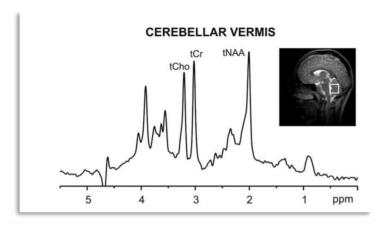
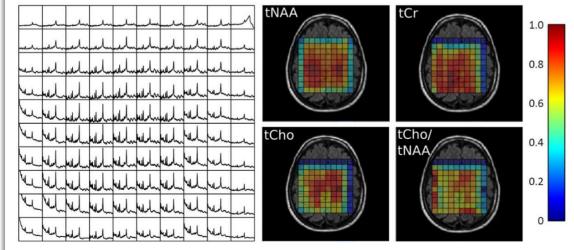


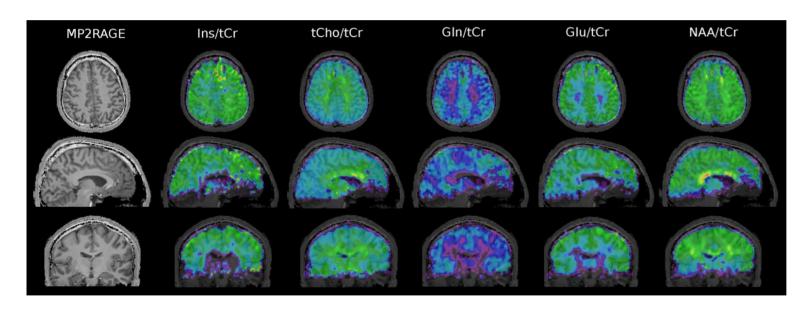
Fast Magnetic Resonance Spectroscopic Imaging and Reconstruction Techniques

Antoine Delattre-Klauser, PhD


On-Site Scientist



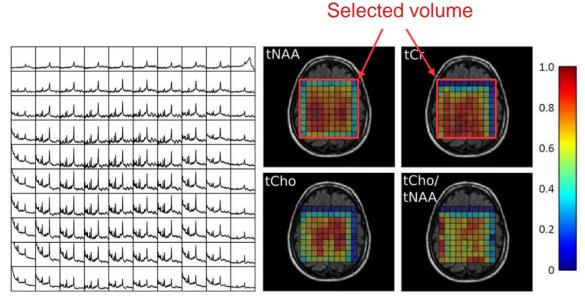
From classical magnetic resonance spectroscopy...


Consensus* acquisition parameters:

- Voxel 25x25x25mm³
- 5min Acq. Time

- Voxels 10x10x15mm³
- 20x20 FOV (2D)
- 13min Acq. Time

... To High-Resolution Whole-Brain magnetic resonance spectroscopic imaging


State-of-the-Art H-R W-B MRSI Parameters *:

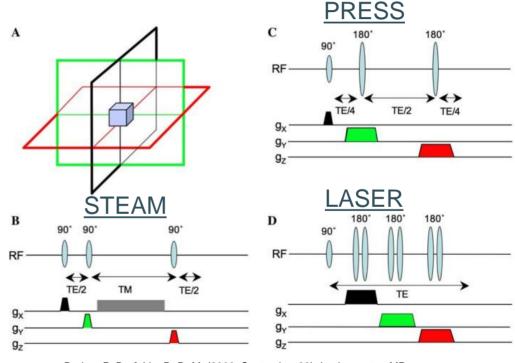
- Voxels 3 x 3 x 3 mm
- 80 x 80 x 47 matrix (3D)
- No volume selection
- 15min Acq. Time

^{*}Hingerl,L. et al. (2019). Clinical High-Resolution 3D-MR Spectroscopic Imaging of the Human Brain at 7 T. Investigative Radiology,

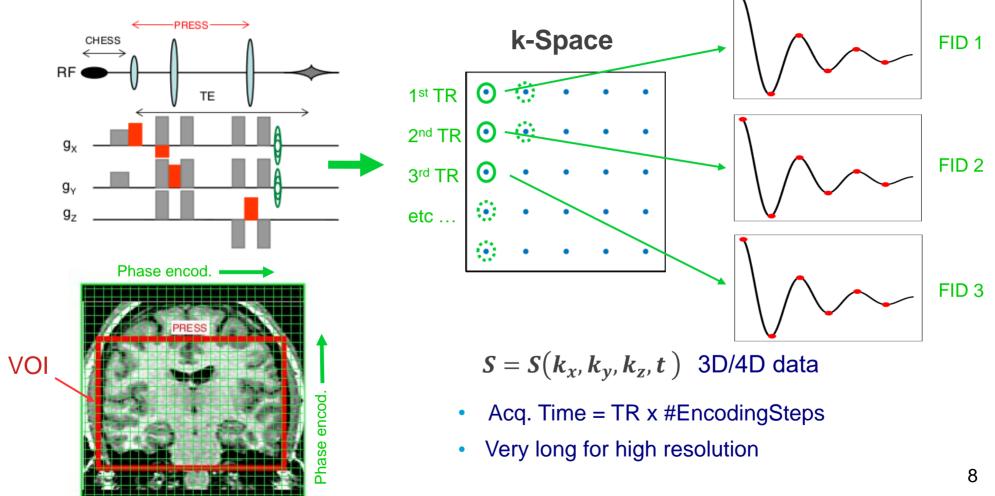
- Magnetic Resonance Spectroscopic Imaging (MRSI): What are the limitations?
- Fast and High resolution MRSI:
 Key ingredients
- Reconstruction as solution to the inverse-problem
- Few applications

MR Spectroscopic Imaging (MRSI, also CSI / Multi-voxel MRS)

2D MRSI 10x10x15mm, 13min Acq. time


- Technique that combines
 - Rectengular VOI selection (MRS)
 - Spatial 2D/3D phase encoding (MRI)
- But
 - Signal only in the Rectangular VOI
 - Slow acquisition of the 3D/4D (k,t)-space:
 - 2D ~10min
 - 3D ~20-30min
 - Low resolution (> 10mm)

Sequences with volume selection


- To measure spectrum from this location only
- To prevent signal contamination by other part of the brain (or body)

But

Take some time (long TE, long TR)

Barker, P. B., & Lin, D. D. M. (2006, September 30). In vivo proton MR spectroscopy of the human brain. Progress in Nuclear Magnetic Resonance Spectroscopy.

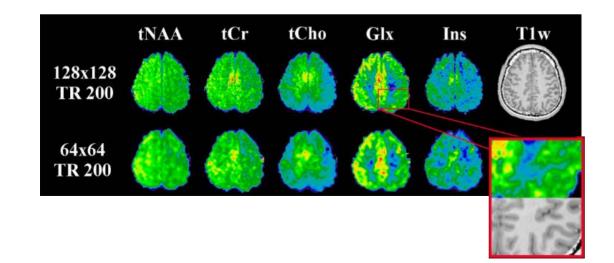
Contents lists available at ScienceDirect

NeuroImage

journal homepage: www.elsevier.com/locate/neuroimage

Contents lists available at ScienceDirect

NeuroImage


journal homepage: www.elsevier.com/locate/neuroimage

Ultra-high resolution brain metabolite mapping at 7 T by short-TR Hadamard-encoded FID-MRSI[★]

Gilbert Hangel^a, Bernhard Strasser^a, Michal Považan^b, Eva Heckova^a, Lukas Hingerl^a, Roland Boubela^a, Stephan Gruber^a, Siegfried Trattnig^b, Wolfgang Bogner^{a,*}

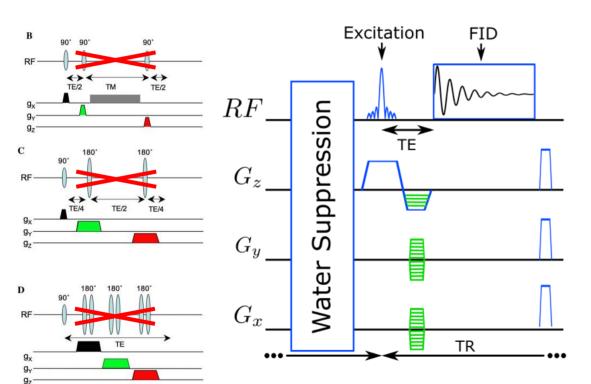
High and ultra-high resolution metabolite mapping of the human brain using ¹H FID MRSI at 9.4T

Sahar Nassirpour^{a,b,*}, Paul Chang^{a,b}, Anke Henning^a

- FID-MRSI sequence (short TR)
- Ultra-High Field MRI (≥ 7T)
- **2D** MRSI in High-resolution: 2 x 2 x 10 mm³
- Whole-Brain coverage

a High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Austria

b High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Christian Doppler Laboratory for Clinical Molecular MR Imaging, Austria

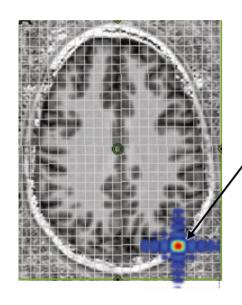

a Max Planck Institute for Biological Cybernetics, Spemannstr. 41, Tuebingen 72076, Germany

b IMPRS for Cognitive and Systems Neuroscience, Eberhard Karls University of Tübingen, Tübingen, Germany

- Magnetic Resonance Spectroscopic Imaging (MRSI): What are the limitations?
- Fast and High resolution MRSI:
 Key ingredients
- Reconstruction as solution to the inverse-problem
- Few applications

Key ingredients: the sequence

Acquisition Time = <u>TR</u> x #EncodingSteps

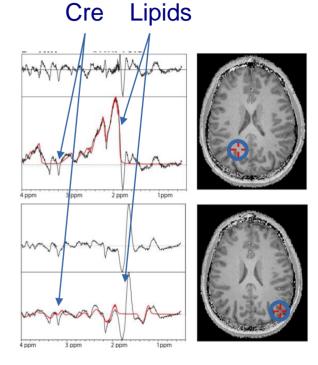


FID-MRSI Sequence:

- Short TR (200-500ms)
- Low Excitation Flip Angle
- Ultra short TE (~ 1ms)

But:

- No VOI selective excitation for full brain acquisition, solution needed for lipid contamination
- No Spin Echo
- Possible T₁ weighting in signal
- Henning, A. et al.. (2009). Slice-selective FID acquisition, localized by outer volume suppression (FIDLOVS) for (1)H-MRSI of the human brain at 7 T with minimal signal loss. NMR Biomed, 22(7), 683–696.
- Bogner, W. *et al.* (2012). High-resolution mapping of human brain metabolites by free induction decay 1H MRSI at 7 T. NMR in Biomedicine, 25(6), 873–882.

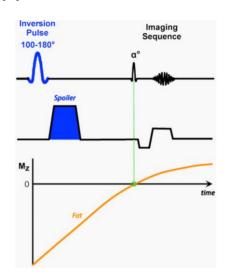


Problem:

- Without VOI selective, whole slab is excited
- Lipid signal at the skull contaminates the entire FOV via point-spreadfunction (PSF)
- Metabolite signal (<< Lipids) fully overlapped

Solutions^{1,2}:

- RF-Pulses
- K-space filtering/extrapolation
- Model-based removal


2D FID-MRSI,7T, TE=1ms Hangel G, et al (2015). NMR Biomed;28(11):1413-1425.

^{1.} Tkáč I, Deelchand D, Dreher W, et al. Water and lipid suppression techniques for advanced 1 H MRS and MRSI of the human brain: Experts' consensus recommendations. NMR Biomed. 2021;34(5). doi:10.1002/nbm.4459

^{2.} Hangel G, Strasser B, Považan M, et al. Ultra-high resolution brain metabolite mapping at 7 T by short-TR Hadamard-encoded FID-MRSI. Neuroimage. 2018;168(October):199-210. doi:10.1016/j.neuroimage.2016.10.043

Solution 1: RF Pulses

- Inversion-Recovery (IR),
 Double-Inversion-Recovery (DIR)
 schemes (but High SAR, Metabolite signal attenuation, might depends on B₁)
- Freq.-selective inversion
 RF-pulse (low SAR, but depends on B₀ shim quality)
- For both techniques : sequence TR increased by 200ms

IR DIR

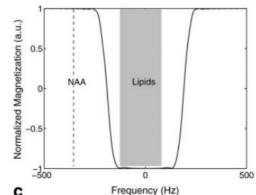
1.0

0.8

0.6

0.4

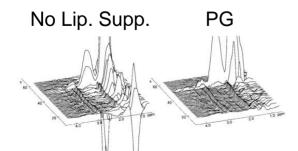
Cr

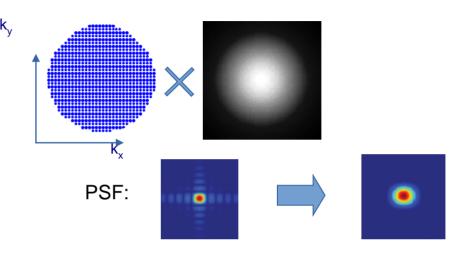

0.4

Cho

1.0

Ebel A, et al. (2003) Magn Reson Med.
2003;49(5):903-908.


https://mriquestions.com/spir.html



Balchandani P *et al* (2008). Magn Reson Med;59(5):980-988. doi:10.1002/MRM.21537

Solution 2: k-space filter

- Apply filter on k-space data to truncate the PSF¹
- Optimize the encoding operator (forward model) to reduce range of the PSF²
- Implementation of Papoulis-Gerchberg algo. to extrapolate higher k-space values to null the lipid signal in the brain³

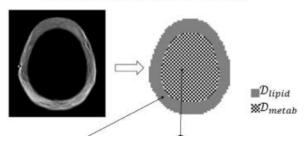
- 1. Bogner W, Gruber S, Trattnig S, Chmelik M. High-resolution mapping of human brain metabolites by free induction decay 1H MRSI at 7 T. NMR Biomed. 2012;25(6):873-882. doi:10.1002/nbm.1805
- 2. Kirchner T, Fillmer A, Tsao J, Pruessmann KP, Henning A. Reduction of voxel bleeding in highly accelerated parallel 1H MRSI by direct control of the spatial response function. Magn Reson Med. 2015;73(2):469-480. doi:10.1002/mrm.251851.
- 3. Haupt CI, Schuff N, Weiner MW, Maudsley AA. Removal of lipid artifacts in 1H spectroscopic imaging by data extrapolation. Magn Reson Med. 1996;35(5):678-687. doi:10.1002/mrm.1910350509

Solution 2: Model based methods^{1,2}

 Processing methods using metabolitelipid orthogonality:

$$\int s_{metab.}(\omega) \cdot s_{lipid}(\omega) d\omega = 0$$

$$x_{\text{LB}} = \operatorname{argmin}_{x} \underbrace{ ||F_{\text{low}}x - y_{\text{low}}||_{2}^{2}}_{\text{data consistency}} + \lambda \underbrace{\sum_{i \in M_{\text{brain}}} ||L_{\text{low}}^{\text{H}}x_{i}||_{1}}_{\text{lipid-basis penalty}}$$

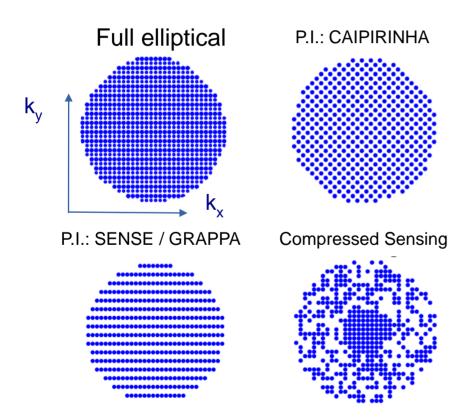

Bilgic, B., et al. (2014). JMRI, 40(1), 181-191.

$$\left(\mathbb{1} - \tilde{\mathbf{P}}^c\right) \mathbf{s}_c = \mathbf{s}_c^{\text{LipFree}}$$

Tsai S, Lin Y, Lin H, Lin F. Magn Reson Med. 2019;81(3):1486-1498. doi:10.1002/mrm.27496 Klauser A, et al. Magn Reson Med. 2019;81(5):2841-2857. doi:10.1002/mrm.27623

Or Lipid / Metabolite spatial support :

Scalp Segmentation & 2D Mask Generation



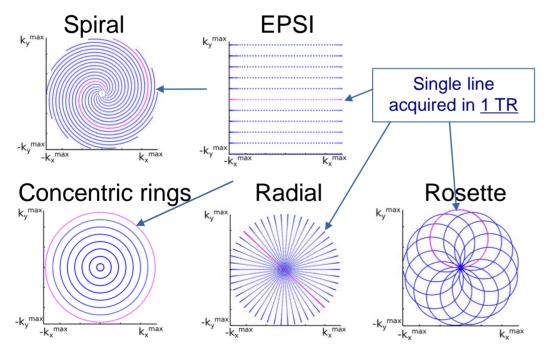
$$\begin{split} & \rho(\mathbf{x},t) = \rho_{\mathrm{M}}(\mathbf{x},t) + \rho_{\mathrm{L}}(\mathbf{x},t) + \rho_{\mathrm{W}}(\mathbf{x},t) \\ & = \sum_{p=1}^{P_{\mathrm{M}}} u_{\mathrm{M},p}(\mathbf{x}) v_{\mathrm{M},p}(t) + \sum_{p=1}^{P_{\mathrm{L}}} u_{\mathrm{L},p}(\mathbf{x}) v_{\mathrm{L},p}(t) + \sum_{p=1}^{P_{\mathrm{W}}} u_{\mathrm{W},p}(\mathbf{x}) v_{\mathrm{W},p}(t), \end{split}$$

Ma C, Lam F, Johnson CL, Liang Z-P. Magn Reson Med. 2016;75(2):488-497. doi: 10.1002/mrm.25635 Adany P, Choi I, Lee P. Magn Reson Med. August 2021:mrm.28949. doi:10.1002/MRM.28949

Acquisition Time = <u>TR</u> x #EncodingSteps

2D k-space:

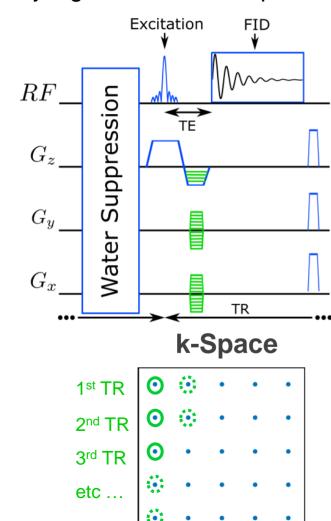
- Acceleration of the acquisition by x 2 4
- Calibration Data / Coil sensitivity profiles needed for SENSE / GRAPPA / CAIPI.
- Optimized SNR with Compressed Sensing

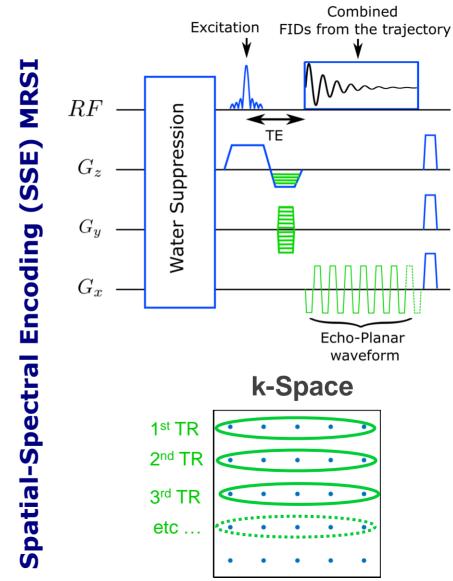

But:

 Need for specific reconstruction with Compress Sensing that accounts for the random k-space undersampling

Cartesian MRSI is inherently slow:

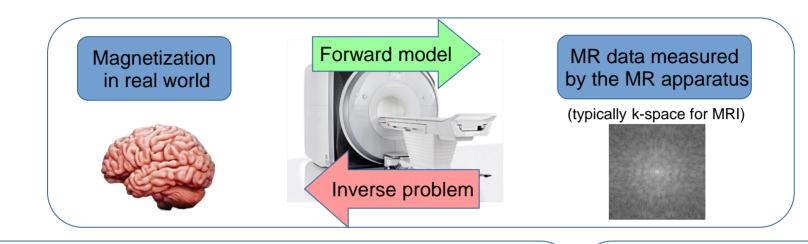
1 k-space FID acquired in 1 TR

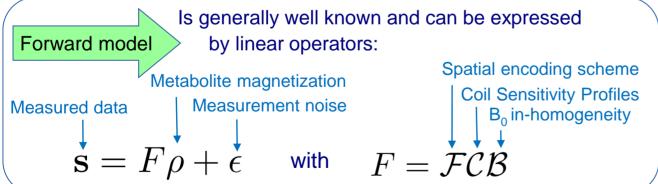

Spatial-Spectral Encoding (SSE) MRSI provide a solution:


 Highly effective acceleration by x 10 – 100

But:

- Bandwidth necessary for acquisition is ~100 higher than conventional.
- SNR ~10 lower
- Several averages often necessary

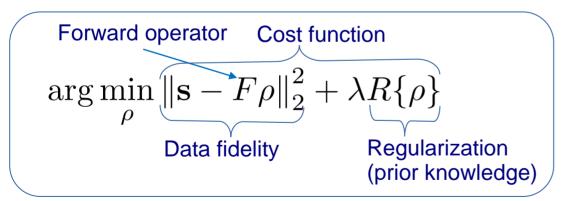

Cartesian MRSI

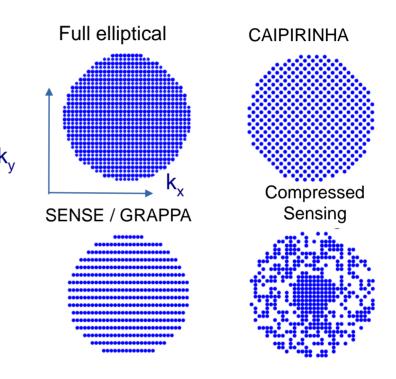


Spatial-Spectral Encoding (SSE) MRSI

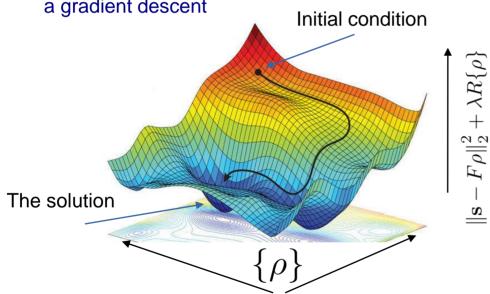
TR 1

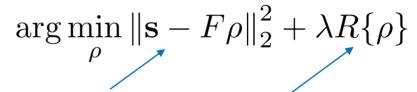
- Magnetic Resonance Spectroscopic Imaging (MRSI): What are the limitations?
- Fast and High resolution MRSI:
 Key ingredients
- Reconstruction as solution to the inverse-problem
- Few applications



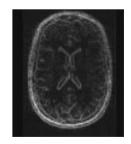


Inverse problem


Might be <u>an ill-posed problem</u> → no linear expression for a solution


- When k-space is undersampled (e.g. for acceleration)
 → the problem is ill-posed (multiple solutions match the data)
- Retrieving the metabolite signal (the solution) is done by solving an optimization problem:

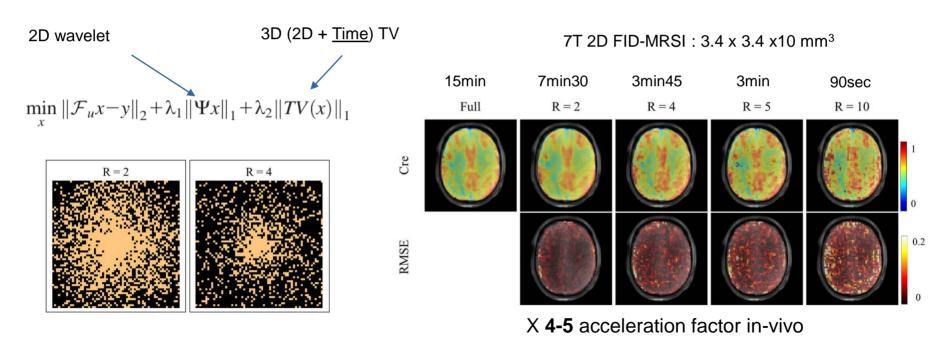
The minimization problem is solved by iteration: a gradient descent


Data fidelity:
to keep solution close
to measured data

Regularization:
to penalize potential solution
with undesired features

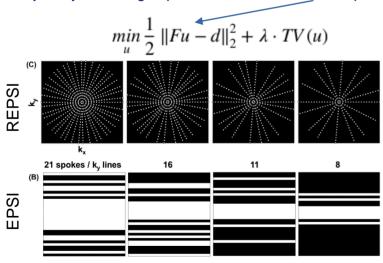
For Compressed Sensing¹, regularization is:

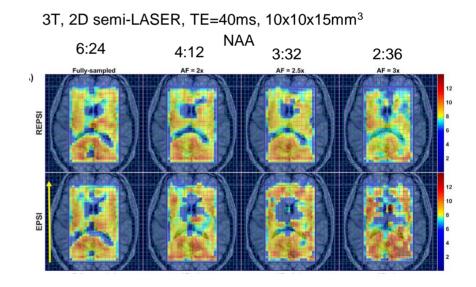
Wavelet I₁-norm


Finite difference I₁-norm (TV)

²⁴

Examples of accelerated Cartesian PE MRSI

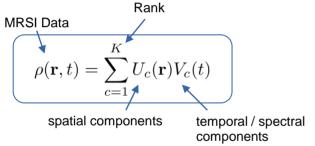

Nassirpour S, Chang P, Avdievitch N, Henning A. *Compressed sensing for high-resolution nonlipid suppressed 1 H FID MRSI of the human brain at 9.4T.* Magn Reson Med. 2018;80(6):2311-2325.



Examples of accelerated Cartesian PE MRSI

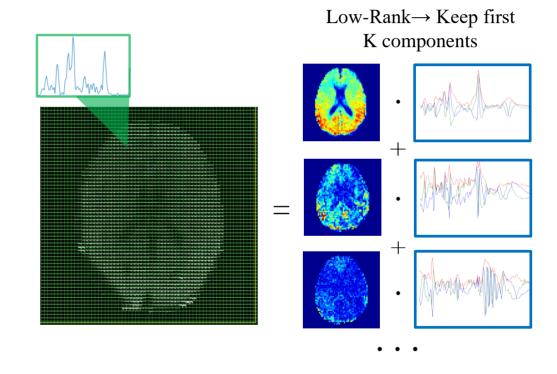
Saucedo A, Macey PM, Thomas MA. *Accelerated radial echo-planar spectroscopic imaging using golden angle view-ordering and compressed-sensing reconstruction with total variation* regularization. Magn Reson Med. 2021;86(1):46-61.

Trajectory encoding implemented in the Forward op.


Inverse-problem with Denoising

- Accelerated SSE MRSI is fast and whole-brain high-res MRSI can be measured quickly
- But with voxel size < 5mm³ → low SNR

Solutions for denoising:


1. Low-Rank approximation² /

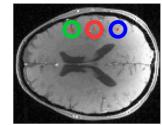
partial separabilty¹:

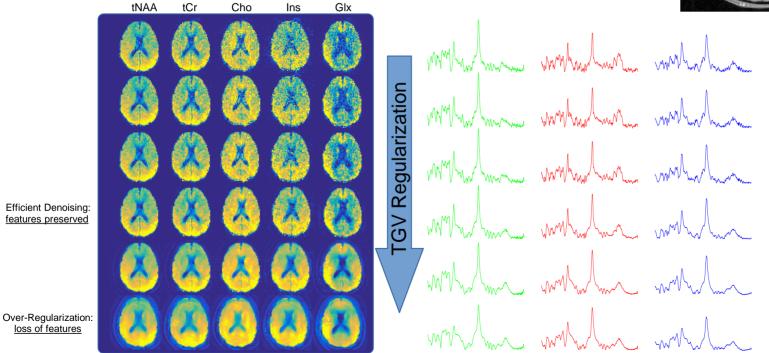
$$\arg\min_{\rho} \|\mathbf{s} - F\rho\|_{2}^{2} + \lambda R\{\rho\}$$

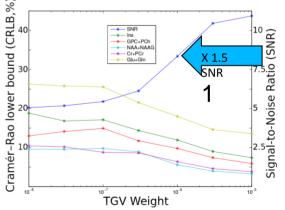
$$\arg\min_{\mathbf{U}, \mathbf{V}} \|\mathbf{s} - F(\mathbf{U} \cdot \mathbf{V})\|_{2}^{2} + \lambda R\{\rho\}$$
Much reduced DOF

¹ Nguyen HM, Peng X, Do MN, Liang Z-P. Denoising MR spectroscopic imaging data with low-rank approximations. IEEE Trans Biomed Eng. 2013;60(1):78-89.

² Kasten J, Lazeyras F, Van De Ville D. Data-Driven MRSI Spectral Localization Via Low-Rank Component Analysis. Med Imaging, IEEE Trans. 2013;32(10):1853-1863.


Inverse-problem with Denoising


Solutions for denoising:


2. Regularization

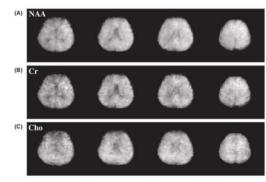
2D FID-MRSI, 3T 3.5x3.5x10mm³ Cartesian, fully sampled (no acceleration)

$$\arg\min_{\rho} \|\mathbf{s} - F\rho\|_{2}^{2} + \lambda TGV_{spatial}\{\rho\}$$

Inverse-problem with Denoising: SPICE

SPectroscopic Imaging by exploiting spatiospectral CorrElation (SPICE), a pioneer approach for Low-Rank Accelerated MRSI

2-steps acquisition^{1,2}:


(b)

determine the spatial components 1. High-temporal resolution acquisition to determine the time components

Combine both acquisition in s Low-rank TV Reconstruction⁶:

$$\hat{\mathbf{C}}_{m}, \hat{\mathbf{C}}_{\text{MM}} = \arg\min_{\mathbf{C}_{m}, \mathbf{C}_{\text{MM}}} \left\| \mathbf{d}_{\text{res}} - \Omega \left\{ \mathbf{F} \mathbf{B} \odot \left(\mathbf{C}_{m} \mathbf{\Phi}_{m} + \mathbf{C}_{\text{MM}} \mathbf{\Phi}_{\text{MM}} \right) \right\} \right\|_{2}^{2} + \lambda_{m} \left\| \mathbf{D}_{w} \mathbf{C}_{m} \right\|_{F}^{2} + \lambda_{\text{MM}} \left\| \mathbf{C}_{\text{MM}} \right\|_{F}^{2},$$
(4)

3D 2.4x2.4x3mm³ W-B MRSI in 5 min at 3T⁶

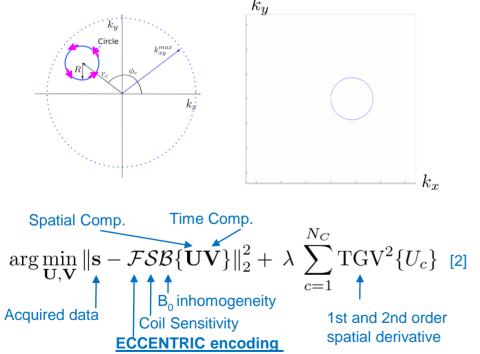
Many developments:

- FID / SE / Multi-Echo / J-resolved
- D₄ Acquisition replace by AI (autoencoder network)
- Different Sparse Sampling
- Different reconstruction model

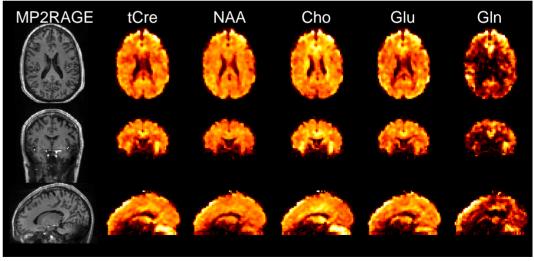
2. Fast and sparse k-space sampling to

¹ Lam F, Liang ZP. Magn Reson Med. 2014;71(4):1349-1357. ² Lam F, Ma C, Clifford B, Johnson CL, Liang Z-P. Magn Reson Med. 2016;76(4):1059-1070.

³ Peng X, Lam F, Li Y, Clifford B, Liang Z-P. Magn Reson Med. 2017;21(August 2017):13-21. ⁴ Ma C, Lam F, Ning Q, Johnson CL, Liang ZP. Magn Reson Med. 2017;77(2):467-479. **29**


⁵ Lam F, Li Y, Clifford B, Liang Z-P. Magn Reson Med. 2018;79(5):2460-2469. ⁶ Lam F, Li Y, Guo R, Clifford B, Liang ZP. Magn Reson Med. 2020;83(2):377-390.

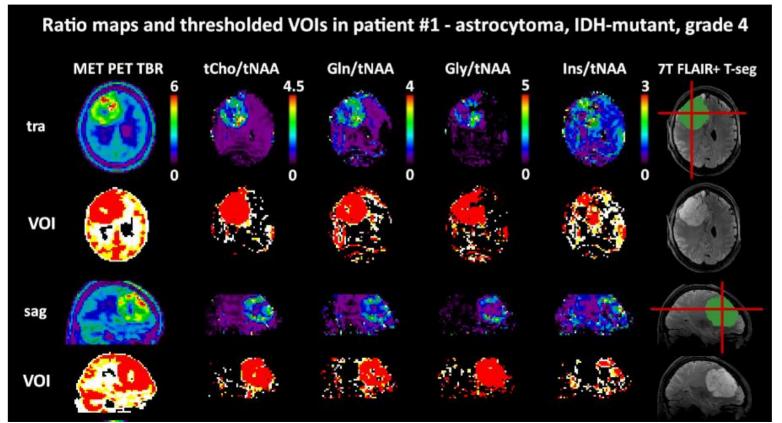
⁷Wang Z, Li Y, Lam F. Magn Reson Med. 2022;87(3):1103-1118.


Inverse-problem with Denoising: ECCENTRIC

ECcentric Circle ENcoding TRajectorles for Compressed-sensing (ECCENTRIC)¹

- High-Res MRSI at 7T, SSE requires high gradient slew-rate
 - → Use small circles: lower slew-rate
- Compressed-Sensing acceleration achieved with circles randomly distributed

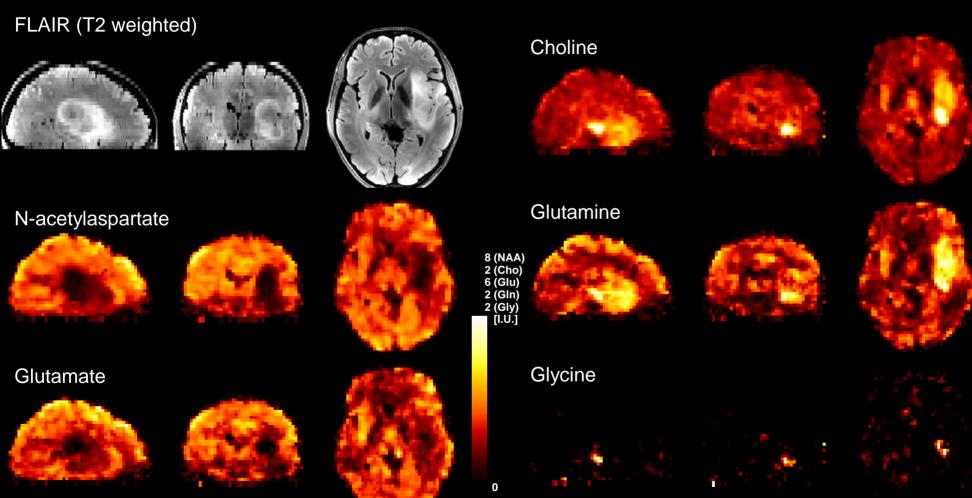
Whole-Brain 7T FID-MRSI 3mm iso, TA 9min


Klauser A , Strasser B , Bogner W ,Hinger L ,Schirda C, ThapaB, Cahille D, Batchelor T, Lazeyras F, Andronesi O
 ISMRM 2021 Proceeding # 0835 . ECCENTRIC: A fully random non-Cartesian sparse Fourier domain sampling for MRSI at 7 Tesla
 Kasten J, Lazeyras F, Van De Ville D. Data-Driven MRSI Spectral Localization Via Low-Rank Component Analysis. Med Imaging, IEEE Trans. 2013;32(10):1853-1863. doi:10.1109/TMI.2013.2266259

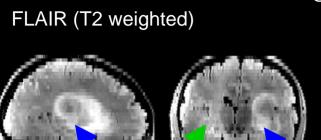
- Magnetic Resonance Spectroscopic Imaging (MRSI): What are the limitations?
- Fast and High resolution MRSI:
 Key ingredients
- Reconstruction as solution to the inverse-problem
- Few applications

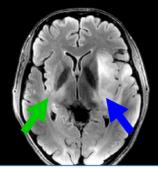
Artic

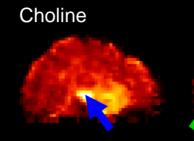
7T HR FID-MRSI Compared to Amino Acid PET: Glutamine and Glycine as Promising Biomarkers in Brain Tumors

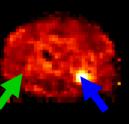

Gilbert Hangel ^{1,2,*}, Philipp Lazen ^{1,2}, Sukrit Sharma ¹, Barbara Hristoska ^{1,3}, Cornelius Cadrien ^{1,2}, Julia Furtner ⁴, Ivo Rausch ⁵, Alexandra Lipka ¹, Eva Niess ¹, Lukas Hingerl ¹, Stanislav Motyka ¹, Stephan Gruber ¹, Bernhard Strasser ¹, Barbara Kiesel ², Matthias Preusser ⁶, Thomas Roetzer-Pejrimovsky ⁷, Adelheid Wöhrer ⁷, Wolfgang Bogner ¹, Georg Widhalm ², Karl Rössler ², Tatjana Traub-Weidinger ⁸ and Siegfried Trattnig ^{1,9,10}

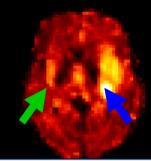
- Concentric-Rings (SSE)
 FID-MRSI
 3.4 mm iso.
- Delineation with PET vs MRSI
- HR MRSI showed capability to replace PET as gold-standard

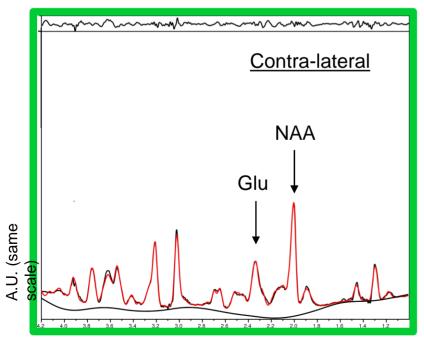

Hangel, G., ... Trattnig, S. (2022). 7T HR FID-MRSI Compared to Amino Acid PET: Glutamine and Glycine as Promising Biomarkers in Brain Tumors. *Cancers*, *14*(9), 2163. https://doi.org/10.3390/CANCERS14092163

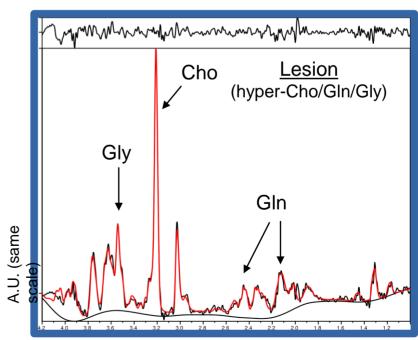

3D-ECCENTRIC FID-MRSI 3.4mm iso.: Glioma, High-grade part highlighted in HR

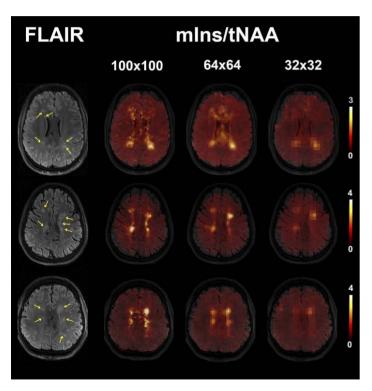


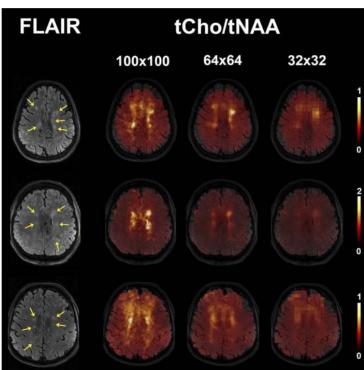

Glioma, Grade 3, Prior to surgery,











Multiple Sclerosis

7 T Magnetic Resonance Spectroscopic Imaging in Multiple Sclerosis How Does Spatial Resolution Affect the Detectability of Metabolic Changes in Brain Lesions?

Eva Heckova, MSc,* Bernhard Strasser, PhD,† Gilbert J. Hangel, PhD,* Michal Považan, PhD,‡§ Assunta Dal-Bianco, MD,|| Paulus S. Rommer, MD,|| Petr Bednarik, MD, PhD,* Stephan Gruber, PhD,* Fritz Leutmezer, MD,|| Hans Lassmann, MD,¶ Siegfried Trattnig, MD,*# and Wolfgang Bogner, PhD*#

- Multiple-Sclerosis lesions
- 2D Hig-Res. FID-MRSI
- Increase contrast in
 - 🕻 tNAA
 - Ins
 - Cho
- Lesions are better resolved, less partial volume

Conclusion

- Fast MRSI and Reconstruction Techniques
 aim to tackle the classical limitations of MRSI (go high-res., whole-brain, fast)
- New sequence implementation are required:
 - FID-MRSI
 - k-space acceleration
 - Spatial-Spectral Encoding
- Technique generally required dedicated reconstruction
 - Enhance SNR
 - Suppress Lipid signal
 - Reconstruct CS acquisition
- First applications reveal the value of high-resolution metabolite maps

