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Part 1

Inference from protein sequences: traditional methods



◼ Proteins

Introduction

Sequence Structure

Function (including interactions)

...ISHEL...

⚫ Enzyme

⚫ Molecular motor

⚫ Receptor...

folding

evolution

⚫ Heteropolymers made of 20 types of amino-acids (monomers) → ~20100 possible proteins

⚫ A given natural protein folds into a compact and (almost) unique 3D structure

⚫ It has specific interactions with other molecules → function

⚫ Experiment: random proteins do not fold properly

→ Natural proteins are special, due to natural selection for folding and function

Socolich et al. (2005)

Mutations act on 

sequences

BUT

selection acts on 

function



Introduction

◼ A growing amount of sequence data

Accumulating sequence data 

(currently > 10
9
 sequences)

→ Great opportunity for statistical physics,

     information theory and machine learning

     methods to learn about proteins!

Goals: infer structure, function, interactions

◼ Protein families and multiple sequence alignments (MSAs)

https://www.ebi.ac.uk/ena/browser/about/statistics



Introduction – reminder

◼ Multiple sequence alignments (MSAs)

Focus on amino-acid sequences of proteins (translated from the coding part of genomes)

Acidic ribosomal 

protein P0 (first 

90 positions)

from several 

organisms

Row = sequence

Column = site

(given position in

3D structure)

Colors = level of 

conservation



Conservation in MSAs

◼ Some columns are highly conserved 

-RTEFVSNVSHELRTPLTSIKGYVETLLDEPGVRERFLQVIKDETDRLERLITDLLNLSQLES-

-RTEFVSNVSHELRTPLTSIKGYVETLLDEPGVRERFLQVIKDETDRLERLITDLLNLSQLES-

-QKQFVSDASHELRTPISVIQGYIDLLDRDKEVLEEAIEAIQAETTSMKKLLEQLLFLARSDKG

-RKELIANISHDLKTPITAIKGYVEGIRDSPEKLSRYVDTIYRKILEVDGLIDELFLFSKLD--

-KSEIIAMVSHELKTPLTSILAFGEILLALLPWQKEYLEDIMESGQELLKQIETLLTMAKIEAG

-----LHSLVHDLKTPLMTIQGLSSLIGLDSPKLQEYVQKIEQAVENVNKMISEIL--------

-RREFLANVSHELRTPLTIIQGYTEALLDTDEKIREHLKNILQEAERLKAMANELLDLASIEEG

-LGLLAAGVAHEINNPLATVSAYAEDLLERSGELARYLQVIGKQIERCKKITGSLLNFARQPA-

MRSEFIANVSHELRTPLTSIKGFLETLLDDKTIAKHFLQIMNSETERLTRLIDDLLSLSKIEA-

-RRQMIADIAHELRTPLSILQGNFELLLEVIEADEETLRSLAEEVKRLSRLVEELRELSLAEAG

-QKEFFANVSHELRSPATAILGEAQITLRSDDEYRQTLLRISESAEQLAFRIEDLLMLIRHDE-
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Correlations in MSAs

◼ Correlations in amino acid usage are crucial

Socolich et al. 2005

synthetic WW domain

⚫ Red, natively folded

⚫ Blue, soluble but unfolded

⚫ Yellow, insoluble

⚫ Gray, poorly expressing

⚫ Most natural sequences fold
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Correlations in MSAs

◼ Correlations in amino acid usage are crucial

Socolich et al. 2005

synthetic WW domain

⚫ Red, natively folded

⚫ Blue, soluble but unfolded

⚫ Yellow, insoluble

⚫ Gray, poorly expressing

⚫ Most natural sequences fold

⚫ Random sequences don’t

⚫ Sequences reproducing the natural one-site frequencies don’t

⚫ Some sequences reproducing conserved correlations in addition do!



Evolutionary coupling between interacting residues 

→ correlations in MSAs inform us about 

     structure and function  

Protein sequence data and inference

◼ Inferring structure and function from sequences

Several approaches exploit these signatures to 

understand protein structure, interactions and function
de Juan et al, 2013

→

...ISHEL...

...VSHDI...

...VSHEL...

◼ Simple data-driven approach: retain some statistics

One- and two-body frequencies; (generalized) covariances



Protein sequence data and inference

◼ Information theory: quantifying conservation and statistical dependence

⚫ Shannon entropy: quantifies conservation in an MSA column

⚫ 0 for fully conserved column

⚫ log(21) for uniformly chosen amino acid (or gap)

⚫ Mutual information: quantifies statistical dependence between 2 MSA columns

⚫ Non-negative

⚫ 0 for statistically independent columns (and only then)

→

...ISHEL...

...VSHDI...

...VSHEL...

One- and two-body frequencies; (generalized) covariances



Limitations of covariance and mutual information

◼ Issues

Evolutionary coupling between interacting residues (coevolution) 

→ pairwise correlations in multiple sequence alignments inform us about structure and function

But (1) observed correlations can be indirect

But (2) not all correlations come from functional constraints 

A  B  C

(phylogeny): 



◼ Maximum entropy model consistent with these observations

→ Potts model

one-body terms - fields two-body terms - (direct) couplings

Potts models – Weigt, White et al, 2009

⚫ Multiple choices are consistent with these observations...

◼ Maximum entropy principle

⚫ Yields the least-structured model consistent with the observations

⚫ Maximize under constraints

◼ Goal: construct a global model for the protein family

Probability of observing a sequence in the family:

◼ Construct it from the data (data-driven approach)

⚫ Observations retained: one- and two-body frequencies (choice)

→

...ISHEL...

...VSHDI...

...VSHEL...



⚫ much better predictor of 3D contact than Weigt, White et al. (2009)

Morcos, Pagnani et al. (2011)

Marks, Colwell et al. (2011)

Bacterial Sigma factor region 2.

Top 20 DI / MI predictions 

(distance along the backbone > 4). 

Red: distance <8 Å; green: others.

Mean TP rate for 131 domain families

vs. number of top-ranked contacts

Mutual Information

Morcos, Pagnani et al. (2011):

Structure prediction by Potts models



Results for 3 proteins:

- predicted top ranked 3D 

structure (left) 

- experimentally observed 

structure (right)

Each structure in front and 

back view

Limitation: requires many 

diverse homologs

Marks, Colwell et al. (2011):

Structure prediction by Potts models



Beyond structure prediction: application to protein design

◼ Potts models are generative – Russ et al 2020 – 

⚫ Using Potts models to generate new chorismate mutase enzymes

The model built on natural CM homologs is used to generate artificial sequences that were 

tested in a high-throughput assay for desired functions

PAPER



Part 2

Inference from protein sequences: 

protein language models



A few words about AlphaFold

◼ Recent developments in protein structure prediction – Jumper et al 2021

⚫ Supervised deep learning approaches – AlphaFold, AlphaFold2 – won CASP13 and CASP14

  Other model: RoseTTAFold (Baek et al 2021)

⚫ AlphaFold2 uses natural language processing methods: 

  Attention (Bahdanau et al 2014), transformer architecture (Vaswani et al 2017)

⚫ Specifically, part of AlphaFold is a protein language model trained on MSAs 

Jumper et al 
2021



Randomly mask a fraction of the words and train the model to predict them using the 

surrounding context

The man went to the  [MASK]  and bought a  [MASK]  of milk.

store liter

The model is trained to minimize a pseudo-likelihood loss:

MODEL

Masked Language Modeling in NLP

◼ Masked Language Modeling objective: self-supervised learning – Devlin et al 2018



Randomly mask (#) a fraction of the amino acids and train the model to predict them, using the 

surrounding context

The model is trained to minimize a pseudo-likelihood loss:

MSA Transformer

◼ Masked Language Modeling (MLM) objective on protein MSAs – Rao et al 2021

MSA

masked MSA

MSA Transformer is similar to AlphaFold’s EvoFormer, but it is self-supervised 

Here we focus on a model that works on MSAs – other ones work on single sequences



M tokens → M × M softmax values

Full architecture

M tokens → LΑ matrices, each of size M × M

ΒΕRTBASE: L = 12, A = 12

(Total parameters = 100M;

EvoFormer has 91M)

Architecture of MSA Transformer

BERTBASE-like model with amino acids playing the part of words, trained with MLM objective

Relevant context for an amino acid?

◼ Transformer architecture

◼ Adapting the transformer architecture to protein MSAs – Rao et al 2021

The Illustrated Transformer, Alammar

One attention head

L layers

Α heads per layer

https://jalammar.github.io/illustrated-transformer/


◼ Adapting the transformer architecture to protein MSAs – Rao et al 2021

→ column attention

Architecture of MSA Transformer

?
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◼ Adapting the transformer architecture to protein MSAs – Rao et al 2021

→ column attention → row attention

Context for an amino acid is both its column and its row (“axial attention” – Ho et al 2019)
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◼ Adapting the transformer architecture to protein MSAs – Rao et al 2021

→ column attention → row attention

Coevolution → row attention should be the same for all rows

Context for an amino acid is both its column and its row (“axial attention” – Ho et al 2019)

12 (layers) × 12 (heads) tied row attention units

12 × 12 independent column attention units

100M total parameters

Architecture of MSA Transformer

?



◼ Adapting the transformer architecture to protein MSAs – Rao et al 2021

Training set:

- 26M MSAs corresponding to UniRef50 clusters

- average depth of MSAs: 1192 

Architecture of MSA Transformer



Unsupervised structural contact prediction by MSA Transformer

◼ (Tied) row attentions capture structural contacts – Rao et al 2021

What kind of information is encoded in column attentions? 

⚫ Simple combinations of the row attention softmax matrices allow contact prediction

⚫ State-of-the-art unsupervised contact prediction

Contact prediction 

performance

Potts model: pairwise maximum entropy model / 

DCA [Weigt, White et al 2009]

One model per family

(vs. language models trained on many families)



MSA Transformer's data representation

⚫ Column attentions encode phylogenetic relationships – Lupo, Sgarbossa & Bitbol 2022

→ A simple combination of column attention heads “implements” Hamming distance

from contacts

similarity
from phylogeny Casari et al 1995

⚫ We fit a logistic model of the column attention matrices (averaged over columns) to predict the 

matrix of pairwise Hamming distances between sequences in MSAs

⚫ Training: seed MSAs of 12 Pfam protein families; test: seed MSAs of 3 other Pfam families

R2=0.60 

=0.90 

R2=0.28 

=0.85 

R2=0.67 

=0.92 

⚫ Motivation:



Run iteratively this masking process on the same MSA → generate sequences

⚫ Characterization of these sequences

⚫ Comparison to sequences generated by a Potts model, using Metropolis-Hastings MCMC 

sampling (bmDCA Potts models are good generative models – Figliuzzi et al 2018, experimental 

validation Russ et al 2020)

Generating sequences with MSA Transformer

◼ Iterative masking algorithm based on MLM – Sgarbossa, Lupo & Bitbol 2023 –  

Pairwise maximum 

entropy model

Weigt, White et al 2009

one-body terms - fields two-body terms - (direct) couplings

PAPER



Predicting interaction partners

◼ Coevolution can be used to infer interaction partners from sequences

→ Use correlations from coevolution to infer 

     interaction partners (i.e. match paralogs):

     Bayesian tree (Burger & van Nimwegen 2009), 

     Potts models (Bitbol et al 2016; Gueudre et al 2016)

     Mutual Information (Bitbol 2018)

     DCA or MI + phylogeny (Gandarilla-Pérez,

     Pinilla, Bitbol & Weigt 2023)

A (HK) B (RR)

Casino et al. (2009)

Within a species, which A 

interacts with which B?



Inferring interaction partners using MSA Transformer

◼ Paired MSAs as input for MSA Transformer – Lupo*, Sgarbossa* & Bitbol 2024 – 

◼ Masked language modeling to infer interaction partners 

⚫ Goal: 

  In each species, find the permutation minimizing the MLM loss

⚫ Permutation matrices approximated using the Sinkhorn operator

  (via a parameterization matrix)

  → Differentiable optimization problem

       Can be solved using gradient methods

⚫ MSA Transformer: trained on 

  single-chain MSAs

⚫ Take paired MSAs as input

⚫ The MLM loss decreases as the fraction of

  correctly paired partners increases

MSA,       masked MSA

PAPER



Are MSAs really necessary?

◼ Structure prediction based on single-sequence language models

Motivations: - Some proteins have few homologs

       - MSA construction is imperfect and slow

       - Predicting structure from a single sequence = closer to “understanding protein folding”

Strategy:       - Train language models on large ensembles of non-aligned single sequences

       - Add a structure module inspired by the one of AlphaFold2

         AminoBERT → RGN2 (Chowdhury et al 2021); OmegaPLM → OmegaFold (Wua et al 

         2022); ESM-2 → ESMFold (Lin et al 2023)

ESM-2 & ESMFold (Lin et al 2023):

(Unsupervised) contact prediction:

- slightly less good than with MSA Transformer,

  even with many more parameters (15B vs. 100M)

- strongly affected by the number ofexisting homologs!

(Supervised) structure prediction:

- less good than AlphaFold2

- much faster → structure prediction at metagenomic scale



◼ As of now, best performance for structure prediction requires MSAs

Optimistic take for single-sequence LMs: we just need more parameters (Lin et al 2023)

“Our current models are very far from the limit of scale in parameters, sequence data, and computing 

power that can in principle be applied. We are optimistic that as we continue to scale, there will be 

further emergence. Our results showing the improvement in the modeling of low depth proteins point in 

this direction.”

Sevilla et al, 

2021

Are MSAs really necessary?



◼ As of now, best performance for structure prediction requires MSAs

Pessimistic take for single-sequence LMs: evolutionary information is crucial (Zhang et al 2024)

“Some have wondered if pLMs have finally solved the “protein folding problem”, given their

accurate structure prediction from single sequences and no supplied co-evolutionary signal in an input 

multiple sequence alignment. This should have been quickly debunked, as the accuracy of models was 

found to be highly correlated to the number of related proteins in the training set, indicating that the 

models store evolutionary information in their parameters”

Isoform structure prediction is a challenge

Providing local windows of sequence 

information allows ESM-2 to best recover 

predicted contacts → pLMs

may predict contacts by storing motifs of 

pairwise contacts

(Zhang et al 2024)

Are MSAs really necessary?



Other applications of protein language models

◼ Predicting the effect of mutations

Ground truth: experimental deep mutational scans

Predictions: ESM-1v single-sequence protein language model (Meier et al 2021)



Other applications of protein language models

◼ Designing new protein sequences

ProtGPT2 (Ferruz et al 2022): autoregressive transformer

ProGen (Madani et al 2023): decoder transformer for conditional autoregressive generation – 

Rosetta energy and flexibility 

patterns (from MD) similar to those 

of natural proteins

PAPER



Thanks!
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