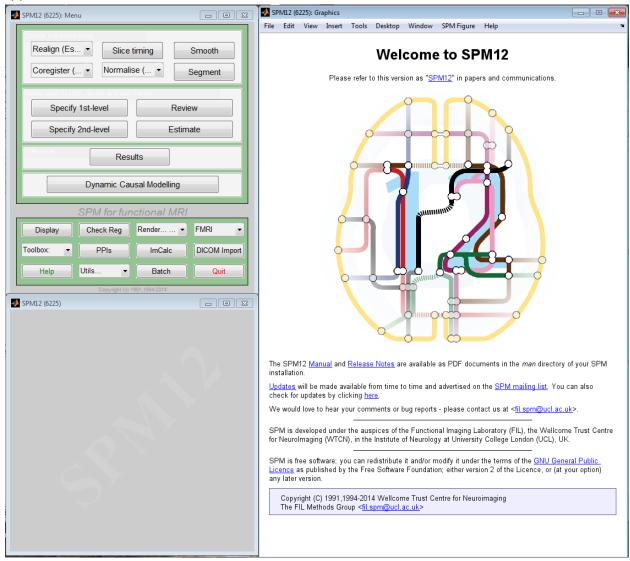
FMRI single subject analysis lab

Goals of this lab


After this first part of the lab you should:

- 1. Be able to examine data using SPM's single- and multi-volume display facilities.
- 2. Be able to characterize the susceptibility artifacts and signal voids in functional data, as compared to similar structural data.
- 3. Be able to evaluate the quality of functional image motion correction (realignment).
- 4. Be able to perform coregistration between the low-resolution and high-resolution structural images. You will understand the implications for an image to be the "Source" vs the "Reference" in terms of the "world space" of each image.
- 5. Be able to perform spatial normalization, check its success, and apply the transformation.

INTRODUCTION

- 1. Open Matlab software
- 2. Change the « Current Folder » and select the one with the data : EF_mot

3. In the command window, type **spm fmri** and press **Enter.** The following interface appears:

4. Take few minutes to discover the main interface (Menu). The top raws include the step needed for preprocessing the data, the central part is about statistical modelling, and the bottom part includes a certain number of useful tools.

Display and Check reg

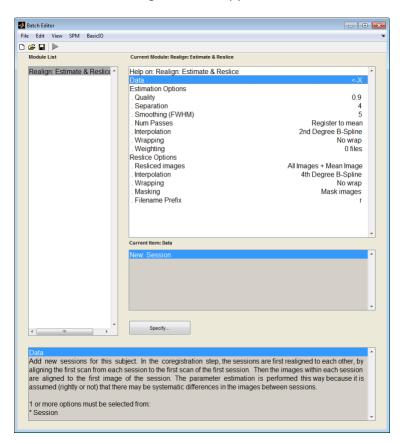
5. Use the button "Display" to visualize one functional image first

Try to answer the following questions:

- What is the voxel size?
- What are the image dimensions?
- What are typical gray matter intensity values?
- On the lower right side of the display dialog you may see the kind of interpolation being used in visualizing the images. Trilinear interpolation is default. First select Nearest Neighbor interpolation and explore the image. Next select Sinc interpolation and again explore the image.
 - a. Which interpolation do you prefer?
 - b. Why? Can you see the differences?
- 6. Repeat the same steps and answer the questions after displaying one high resolution T1 image (MPRAGE acquisition)
- 7. Use the button "Check Reg" (Check registration) to visualize one functional and one high resolution anatomical image (you select two images in the same dialog box), are they superimposed? What about if you choose one functional and one T1 in the "Annex" folder?

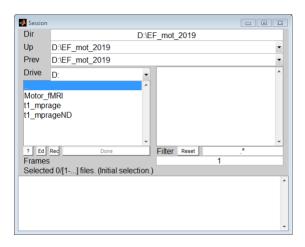
Note that now you see both the anatomical and functional images in the same window. If you click around one, note that the crosshair in the other will also move. This is how one checks whether two images are correctly coregistered. Specifically, there are certain landmarks in the brain, which are used to ensure that all parts of the brain are correctly coregistered.

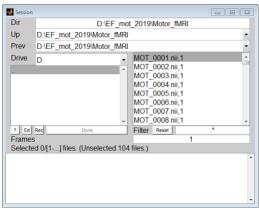
Explore the pair of images, making sure to compare the following anatomical regions:

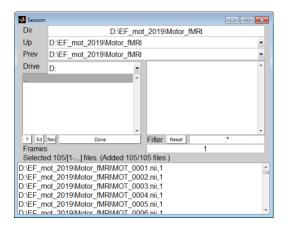

- i. Frontal pole
- ii. Occipital (posterior) pole
- iii. Left & Right sides (e.g. superior temporal gyrus)
- iv. Corpus callosum:
- a. Most anterior
- b. Most superior
- c. Most posterior extent

Do the functional and structural line up well? If not, how so?

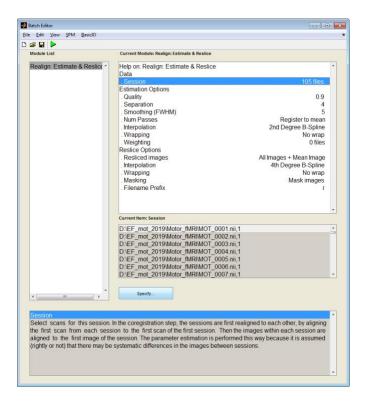
PREPROCESSING


REALIGMENT


To proceed with preprocessing, we start with the realignment in order to correct for subject's motion during the time of acquisition. Pressing the button "realign" and selecting "Estimate and reslice", the following interface appears:

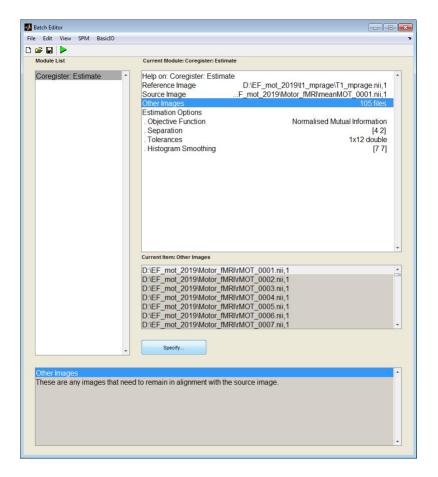


N.B: In all the interfaces, the parts where you have to interact and choose parameters before running, are marked with a <-X


You must complete the selection of data by including all the functional images in the same order as they have been acquired (be careful files are 105 and should be selected in the right order)

Once that the data are selected, you can click on **Done** and you can run the "batch program" with the green arrow on the top raw of the batch window.

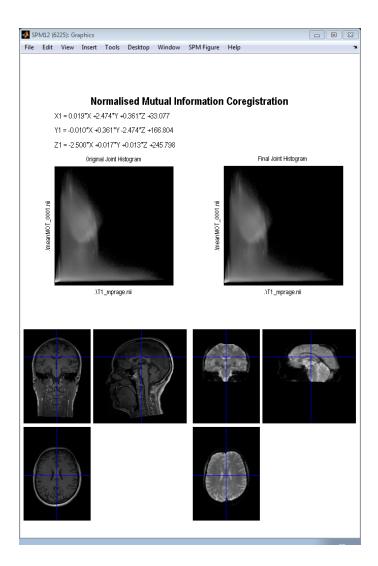
Once the realignement done, the movement parameters estimated are shown in the "Graphic window" and a new set of images with a "r" before the original filename are created in the folder where the input data are stored.


What is the maximum movement the subject has done? Do you think it is a lot?

COREGISTRATION

Press on the button "Coregister" and choose the option "Estimate".

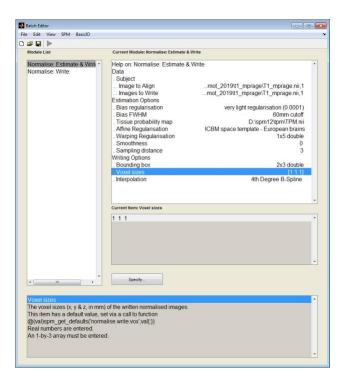
In this step you want to "move" the functional images exactly in the same space than the anatomical ones. To this end, you chose as a reference image the high-resolution anatomical image and as a source image the "mean functional image" created during the previous step.


You also select all the other "realigned images" (be careful, you should select the 105 images with the "r" before the original name).

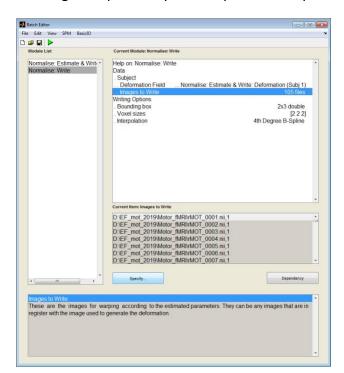
Then, you can run the script with the green arrow.

At the end of the script, you should see the result in the Graphical window. Navigate through the images to verify the goodness of the procedure.

With the "check reg" button, verify also that, for example, the first and the last functional images are well coregistered with the anatomical.

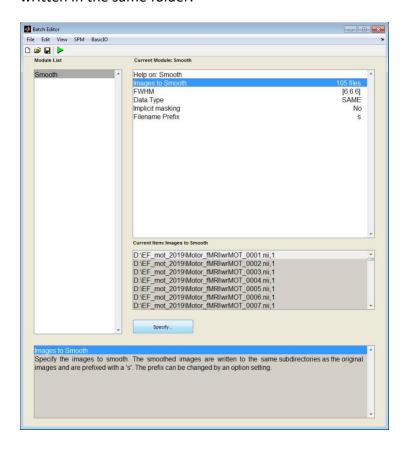


NORMALIZATION


This part should be done in two steps.

You first estimate the parameters of normalization from the high resolution T1 anatomical image. Then you apply the same parameters to the functional ones.

An example of the script is the following.


In the "write" part, the parameters estimated in the previous step are used to normalize functional data too. Since the file of parameters is still not available, you can "select it" by defining a "dependency" to the previous step.

Once the normalization completed, a new set of normalized images with the prefix "w" is available. Use the "check reg" button to verify that: a template (that can be found in - /SPM12/tmp folder), the normalized T1 image, and one normalized fMRI image are in the same space and are aligned.

SMOOTHING

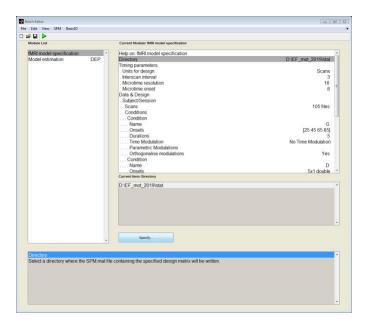
In the "smoothing" batch interface you need just to select the normalized functional images that underwent all the previous steps (105 files with the prefix "wr") and change the FWHM to [6 6 6] before running the batch. A new set of images with an additional prefix "s" will be written in the same folder.

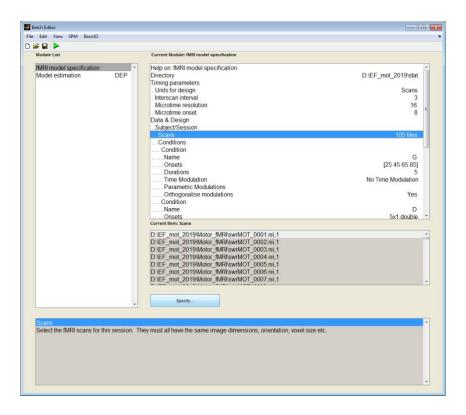
What do you think would be the impact of increasing a lot the FWHM or decreasing it to [2 2 2], for example?

You can also try to run the batch by changing the parameter and see what happens by visualizing the output images

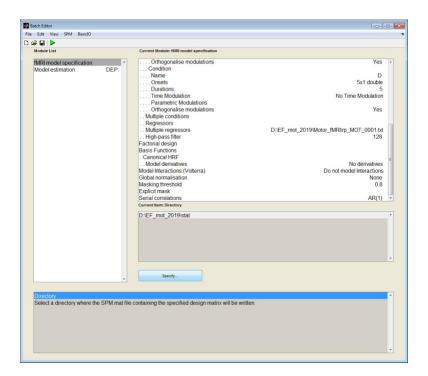
Single Subject STATISTICS

Now we have data ready for statistics. And we need information about the stimulation protocol the subject underwent.

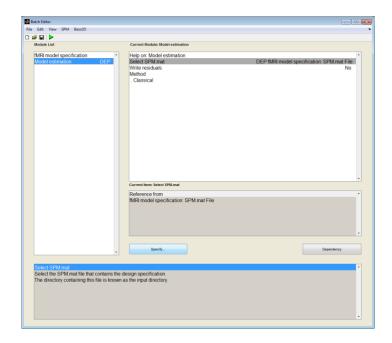

INFO: The subject started at rest; then, after 15 seconds, he was asked to move the Left hand for 15 seconds, then his Right hand for 15 seconds, then rest again for 30 seconds and start again with the Left hand for 15 sec, Right Hand for 15 sec, and rest for 30 sec...and so on until the acquisition was finished.


The acquisition included 105 volumes and volumes were acquired one each 3 seconds.

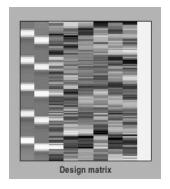
- 1) Create the "onset vector" of the "left hand movement" this means the list of the timepoints (in scans or seconds) when the movement begins.
- 2) Create the "onset vector" of the "right hand movement"
- 3) Define the "duration" of each condition.
- 4) The "rest" condition should not be explicitly defined: if a scan does not belong to one or the other condition, it will be associated with "rest".


Press on the "specify first Level" button to see the interface for setting up your model of analysis.

Try to fill all the information needed in the batch; you can find some help in the following screenshots. However, be careful, there is a mistake.

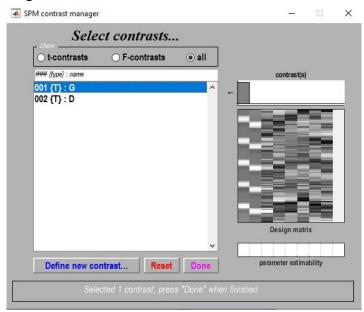


As regressors (of no interest...but there is no distinction in setting up the model), you should include the movement parameters.


The last step requires the estimation of your model. Again, since the model is still not done, you must select it via a dependency.

After running this batch, the data are totally analysed, you need just to see the "results".

But...what about the contrasts? In what are you interested in? Which is your question? How can you answer to it?


The first column of the design matrix, if you followed the hints given for the statistical model, should look like the following:

Where the first column represents the movement of the left hand.

If the question is: which brain regions are more activated during the left hand movement then during rest, the equivalent test will be:

- T test (because we say "more", so we define a "direction" of the difference we are interested in)
- The contrast will target the first column.

Some regions look like they activate while moving both hands; which are the regions that are more activated during the left hand movement than during the right hand one?

Which contrast answer to the question?