognition algorithms
 - A.J. Wright, et al Magn. Reson. Med. 59 (2008) 1274-1281.
 - ICA (features) + LS support vector machine (classification)
 - Kyathanahally SP et al, ISMRM (2016).
 - More features (30) and classifier handles imbalanced data



QUALITY CONTROL

- Allow the combined exploration of MRI and MRS data
- Features:
 - For researcher/programmer
 - For the clinician
- Works as an "artifact/low SNR detector", so it doesn't substitute CRLB or the fit quality number.

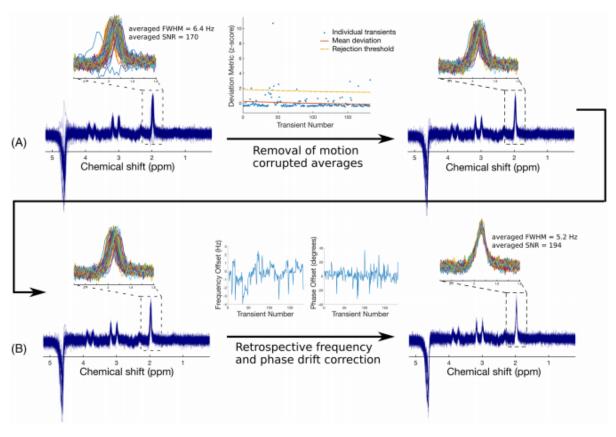
- New random forest based method for automatic quality assessment
- New set of MRS features 47 of them (time and frequency domain)
 - Trained of spectra from 40 MRSI grids

PREPROCESSING STEPS

PREPROCESSING STEPS

- Phase offsets (0 and 1st order)
- Subject motion
- Scanner drift
- Eddy currents
- Alignment of spectra that need to be added/subtracted
- Water contamination

•


PREPROCESSING STEPS

- Why?
 - quantification algorithms do not account for all of them
 - Lead to errors in the quantification process
- Requirements:
 - Automated methods
 - Included in the quantification software

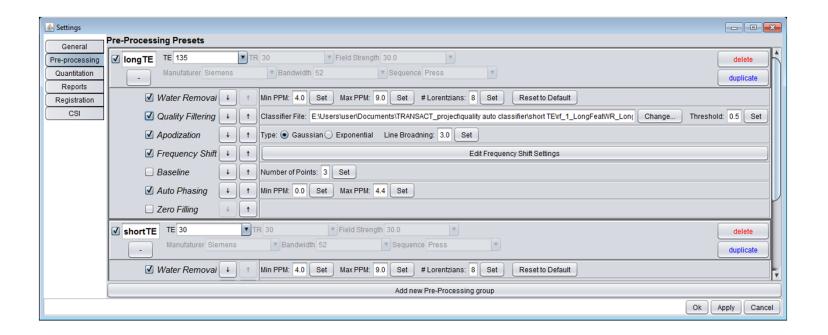


FIGURE 2 Removal of corrupted transients and retrospective frequency and phase drift correction from a 3 T human brain PRESS acquisition with $T_E = 270$ ms. A, Removal of motion-corrupted transients. Corrupted transients stand out as noticeably different from the others, and are effectively removed using an unsupervised outlier removal procedure (see reference 15). B, subsequent retrospective frequency and phase drift correction. Following drift correction using spectral registration, the individual transients have improved coherence and can now be averaged. These processing steps yield a marked improvement in both the full-width at half-maximum (FWHM) and SNR of the final averaged spectrum

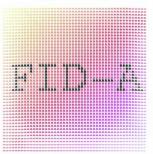
PREPROCESSING

PREPROCESSING: JMRUI2XML

I - Set Reference Set Reference	ppm	VII - Normalization
# Apodization Gaus		VIII - Alignment Correction ☐ Alignment correction ☐ isBrainH to the following peaks
III - Water Filtering		min SNR: use STD from the following region:
HLSVD	to ppn	ppm to
Nr of Lorentzians	to ppn	Create alignment to custom peaks ppm
	to ppn	ppm
IV - Baseline Correction		ppm
Baseline	to ppn	IX - Custom ppm range for XML export
Correction	to ppn	Only the range between ppm to ppm
	to ppn	
V - Change nr points in sp	ocified range	X - Additional Information
I want to have	points from	☐ Label ☐ User's Name
ppm to	ppm	SNR for each voxel Place
VI - Set to zero		☐ Key Words
Set to zero	to ppn	Max 45 characters
	to ppn	
		Save config Load config
		Save coming Load coming

Mocioiu V, et al, BMC Bioinformatics. 2015 Nov 9;16:378.

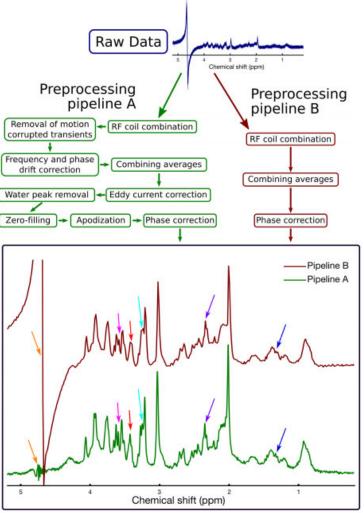
1) automates magnetic resonance spectroscopy preprocessing


2) platform for outputting exchangeable MRS data.

PREPROCESSING

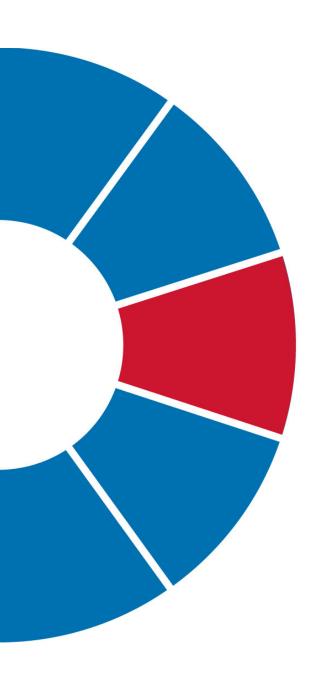
Practical aspects

- Recently released software capable of all preprocessing routines just described (and many more): The FID Appliance (FID-A) [5].
 - Free, open source, MATLAB-based
 - github.com/CIC-methods/FID-A



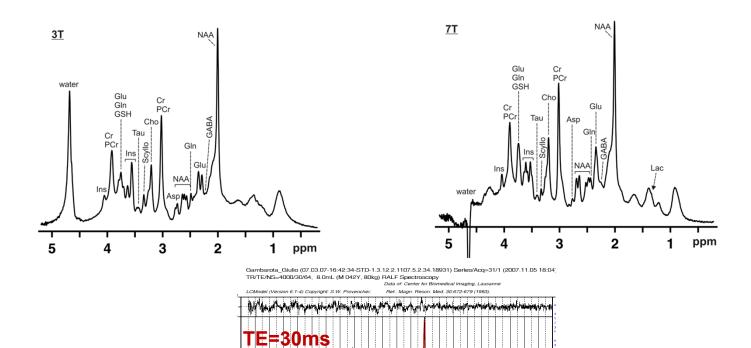
5. Simpson R et al. MRM, in press.

NEAR ET AL.


FIGURE 4 Illustration of two example processing pipelines, applied to the same raw data. The dataset was obtained from a rat brain using the PRESS sequence at 7 T with T_E = 11 ms. Processing pipeline B (dark red boxes, right-hand side) includes only basic steps to combine the coils and transients (similar to the standard processing pipeline provided by clinical scanner vendors). Processing pipeline A (green boxes, left-hand side) involves additional steps to remove motion-corrupted averages, to retrospectively correct frequency and phase drift, and to remove eddy current artefacts. Pipeline A resulted in several noticeable improvements in spectral quality, including reduced water contamination (orange arrows), and improved visual definition of most spectral peaks, including lactate (1.3 ppm, dark blue arrows), glutamate-H4 (2.3 ppm, purple arrows), tCho (3.2 ppm, light blue arrows), taurine (3.4 ppm, red arrows) and myoinositol (3.5 ppm, pink arrows). These improvements highlight the importance of using an appropriate processing pipeline. Note that, as stated in the recommendation tables, zero-filling and apodization may be used to improve the visual appearance of the spectrum, but should not be performed prior to spectral analysis

CIBM.CH

41



QUANTIFICATION SOFTWARE

- MRS principal goal quantification of changes in concentration of known metabolites
- Accurate and precise quantification:
 - Signal quality
 - Hardware performance
 - Pulse sequence design & adjustment
 - Data (pre)processing (estimate the signal amplitude or peak area)
 - Quantification strategies (→ tissue content)
- Final Goal:
 - Maximize the neurochemical information
 - Increase the precision and accuracy of quantification
 - Maximize the reliability of neurochemical data

Signals are different (acq param, Bo, nucleus, etc)

quantification is also different

THE ALGORITHMS ARE AUTOMATIC BUT NOT FULLY PUSH-BUTTON NEED TO BE ADAPTED

In vivo spectra - high B₀

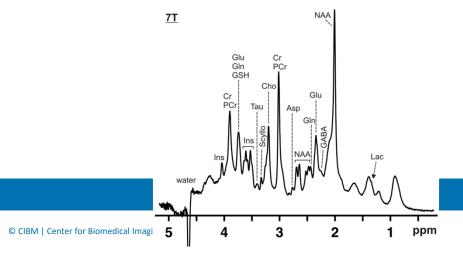
Increased - sensitivity

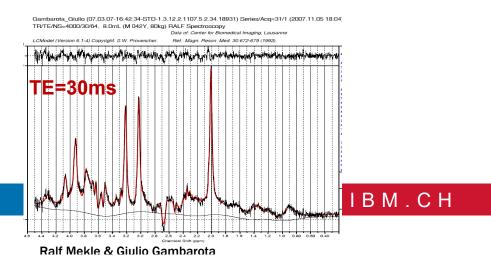
- spectral resolution

- short TE

is difficult:

- Complexity of the spectra:
 - many resonances
 - peak overlap
 - contribution of macromolecules and residual water
- Unpredictable lineshape :
 - residual eddy currents
 - field inhomogeneity
- Unpredictable baseline:
 - macromolecules
 - lipid signals

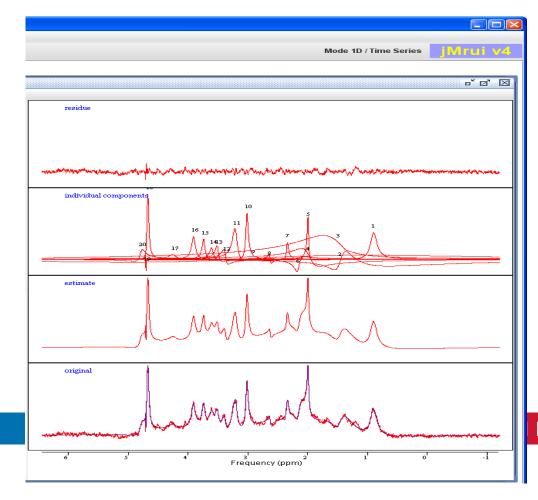

partially suppressed water



In vivo spectra - high B₀

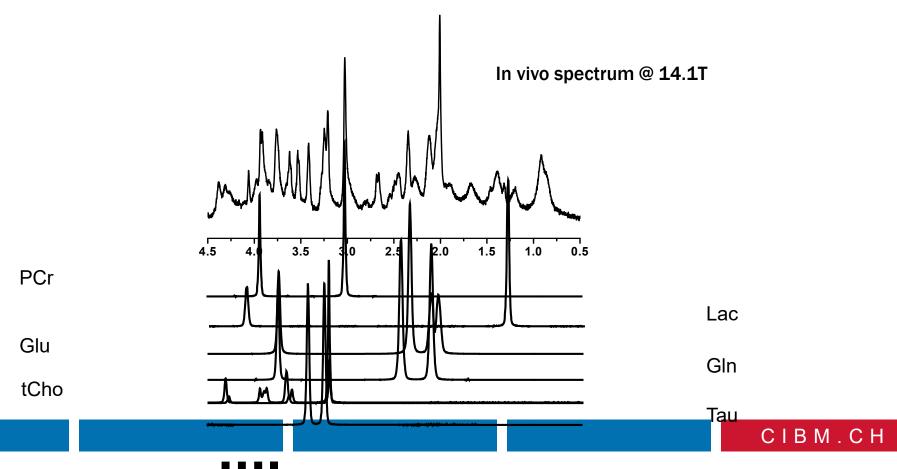
- short TE

Increased - sensitivity - spectral resolution


- ⊗Vendors software visualization of spectra
- ⊗Peak fitting !!!! Overlapping peaks ⊗⊗X nuclei
- © "Basis-set" fitting In vivo MRS spectrum is modelled as a linear combination of individual metabolite basis spectra
 - Experimentally
 - Simulated
 - User-friendly software packages: NMRScopeB, Vespa, GAMMA, GAVA,
 - Macromolecules contribution
 - Lipids contribution (i.e. malignant brain tumors)

SHORT DESCRIPTION OF THE ALGORITHMS

HLSVD quantification


Amplitude	sd. Amp.
666.88	0.2707
676.74	0.1729
333.53	2.40
140.71	0.6707
1.971E4	0.9626
1.111E3	3.45
1.455E3	2.14
479.78	138.56
475.13	34.35
420.84	46.61
551.35	18.94
837.73	11.91
351.08	226.13
1.112E3	0.2797
33.12	0.0265
614.40	0.0191

BM.CH

QUANTIFICATION WITH A BASIS SET

QUANTIFICATION SOFTWARE

	Cost	Type of data	Preprocessing	Simulations	Lineshape model	ММ
Vespa	free	all	yes	yes	yes	yes
TARQUIN	free	all	yes	Yes – basic	Voigt	Baseline –TD Add
jMRUI	free	all	yes	yes	Lorentzian	Add TD
LCModel	Yes	all	yes	No Basis sets	estimated	Splines

Anke Henning. eMagRes, 2016, Vol 5: 981–994. DOI 10.1002/9780470034590.emrstm1472 Dirk van Ormondt, et al, eMagRes, 2015, Vol 4: 651–662. DOI 10.1002/9780470034590.emrstm1427 Jamie Near, Magnetic Resonance Spectrscopy Elsevier 2014 Jamie Near, et al, NMR Biomed, 2020 https://doi.org/10.1002/nbm.4257

CIBM.CH

51

MACROMOLECULES

Received: 21 November 2019 Revised: 8 July 2020 Accepted: 13 July 2020

DOI: 10.1002/nbm.4393

SPECIAL ISSUE REVIEW ARTICLE

Contribution of macromolecules to brain ¹H MR spectra: Experts' consensus recommendations

```
Cristina Cudalbu<sup>1</sup> | Kevin L. Behar<sup>2</sup> | Pallab K. Bhattacharyya<sup>3</sup> |
Wolfgang Bogner<sup>4,5</sup>  | Tamas Borbath<sup>6,7</sup>  | Robin A. de Graaf<sup>8</sup>  |
Rolf Gruetter<sup>9</sup> | Anke Henning<sup>10,6</sup> | Christoph Juchem<sup>11</sup> | Roland Kreis<sup>12</sup> |
Phil Lee<sup>13</sup> | Hongxia Lei<sup>1</sup> | Małgorzata Marjańska<sup>14</sup> | Ralf Mekle<sup>15</sup> |
Saipavitra Murali-Manohar<sup>6,7</sup> | Michal Považan<sup>16</sup> | Veronika Rackayová<sup>1,9</sup> |
Dunia Simicic<sup>1,9</sup> | Johannes Slotboom<sup>17</sup> | Brian J. Soher<sup>18</sup> | Zenon Starčuk Jr.<sup>19</sup> |
Jana Starčuková<sup>19</sup> | Ivan Tkáč<sup>14</sup> | Stephen Williams<sup>20</sup> | Martin Wilson<sup>21</sup> |
Andrew Martin Wright<sup>6,22</sup> | Lijing Xin<sup>1</sup> | Vladimír Mlynárik<sup>4,5</sup>
```

CIBM.CH

Received: 27 January 2021

Revised: 25 May 2021

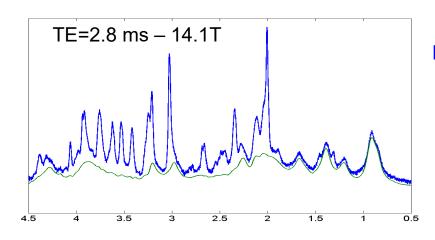
Accepted: 11 June 2021

DOI: 10.1002/mrm.28910

FULL PAPER

Magnetic Resonance in Medicine

In vivo macromolecule signals in rat brain 1H -MR spectra at 9.4T: Parametrization, spline baseline estimation, and T_2 relaxation times


Dunja Simicic^{1,2,3} | Veronika Rackayova^{1,2} | Lijing Xin^{1,2} | Ivan Tkáč⁴ | | Tamas Borbath^{5,6} | Zenon Starcuk Jr⁷ | Jana Starcukova⁷ | Bernard Lanz³ | Cristina Cudalbu^{1,2}

CIBM.CH

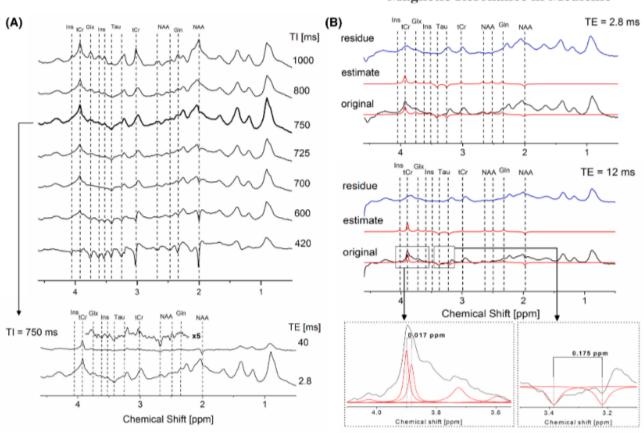
53

MACROMOLECULES

Low molecular weight metabolites

High molecular weight macromolecules

- ▶¹H MRS brain signals (short TE) complicated macromolecules
- > Error in macromolecule estimation error in metabolite concentrations
- >two types of the MM signals
 - nuclei of backbones of macromolecules having severely restricted mobility very short T₂
 - nuclei of outer parts of macromolecules or those of smaller macromolecules having higher mobility useful clinical information


MACROMOLECULES

- In the normal brain, MM signals arise mainly from the protons of amino acids within cytosolic proteins primarily in regions undergoing rapid motions on the time scale of NMR.
- MM resonances have physical properties different from those of metabolites
 - The longitudinal (T₁) and transverse (T₂) relaxation times of MM are shorter than those of metabolites
 - MM are also characterized by increased linewidths compared to those of metabolites
 - The MM are further characterized by a more hindered mobility as well as diffusivity
 - apparent diffusion coefficient (ADC) 10-20 times lower than that of metabolites
 - MM have extensive scalar coupling patterns among the resonances (~7Hz), which can affect the detection of GABA

-Magnetic Resonance in Medicine 2

CIBM.CH

56

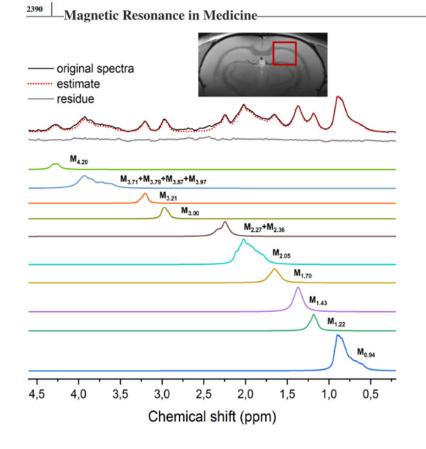
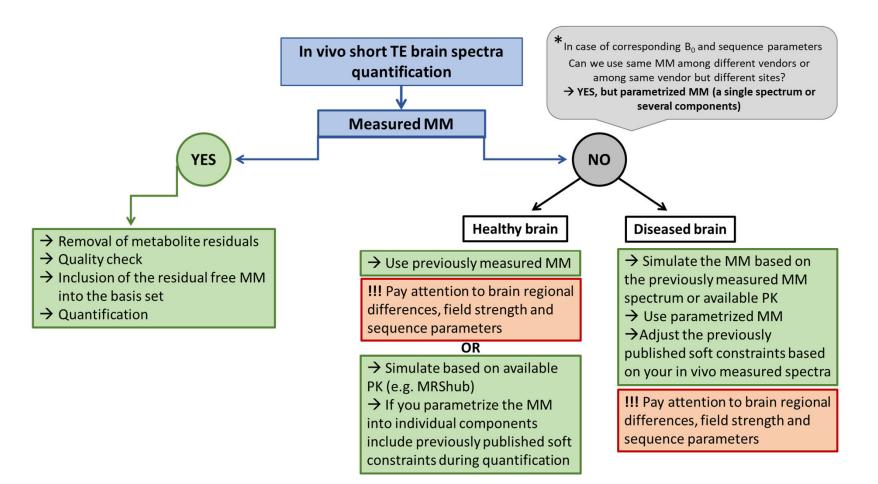
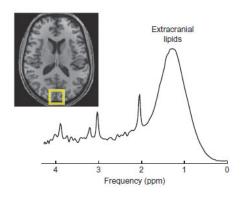



FIGURE 2 MM spectrum parametrized into 10 individual components using AMARES. The original spectrum was fitted using AMARES and the fits of individual components were saved separately to form a parametrized basisset (in color). The insert image shows the $VOI = 3 \times 3 \times 3$ mm³ centered on the rat hippocampus (all MM spectra were acquired from VOI positioned in this location)

CIBM.CH

57



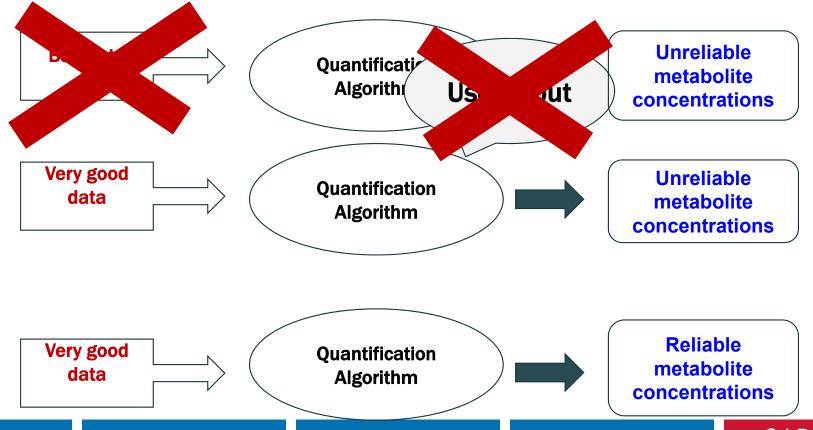
CIBM.CH

Quantification - Lipids



FIGURE 1.5.9 Lipid resonances in the human brain. Top, extracranial lipids are observed if the volume of interest (yellow box) is placed too close to the scalp. Bottom, prominent resonance from mobile lipid are often observed in malignant brain tumors, as shown in this example.

Jamie Near, Magnetic Resonance Spectroscopy Elsevier 2014


CHAPTER 1.5

Spectral Quantification and Pitfalls in Interpreting Magnetic Resonance Spectroscopic Data: What To Look Out For

Jamie Near

Department of Psychiatry, McGill University, and the Centre d'Imagerie du Cerveau, Douglas Mental Health University Institute, Montreal, QC, Canada

QUANTIFICATION (ABSOLUTE)

Signal amplitudes Peak area

- External concentration reference
- Internal concentration reference
 - Ratios to tCr or NAA or Cho They might change disease
 - Water internal reference
 - Corrections for T1, T2 and water content
 - Very short TE T2 correction could be neglected
 - Fully relaxed signals long TR T1 neglected
 - MT

Preprocessing, analysis and quantification in single-voxel magnetic resonance spectroscopy: experts' consensus recommendations

Jamie Near^{1,2} | Ashley D. Harris^{3,4,5} | Christoph Juchem⁶ | Roland Kreis⁷ | Małgorzata Marjańska⁸ | Güllin Öz⁸ | Johannes Slotboom⁹ | Martin Wilson¹⁰ | Charles Gasparovic¹¹

$$metabolite.abs = \frac{signal_{met}}{signal_{H2O}} \times WCONC_{GM_{H2O}} \times \frac{(exp^{-TE/T_2}H2O) \cdot (l - exp^{-TR/T_1}H2O)}{(exp^{-TE/T_2}met) \cdot (l - exp^{-TR/T_1}met)} , \qquad (2)$$

where metabolite.abs is the absolute concentration of a given metabolite.

signal_{met}/signal_{H2O} is the ratio of metabolite signal to water signal, as determined using LCmodel. This value is returned by LCModel when the parameters WCONC, ATTH2O, and ATTMET are all set to 1, and water scaling is on.

WCONC_{GMH2O} is the LCModel parameter specifying the tissue water concentration in grey matter (43300 mM) (Ernst, Kreis, and Ross 1993).

TE is the echo time of the experiment (TE = 11.12 ms)

TR is the repetition time of the experiment (TR = 3000 ms)

 $T2_{H2O}$ is the measured water T2 relaxation time at 7T (49.13 ms)

T2_{met} is the projected metabolite T2 relaxation time at 7T (Supplementary Table 3)

 TI_{H2O} is the measured water T1 relaxation time at 7T (1491 ms)

T1_{met} is projected metabolite T2 relaxation time at 7T (Supplementary Table 3)

Microsoft Word - WT_AgingPaper_Supplementary_edit_6Oct20.docx (els-cdn.com)

CIBM.CH

QUANTIFICATION QUALITY CONTROL

- CRLB theoretical estimation
 - Assumes that the model is perfect
 - R Kreis, MRM 75, 2016 CRLB % !!! low conc metabolites
 - CRLB vs mean CRLB in normal cohort

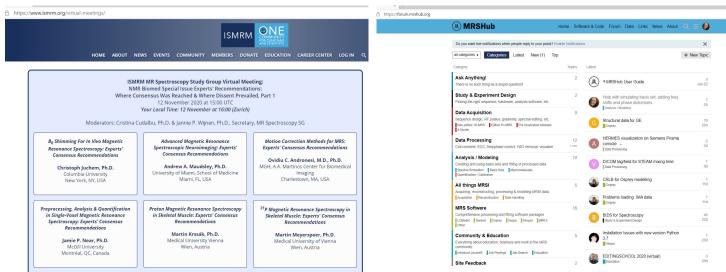
Fit residuals

QUANTIFICATION: RESULTS DISPLAY

Patient name : anonymous Date of Birth : Patient sex : M Patient ID :		nber : 2699671 ion : Kopf_12_Kanal 20110630	Series nu	escription : svs_se_135_ws .mber : 12 ne : 155149.015000	Scanner type : Verio Echo time TE : 135000 Repetition time TR : 1500000 Voxel dimension : [15, 15, 15
Metabolite Na	me	Concentrations (2 comp) [mmol/k	g ww]	Normal (2 comp) [mmol/	(kg ww)
at the fat	, +				
Choline (Cho		8.8 ± 0.1		1.5 ± 0.1	
Creatine (Cr		7.7 ± 0.2		5.2 ± 0.1	
Glutamate (G		6.6 ± 0.4		3.7 ± 0.2	
Glutamine (G		4.4 ± 0.3		2.2 ± 0.1	
Lactate (Lac		1.2 ± 0.2		0.3 ± 0.1	
Myo-inositol (m N-Acetyl Aspartate	200,000	20.7 ± 1.2 4.9 ± 0.2		7.8 ± 0.4 7.5 ± 0.2	
IV-Acetyl Aspartate	111111	4.0 2 0.2		7.5 ± 0	•
For scientific purposes only Report created with JMRUI.	WILL A				ROI

SUMMARY

- Software "X"
 - · Data are sent/loaded
 - Automatic QC
 - Preprocessing –list: saved, shared ...
 - Quantification extreme care reliable and accurate
 - Display results
 - CE labelled or FDA approved



AUTOMATED

SUMMARY

MRS Study Group @ISMRM – Virtual meetings

 The MRS Consensus Group: push-button processing and quantification of clinical MR spectra

CIBM.CH

NEW APPROACHES

Machine Learning / Deep learning Automatic Classification Strategies

ORIGINAL RESEARCH published: 09 October 2019 doi: 10.3389/fonc.2019.01010

Super-Resolution ¹H Magnetic Resonance Spectroscopic Imaging Utilizing Deep Learning

Zohaib Iqbal¹, Dan Nguyen¹, Gilbert Hangel², Stanislav Motyka², Wolfgang Bogner² and Steve Jiang ^{1*}

Medical Artificial Intelligence and Automation Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States, ² Christian Doppler Laboratory for Clinical Molecular MR Imaging, Department of Biomedical Imaging and Image-guided Therapy, High Field MR Center, Medical University of Vienna, Vienna, Austria

Magnetic Resonance in Medicine

 Received: 15 December 2017
 Revised: 12 February 2018
 Accepted: 12 February 2018

 DOI: 10.1002/mrm.27166
 10.1002/mrm.27166

SPECTROSCOPIC METHODOLOGY

FULL PAPER

A convolutional neural network to filter artifacts in spectroscopic MRI

Saumya S. Gurbani^{1,2,3} | Eduard Schreibmann^{1,3} | Andrew A. Maudsley⁴ |

James Scott Cordova^{1,3} | Brian J. Soher⁵ | Harish Poptani⁶ | Gaurav Verma⁷ |

Peter B. Barker⁸ | Hyunsuk Shim^{1,2,3,9} | Lee A. D. Cooper^{2,3,10}

Received: 1 July 2022 Revised: 16 November 2022 Accepted: 2 December 2022 Published on: 19 December 2022

RESEARCH ARTICLE

Magnetic Resonance in Medicine

Quantification of MR spectra by deep learning in an idealized setting: Investigation of forms of input, network architectures, optimization by ensembles of networks, and training bias

Rudy Rizzo^{1,2,3,4}○ | Martyna Dziadosz^{1,2,3,4} | Sreenath P. Kyathanahally⁵○ | Amirmohammad Shamaei^{6,7}○ | Roland Kreis^{1,2,4}○

NEW APPROACHES- MR FINGERPRINTING

MRF extracts parameter maps from signals generated using non-steady-state pulse sequences in conjunction with Bloch simulations and pattern matching.

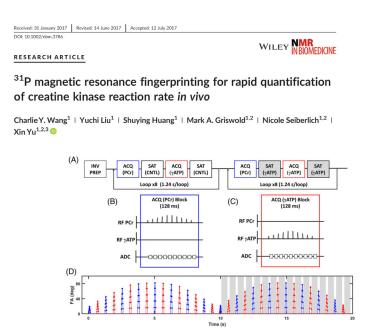
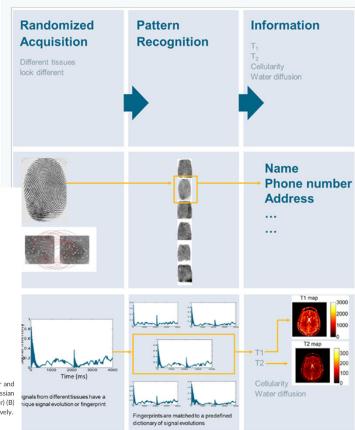



FIGURE 1 Sequence design. A, schematic diagram of the CK-MRF pulse sequence. ACQ(PCr) and ACQ(γATP) are acquisition blocks for PCr and yATP, respectively. SAT(CNTL) and SAT(yATP) are contralateral and yATP saturation blocks, respectively. ACQ(PCr) and ACQ(yATP) used Gaussian excitation pulses, while SAT(CNTL) and SAT(yATP) used continuous wave RF pulses. B,C, pulse sequence diagrams for one block of ACQ(PCr) (B) and ACQ(yATP) (C). D, timing and nominal flip angles of all excitation pulses. Blue and red colors indicate PCr and yATP excitation, respectively. © CIBM | Center for Biomedica | Grey shaded areas indicate yATP saturation

ВМ.СН

NEW APPROACHES- DENOISING

NeuroImage 142 (2016) 394-406

Contents lists available at ScienceDirect

NeuroImage

journal homepage: www.elsevier.com/locate/ynimg

Denoising of diffusion MRI using random matrix theory

Jelle Veraart^{a, b, *}, Dmitry S. Novikov^b, Daan Christiaens^c, Benjamin Ades-aron^b, Ian Silbers^a. Els Fieremans^b

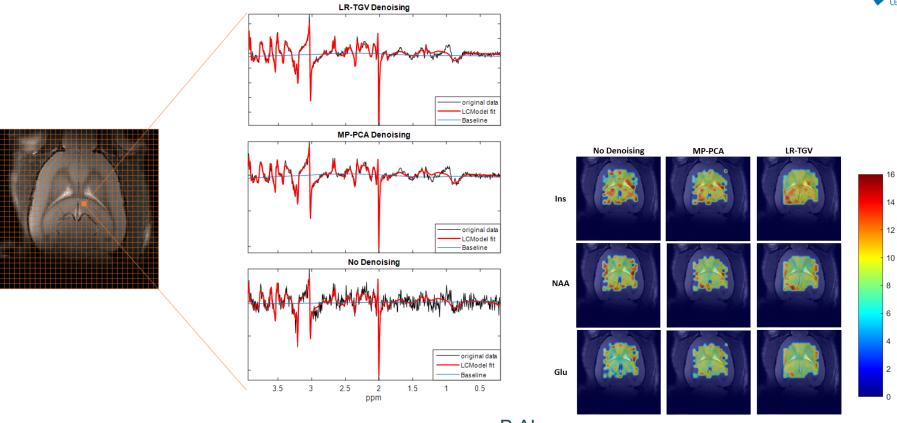
NeuroImage 263 (2022) 119634

Contents lists available at ScienceDirect

NeuroImage

journal homepage: www.elsevier.com/locate/neuroimage

MP-PCA denoising for diffusion MRS data: promises and pitfalls


 $\underline{\text{Jessie}} \ \underline{\text{Mosso}}^{1,2,3,*}, \underline{\text{Dunja}} \ \underline{\text{Simicic}}^{1,2,3}, \underline{\text{Kadir}} \ \underline{\text{Simşek}}^{4,5,6}, \underline{\text{Roland}} \ \underline{\text{Kreis}}^{4,5}, \underline{\text{Cristina}} \ \underline{\text{Cudalbu}}^{1,2,\#}, \\ \underline{\text{Ileana O. Jelescu}}^{7,\#}$

CIBM.CH

69

NEW APPROACHES- DENOISING

B Alves

 $\mathsf{CIBM}.\mathsf{CH}$

70

SUMMARY & ACKNOWLEDGMENTS

MRS & MRSI is incredibly rich & versatile ©

Thank you for listening! Questions?

For any question you might have later on, please write me an email:

cristina.cudalbu@epfl.ch

THANK YOU FOR YOUR ATTENTION

