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A brief history
of atomic-scale modeling



Simple models, complex physics

o Simple models, with minimal number of parameters fitted by comparison with experimental

quantities

o Aim: capture the essence of atomic-scale interactions, and understand emergent phenomena

4

(phase transitions, equations of state...)

Z|qz'zjq | + > ki(Qi*Qﬁ'f*Z%*

J bonds ij |qi - Qj’

electrostatics bonded terms dispersion

veospat

Fie. 1. Collisions of rigid spheres.

Metropolis et al., JCP (1953); Alder & Wainwright, JCP (1959); Verlet, Phys. Rev. (1969)
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First-principles calculations

o Practical approaches to evaluate the electronic structure — quantitatively accurate

simulations that make no use of experimental data

{ =3V o (0)4uo () Wi(r)
n1(r,r’)
—[ ——— () dr' =egi(r), (2.22)

lr—r|
where
po=d(ne,)/dn, (2.23)
mEO=EHORE, )

pbi(r,t) = —8E/89 [ (r,0) + 3 Auti(r,0),  (Sa)
MR, ==V E, (5b)
i, = — (3E/da,), (5¢)

Kohn & Sham, Phys. Rev. (1965); Cizek, JCP (1966); Car & Parrinello, PRL (1985)
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First-principles calculations

o Practical approaches to evaluate the electronic structure — quantitatively accurate
simulations that make no use of experimental data
o Emergent physics from first principles: still a tremendous challenge

(A) = [dge V(@D A(q)

H(q)|¥) =V (q)|T)

ACCURACY

&
cosT

Rag My,
0y, /&
ACCURACY s"% e ACCURACY
OF © OF
ENERGETICS SAMPLING

Grabowski et al., PRB (2009); Kapil, Engel, Rossi, MC, JCTC (2019)

5 Prof. Michele Ceriotti cosmo.epfl.ch Machine Learning at the Atomic Scale



Pioneers of fitting machine learning

Quantitative structure/property relationships, cheminformatics
Descriptors for analyzing molecular structure

Correlation Functions for liquids, classical DFT

Cluster expansions for alloys

o Fits of molecular potential energy surfaces

fcc  CLUSTER hcp CLUSTER
(a) (b)

ICOSAHEDRON
()

Andersen, Chandler, JCP (1972); Steinhardt et al., PRB (1983);
Sanchez et al. Physica A (1984); Brown et al. JCP (2004)
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Machine learning in a nutshell



ML at the atomic scale

e Predictions vs understanding?

end-to-end
prediction

CoHgO ’
S bottom-up

modeling P
{' = Vd) = [ eV = L

MC, JCP (2019)
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ML at the atomic scale

e Predictions vs understanding?
e Atomic-scale machine learning operates on atomic structures and properties, and performs
different tasks on them
o Unsupervised tasks: clustering, dimensionality reduction
o Supervised tasks: classification, inference — ML potentials, property models

{‘Xz> ) yl} train set

L]
..., dimensionality
® % . o
B2 reduction
classification
/X MC, JCP (2019)

Machine Learning at the Atomic Scale
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Unsupervised learning

e Pattern recognition, structural classification & maps from simulations
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https://www.materialscloud.org/discover/kpcovr/carbons-10

MC, Unsupervised machine learning in atomistic simulations, between predictions and understanding, JCP (2019)
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Unsupervised learning

e Pattern recognition, structural classification & maps from simulations
e Very promising results combining supervised/unsupervised ideas

KPCovR Projection , Nanowires
Mixed-

PC,

Graphite- ®
Like Sheets ¥

5}7//

Diamond-Like

=154 -153 -152 -151
Energy (eV/atom)

https://www.materialscloud.org/discover/kpcovr/carbons-05

Helfrecht, Cersonsky, Fraux, MC, MLST (2020); https://chemiscope.org
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Regression, loss & C.

o Reproduce target properties y as a function y of input features &, optimizing parameters to

minimize a loss ,
(= > lva—J(a)

Actrain set
e Many different models for y. Flexibility comes at a cost

low data high data
requirements requirements
needs excellent  linear deep can learn
descriptors regression learning  good features
robust to l : : l P prone to
overfitting I I model overfitting
polynomial  kernel complexity
limited accuracy regression regression ultimate
accuracy
interpretable black-box
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Learning curves

e Datais split between a training set - used to determine the parameters of the model - and a
test/validation set used to verify accuracy of predictions

training set

LI
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MC, Willatt, Csényi, Handbook of Materials Modeling, Springer (2018)
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Learning curves

e Datais split between a training set - used to determine the parameters of the model - and a

test/validation set used to verify accuracy of predictions

regression model
training

prediction

model
parameters

X =

2 _1 ~
[Ktrain +o ] Ytrain Viest = KtestX

input representation

J \

training set

22 Tl

MC, Willatt, Csényi, Handbook of Materials Modeling, Springer (2018)
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Learning curves

e Datais split between a training set - used to determine the parameters of the model - and a
test/validation set used to verify accuracy of predictions

1"

regression model

training
model
parameters

1
Ytrain

X =

[Ktrain + 02] N

prediction

Yiest = KiestX

input representation

test set

N\
&

’ Q)
2

training set
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MC, Willatt, Csényi, Handbook of Materials Modeling, Springer (2018)
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Learning curves

e Datais split between a training set - used to determine the parameters of the model - and a
test/validation set used to verify accuracy of predictions

e Learning curves provide diagnostics to understand data and model

In €test

learning curve [test set

In %train | &‘IV’

training set

J \
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Huang, von Lilienfeld, JCP (2016)
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Learning curves

e Datais split between a training set - used to determine the parameters of the model - and a
test/validation set used to verify accuracy of predictions

e Learning curves provide diagnostics to understand data and model

In €qest learning curve [test set

In %train ) w .

el X LS Gl

Huang, von Lilienfeld, JCP (2016)
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Learning curves

e Datais split between a training set - used to determine the parameters of the model - and a
test/validation set used to verify accuracy of predictions

e Learning curves provide diagnostics to understand data and model

In €qegt learning curve  (test set

M)A
éf

In %train s

tramlng set
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Learning curves

e Datais split between a training set - used to determine the parameters of the model - and a
test/validation set used to verify accuracy of predictions

e Learning curves provide diagnostics to understand data and model

I Egest learning curve  [test set

In %train &U %
training set

®; ‘% psl

Q( @' % Uil

Huang, von Lilienfeld, JCP (2016)
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The role of representations

o Key step in any atomistic ML task: mapping an atomic structure to a suitable mathematical
representation
e Features, distances, kernels, can largely be used interchangeably

....... 9 {‘X@> ) yz} train set

dimensionality
reduction

classification

S

MC, JCP (2019)
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Symmetry and locality
in atomistic ML



A phylogenetic tree of ML representations

Behler-Parrinello (2,3)  aPIPs (n*)
DeepMD (2,3) permutation

ACE (n* it
MTP En*g projection GTTP (2,3) invariant Mé;%rp)z(zz)g
SNAP (4) atomic polynomials BIR (2,3)
% [fiifi sharp symmetry hidslgap;nis Wasserstein
imi /' functions g \ metric
blur permutations ’
smooth densi (average) sorte
SOAP (3) correlatti)é)n __distances Bog ()
FCHL (2,3,4) foatures permutations Sorted CM (2)

Wavelets (3) (histogram)

NICE (n*) rotations \
(density products) > atom Spectral FP (n)

centred SPRrItN‘I(‘j ()
I distributions sorte
Diffraction FP ‘ molecular /eigenvalues
LoD () _ tlranslatlons matrices pe(r;?_-,l:;?]tg;ns
otential . .
symmetrized /p fields m datom internal /n:)n-ll_near
local field  translations transform %lltsjls coordinates functions
& rotations Z matrix
3D Voxel
STTRET molecular
o¥her relziltion permutations téapostgattilc?ﬁss graphs
family of features
named features (body order)
2,3,4: radial, angular, dihedrals !
n: n-body Cartesian
n*: complete n-body linear basis coordinates

Musil et al., Chem. Rev. (2021)
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From atoms to properties

e Physical/mathematical requirements are imposed on the
structure—[representation]—property mapping

A= {ai,ri} V({ai7ri})

()

n4) . H

L I ¥
p

Musil et al., Chem. Rev. (2021)
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From atoms to properties

e Physical/mathematical requirements are imposed on the
structure—[representation]—property mapping

smoothness
A= {ai,ri} V({ai7ri})

()

n4) . H

L I ¥
p

Musil et al., Chem. Rev. (2021)
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From atoms to properties

e Physical/mathematical requirements are imposed on the
structure—[representation]—property mapping

completeness

A= {ai,ri} V({ai7ri})
. 0 N‘

/ )
Musil et al., Chem. Rev. (2021)
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From atoms to properties

e Physical/mathematical requirements are imposed on the
structure—[representation]—property mapping

symmetry
A= {aia ri} ................................. 7T “ ........ ‘ V({ai, r; })
) ‘ 4R permutations 1
)’ 4

i translations

o n(l4) ., H
rotations . . l,lr

p

[As Ay

Musil et al., Chem. Rev. (2021)
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From atoms to properties

e Physical/mathematical requirements are imposed on the
structure—[representation]—property mapping

additivity

V({ai,ri})

R (A, H

L I ¥
p

Musil et al., Chem. Rev. (2021)
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From atoms to properties

e Physical/mathematical requirements are imposed on the
structure—[representation]—property mapping
o Additivity/locality + translation equivariance — atom-centered formalism

additivity

y(A4) =2 y(4)

Ai = (ai, {aj,rij})

Musil et al., Chem. Rev. (2021)
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From atoms to properties

e Physical/mathematical requirements are imposed on the
structure—[representation]—property mapping

e Additivity/locality + translation equivariance — atom-centered formalism

o Roto-inversion (O(3)) and index permutation — full equivariance

symmetry

A={a;r;} 1@ T

kY

~

| A; A
N
R
rotations
Musil et al., Chem. Rev. (2021)
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From atoms to properties

e Physical/mathematical requirements are imposed on the
structure—[representation]—property mapping

e Additivity/locality + translation equivariance — atom-centered formalism

o Roto-inversion (O(3)) and index permutation — full equivariance

symmetry

A={a;r;} 1@ T

y(Ai) =
}’(I'u, r;o,.
Y(I‘z'z, ri,.. )

.
—

kY

~

|As A\

rotations

Musil et al., Chem. Rev. (2021)
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A Dirac notation For ML representations

features A representation
index target & nature

correlation
radial |nd|ces structure order parlty
<n1l1; . nyl k., A p o )\,u>
\ / rot. /
angular channels/ f'e|d \ symmetry

e Arepresentation maps a structure A (or one environment A;) to a vector discretized by a
feature index Q

o Bra-ket notation (QJA;rep.) indicates in an abstract way this mapping, leaving plenty of room
to express the details of a representation
o Dirac-like notation reflects naturally a change of basis,

<Y|A>=/do<Y|o> (QlA)

willatt, Musil, MC, JCP (2019); Musil et al., Chem. Rev. (2021); https://tinyurl.com/dirac- rep
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A Dirac notation For ML representations

features A representation
index target & nature

correlation
radial |nd|ces structure order parlty
<n1l1; . nyl k., A p o )\,u>
\ / rot. /
angular channels/ f'e|d \ symmetry

e Arepresentation maps a structure A (or one environment A;) to a vector discretized by a
feature index Q

o Bra-ket notation (QJA;rep.) indicates in an abstract way this mapping, leaving plenty of room
to express the details of a representation

o Dirac-like notation reflects naturally a change of basis, the construction of a kernel,

KA A) = (AA) ~ / d0(AlQ) (QA)

willatt, Musil, MC, JCP (2019); Musil et al., Chem. Rev. (2021); https://tinyurl.com/dirac- rep
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A Dirac notation For ML representations

features A representation
index target & nature

correlation
radial |nd|ces structure order parlty
<n1l1; . nyl k., A p o )\,u>
\ / rot. /
angular channels/ f'e|d \ symmetry

e Arepresentation maps a structure A (or one environment A;) to a vector discretized by a
feature index Q

o Bra-ket notation (QJA;rep.) indicates in an abstract way this mapping, leaving plenty of room
to express the details of a representation

o Dirac-like notation reflects naturally a change of basis, the construction of a kernel, or a linear
model

E(A) = (E|A) ~ / dQ(£]Q) (/A

willatt, Musil, MC, JCP (2019); Musil et al., Chem. Rev. (2021); https://tinyurl.com/dirac- rep
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Symmetrized field construction

o Start from a non-symmetric representation (Cartesian coordinates)

17

Prof. Michele Ceriotti cosmo.epfl.ch

A=

C 0.00 0.00 0.00
C 0.00 1.00 0.00
B 1.00 2.00 0.00

-------

willatt, Musil, MC, JCP (2019)
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Symmetrized field construction

o Start from a non-symmetric representation (Cartesian coordinates)
o Define a decorated atom-density |p) (permutation invariant)

17

Prof. Michele Ceriotti cosmo.epfl.ch

ax|p) = 2; (X|ri; 9) daa,

willatt, Musil, MC, JCP (2019)
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Symmetrized field construction

o Start from a non-symmetric representation (Cartesian coordinates)
o Define a decorated atom-density |p) (permutation invariant)
o Translational average of a tensor product |p) ® |p) yields atom-centred (and ¢ invariant) |p;)

-
’

N2

J dt{0E]p) (x[t|p) =
<X‘<P®2>£> =2 (x[pi)
(x[pi) = >2; 9(x — r45)

Y'Y

willatt, Musil, MC, JCP (2019)
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A universal feature construction

o Rotationally-averaged representations are essentially the same n-body correlations that are
used in statistical theories of liquids

0.5 1 1.5 2 25
riag

(az|pP") = [ dR(axx|R|p)

Willatt, Musil, MC, JCP (2019); Bartok, Kondor, Csanyi PRB 2013
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A universal feature construction

o Rotationally-averaged representations are essentially the same n-body correlations that are
used in statistical theories of liquids

Cos(w)

-0.5F
-1.0L |
OM
. . ®2 3
(a121; agzo; wlpy”) "2 /2

= [dR(a121%|R|p;) (azx2% (w)|R|p;)
Willatt, Musil, MC, JCP (2019); Bartok, Kondor, Csanyi PRB 2013
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A universal feature construction

o Rotationally-averaged representations are essentially the same n-body correlations that are
used in statistical theories of liquids

i) i) pi)

Willatt, Musil, MC, JCP (2019); Bartok, Kondor, Csanyi PRB 2013
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A universal feature construction

o Rotationally-averaged representations are essentially the same n-body correlations that are
used in statistical theories of liquids

o Linear models built on |p}”; g — §) yield (v + 1)-body potential expansion
V(A,) = Z’/ V(Z) (I',j) =+ Z’/ V(3) (I','j7 I','k,w,'jk) -

LT L AL ) BNLL L I L L B L (LI L L
__04F % H0.4
— E ‘l 0'-.’ E
§ 0.25- “‘ "'_E O.Zg
T \g/ Of === =Y | Teeseeis 10
-0.2F 1-0.2
_0.4f 1-04
1R T ETETET BT SETETETE BN B
0 0.5 1 1.5 2 2.5
o r/ag
Ai = ®1 ~ Vo (ri;
V( ) f d$<V’aZ'> <axv~‘lﬁgtt, rzlusd, MC, J%P‘éog?;);]z.)?autz, PRB (2019); Glielmo, Zeni, De Vita, PRB (2018)
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What you ask is what you get

e Understanding what goes into a representation is key to achieve meaningful results from

automated data analytics
o Example: you don't always want to have rotational invariance

KPCA;
0.000 0.005
0.002 0.05
o m
< <
0.000 § 0.00 §
4 4
~0.002 -0.05

data: Shibuta, Sakane, Takaki, Ohno, Acta Mat. (2016)

Machine Learning at the Atomic Scale
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What you ask is what you get

e Understanding what goes into a representation is key to achieve meaningful results from

automated data analytics
o Example: you don't always want to have rotational invariance

KPCA; KPCA;
0.000 0.005 ~0.05 0.00 0.05
0.002 0.05
o m
< <
0.000 § 0.00 §
4 4
~0.002 -0.05

data: Shibuta, Sakane, Takaki, Ohno, Acta Mat. (2016)
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What you ask is what you get

e Understanding what goes into a representation is key to achieve meaningful results from

automated data analytics
Example: you don't always want to have rotational invariance

KPCA;
0.000 0.005

KPCA3

data: Shibuta, Sakane, Takaki, Ohno, Acta Mat. (2016)
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What you ask is what you get

Understanding what goes into a representation is key to achieve meaningful results from

]
automated data analytics
o Example: you don't always want to have rotational invariance
KPCA,
0.000 0.005

KPCA3

data: Shibuta, Sakane, Takaki, Ohno, Acta Mat. (2016)
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What you ask is what you get

e Understanding what goes into a representation is key to achieve meaningful results from

automated data analytics
o Example: you don't always want to have rotational invariance

KPCA;
0.000 0.005

KPCA;
KPCA3

data: Shibuta, Sakane, Takaki, Ohno, Acta Mat. (2016)

Machine Learning at the Atomic Scale
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Smooth overlap of atomic positions
a worked example



Representing chemical environments

o Smooth overlap of atomic densities (SOAP): a kernel to compare atomic environments
@ Atomic environments are defined by the relative position of neighbors (¢ranslation-invariant)

L'

A, A
{rjz' =Tr; — I‘Z'} < Az

Bartok, Kondor, Csanyi, PRB (2013)
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Representing chemical environments

o Smooth overlap of atomic densities (SOAP): a kernel to compare atomic environments

@ Atomic environments are defined by the relative position of neighbors (¢ranslation-invariant)
@ Positions are transformed in a neighbor density (permutation invariant)

<CLX|,0,L'> — ZjEAZ' 5aaj <X‘rji;g>
(x|rji;9) = g(x —1j5)

Bartok, Kondor, Csanyi, PRB (2013)
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Representing chemical environments

o Smooth overlap of atomic densities (SOAP): a kernel to compare atomic environments
@ Atomic environments are defined by the relative position of neighbors (translation-invariant)
@ Positions are transformed in a neighbor density (permutation invariant)
© Similarity between environments — overlap kernel

k(A;, AL)

,l:/

f dX <A; pz ‘ X> <X | A/ ; IOZ, > Bartok, Kondor, Csanyi, PRB (2013)
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Representing chemical environments

o Smooth overlap of atomic densities (SOAP): a kernel to compare atomic environments
@ Atomic environments are defined by the relative position of neighbors (translation-invariant)
@ Positions are transformed in a neighbor density (permutation invariant)
© Similarity between environments — overlap kernel
© Averaged over rotations (rotation invariant)

A

R

=

k(A AL =
[dR| [ dx(A; p;|x)(x|RA"; pir)|?

Bartok, Kondor, Csanyi, PRB (2013)
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Representing chemical environments

o Smooth overlap of atomic densities (SOAP): a kernel to compare atomic environments
@ Atomic environments are defined by the relative position of neighbors (¢ranslation-invariant)
@ Positions are transformed in a neighbor density (permutation invariant)
© Similarity between environments — overlap kernel
© Averaged over rotations (rotation invariant)

A

R

=

k(A’h A;’) —
[dR| [ dx(A; p;|x)(x|RA"; pir)|?

Bartok, Kondor, Csanyi, PRB (2013)
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Symmetrized density correlations

e The same information can be encoded in features, equivalent to symmetrized correlations of

22

the neighbor density
@ Symmetrize over rotations a tensor product of the neighbor densities

A

R

& R
. ¥

(x; /| 4; p¥%) = X
f dR <X | RA; pz> <X, | RA; pz> Willatt, Musil, MC, JCP (2019)
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Symmetrized density correlations

e The same information can be encoded in features, equivalent to symmetrized correlations of
the neighbor density
@ Symmetrize over rotations a tensor product of the neighbor densities
@ This is equivalent to a function of two distances and one angle

‘;@*331
<x1, L2, H|A ,0®2

N .
de r1Ré.|A; p;)

(zoR(&, cos O + &, sin )| A; p;)
willatt, Musil, MC, JCP (2019)
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Symmetrized density correlations

e The same information can be encoded in features, equivalent to symmetrized correlations of
the neighbor density
@ Symmetrize over rotations a tensor product of the neighbor densities
@ This is equivalent to a function of two distances and one angle
© In the limit of sharp Gaussians, this is equivalent to a list of 2-neighbors tuples (r;,;, 7,7, F,i - T,1)

(213 2; 0] A; 08%) =
D i, 0(T1 — 1ji)0(@2 — 74y)
5((3089 — fjli . f‘jzf,;)

willatt, Musil, MC, JCP (2019)

22 Prof. Michele Ceriotti cosmo.epfl.ch Machine Learning at the Atomic Scale


http://dx.doi.org/10.1063/1.5090481

Symmetrized density correlations

e The same information can be encoded in features, equivalent to symmetrized correlations of
the neighbor density
@ Symmetrize over rotations a tensor product of the neighbor densities
@ This is equivalent to a function of two distances and one angle
© In the limit of sharp Gaussians, this is equivalent to a list of 2-neighbors tuples (r;,;, 7,7, F,i - T,1)
@ Linear model — 3-body potential!

f<V\a:1;:L‘2;9><x1;w2;9|A;5§W> =

231]2 (]1,“ J2tr = J1t ‘722) willatt, Musil, MC, JCP (2019)
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Density trick in an (nlm| basis

e The symmetrized correlations can be computed in closed form using a discrete basis

o The neighbor density can be expanded on a basis of radial functions (x|n) = R,(x) and spherical
harmonics (x|{m) = Y"(x)

(x|im)

->

(nlm|A; p;) =
J dx( n|ﬂ7><lmlx> (x| 45 pi)
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Density trick in an (nlm| basis

e The symmetrized correlations can be computed in closed form using a discrete basis

23

o The neighbor density can be expanded on a basis of radial functions (x|n) = R,(x) and spherical
harmonics (x|{m) = Y"(x)
» Spherical harmonics transform linearly under rotations based on Wigner rotation matrices D (f?)

at
. R ®
= Rllm) =
> it Dy (R) [
(nlm;n/U'm!|A; p2°) =
[ dR(nlm|RA; p;){n'l'm/|RA; p;)
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Density trick in an (nlm| basis

o The symmetrized correlations can be computed in closed form using a discrete basis

o The neighbor density can be expanded on a basis of radial functions (x|n) = R,(x) and spherical
harmonics (x|{m) = Y"(x)

» Spherical harmonics transform linearly under rotations based on Wigner rotation matrices D (f?)

o Orthogonality of Wigner matrices yields the SOAP powerspectrum

JdRY . DL (R)DL,, (R)
0117 Oy’ Ok ke’

A

=

(nn/1|A; pP2) =
Y minlm|A; pi)(n'lm|A; p;)
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There are more things in
heaven and earth, Horatio, than
those transforming like a scalar



Machine-learning for tensors

e Want to learn vectors or general tensors?
Need features that are equivariant to rotations

d. (A) = (d|g) (q|A pria)

T q

d. (Rai) =" (dla) (alRA: 5" )

q

&R

Glielmo, Sollich, De Vita, PRB (2017); Grisafi, Wilkins, Csanyi, & MC, PRL (2018); Veit et al., JCP (2020)
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Machine-learning for tensors

e Want to learn vectors or general tensors?
Need features that are equivariant to rotations

d. (A) = (d|g) (q|A pria)

T q

dry ('i?AI> = Zq: <d|q> Z R(wx/ <q|A7 P,®V7 O/> = %: R(wx/d(v’ (AI)

[e3

&R

Glielmo, Sollich, De Vita, PRB (2017); Grisafi, Wilkins, Csanyi, & MC, PRL (2018); Veit et al., JCP (2020)
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Machine-learning for tensors

e Want to learn vectors or general tensors?
Need features that are equivariant to rotations

d. (A)) = > (dlq) (alA;p}"; )

! q

d, (i?A) zq: (d|q) Z Roc (G4 97750y = 3 Rur dor (A)

Vector Scalar Combined

Veit, Wilkins, Yang, DiStasio, MC, JCP (2020)
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Machine-learning for tensors

e Want to learn vectors or general tensors?
Need features that are equivariant to rotations

d. (A) = Z (dlq) (a4 p"5q)

T

v (Ra) =" (dla) Yo b3 (R) (ala o™i a
q w

Aw) |pi) |pi)

Grisafi, Wilkins, Csanyi, & MC, PRL (2018); Willatt, Musil, & MC, JCP (2019)
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Molecular polarizabilities at the CCSD level

e Accurate molecular polarizabilities by training a tensorial ML model on high-end CCSD
calculations of small molecules

e The model can extrapolate to much large compounds (up to aciclovir CgH11N5QOs) with
better-than-DFT accuracy - try it on alphaml.org

Method RMSE
CCSD/ML  0.304
CCSD/DFT  0.573

N, L
cis-4-octene cysteine methionine wilkins, Grisafi, Yang, Lao, DiStasio, MC, PNAS (2019);
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A transferable model of the electron density

o Write the charge density in atom-centered components.

o Expand on an atomic basis ¢, = R,Y/” — tensorial learning of coefficients
e Training on a database of small organic dimers

e Transferable enough to predict the density of polypeptides

o Recently extended to the condensed phase

100 cc-pvQz
8- CC-pVXZ
——RI-cCc-pVXZ
—+=RI-aug-cc-pvXxzZ

10

)

RI-cc-pvVQZ

Absolute Percentage Error [%)

Grisafi, Wilkins, Meyer, Fabrizio, Corminboeuf, MC, ACS Central Science (2019);
Meyer, Grisafi, Fabrizio, MC, Corminboeuf, Chem. Sci., (2019)
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A transferable model of the electron density

o Write the charge density in atom-centered components.

o Expand on an atomic basis ¢, = R,Y/” — tensorial learning of coefficients
e Training on a database of small organic dimers

e Transferable enough to predict the density of polypeptides

o Recently extended to the condensed phase

2.0
—o— Error (%)
1.8 ---- Average Error (%)
3 1.6
&

Grisafi, Wilkins, Meyer, Fabrizio, Corminboeuf, MC, ACS Central Science (2019);
Meyer, Grisafi, Fabrizio, MC, Corminboeuf, Chem. Sci., (2019)
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A transferable model of the electron density

o Write the charge density in atom-centered components.

o Expand on an atomic basis ¢, = R,Y/” — tensorial learning of coefficients
e Training on a database of small organic dimers

e Transferable enough to predict the density of polypeptides

o Recently extended to the condensed phase

Ap(r) [e/A]

-107° -107* -10° -10® 0 10°% 10=° 10~* 107°

‘Q‘b G’ 8O )

ag -

10"
p(r)le/A ]

Lewis, Grisafi, MC, Rossi, arxiv:2106.05364

27 Prof. Michele Ceriotti cosmo.epfl.ch Machine Learning at the Atomic Scale



A hierarchy of equivariant features

e Equivariant N-body features transform like angular momenta

|RA; s M) ~ ZDW ) 1A s M)

e Recursive construction based on sums of angular momenta and an expansion of the atom
density — Clebsch-Gordan iteration

(o™ M) = (A palpy)

(oimloky; nlk|pP D0y =3 (nlpP s Im) (s 0Lk oS5 ka) (Ims kgl

qm

e Can be used to compute efficiently invariant features |p®” 00)
— a complete linear basis of invariant polynomials

Nigam, Pozdnyakov, MC, JCP (2020); https://github.com/cosmo-epfl/nice
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NICE features for ML

e Problem: number of features grows exponentially with v
o Solution: N-body iterative contraction of equivariants (NICE)
o After each body order increase, the most relevant features are selected and used for the next
iteration

(n]p?tim) bﬁg¥é%r0dner (NV;nlk|p )

4

contraction

(N*[p7"kq)

(nlk|
[Ana)

<Nu| <Nu+1 |pl®u+1>\u>

Nigam, Pozdnyakov, MC, JCP (2020); https://github.com/cosmo-epfl/nice
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NICE features for ML

e Problem: number of features grows exponentially with v
o Solution: N-body iterative contraction of equivariants (NICE)

o After each body order increase, the most relevant features are selected and used for the next
iteration

o Systematic convergence with v and contraction truncation

— ) =] m— =3 = N|CE full

] 0:/90:00,:0:0::0:0:00:0:0::0:0:-00:0:000
0;:.'e. ¢ ey
] n,‘:.z.’.. ., . g
© ‘og 0000 0.00.00:.0.0.0.0-0000 | 10 =
2 10 1 ‘g, e e
(O] E . . (@)
N ] ’:.'.' o'... v
c ] (R : -4 .':.. - 9:0:-0-:0 000
- 1 .... "6‘"--0-0-.-00. )
N . %]
1 ‘e, .
] “elta,, €
% |1
ML | T ML LI | T ML LA | T T
103 104 10°

Ntrain

Nigam, Pozdnyakov, MC, JCP (2020); https://github.com/cosmo-epfl/nice
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Hamiltonian learning

e In an atomic orbital basis the Hamiltonian of a molecule can be decomposed into irreducible
symmetric blocks

_ cross-species |27)
off-diagonal |,%/; +)
O_ diagonal |p®")

H1

H2

Nigam, Willatt, MC, arxiv:2109.12083
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Hamiltonian learning

e In an atomic orbital basis the Hamiltonian of a molecule can be decomposed into irreducible
symmetric blocks

Nigam, Willatt, MC, arxiv:2109.12083
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Hamiltonian learning

e In an atomic orbital basis the Hamiltonian of a molecule can be decomposed into irreducible
symmetric blocks

e These can be learned with a fully equivariant model, that incorporates automatically
molecular orbital theory results for symmetric molecules

fitted

1.6
14
1.2

10
s
08
T
0.6
0.4

0.2

00

Nigam, Willatt, MC, arxiv:2109.12083
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Hamiltonian learning

e In an atomic orbital basis the Hamiltonian of a molecule can be decomposed into irreducible
symmetric blocks

e These can be learned with a fully equivariant model, that incorporates automatically
molecular orbital theory results for symmetric molecules

Ejy
® o ©
©o o
co 0o | @@
o o
[ )

®
-1.155 . -1.155 B -0.764 .

S Qe
®- 60 o -
° &%

Eyq Eoq Byg
] ] [ ] (-] o o
F- X 0@ o o
.. .. 03 80 o O O o
o® ® o S
(o] (o) (-] [ ) o o

-0.734 - -0.734 [ | -0.476 .

Nigam, Willatt, MC, arxiv:2109.12083
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Hamiltonian learning

e In an atomic orbital basis the Hamiltonian of a molecule can be decomposed into irreducible
symmetric blocks

e These can be learned with a fully equivariant model, that incorporates automatically
molecular orbital theory results for symmetric molecules

-0.8

) __
258

—-0.075 -0.050 -0.025 0.000 0.025 0.050 0.075
RMSD / A

&/ a.u.

Nigam, Willatt, MC, arxiv:2109.12083
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How about graph convolution?



Continuous graph convolution networks

e Atoms are nodes in a fully-connected network. Edges are decorated by (functions of)
interatomic distances rj

SchNET: Schiitt et al., JCP (2018); Gilmer et al., ICML (2017)
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Continuous graph convolution networks

e Atoms are nodes in a fully-connected network. Edges are decorated by (functions of)
interatomic distances rj

o Each node is decorated by the nature of its neighbors and their distance h (4;) = (a; {(a;,r;)})

SchNET: Schiitt et al., JCP (2018); Gilmer et al., ICML (2017)

32 Prof. Michele Ceriotti cosmo.epfl.ch Machine Learning at the Atomic Scale



Continuous graph convolution networks

e Atoms are nodes in a fully-connected network. Edges are decorated by (functions of)
interatomic distances rj

o Each node is decorated by the nature of its neighbors and their distance h (4;) = (a; {(a;,r;)})

e The multiset of neighbors and edges is hashed, and used as a label to describe the nodes. The
process can be iterated

SchNET: Schiitt et al., JCP (2018); Gilmer et al., ICML (2017)
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Equivariant graph convolution and ACDC

e Equivariant MP schemes can be understood as carrying around information on the
directionality of the edges

Nigam, Pozdnyakov, Fraux, MC, JCP (2022)
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Equivariant graph convolution and ACDC

e Equivariant MP schemes can be understood as carrying around information on the
directionality of the edges

e The construction of N-centers correlations can include features centered on multiple atoms,
and message-passing-like contractions

Rv—r v v
Py = 0 10P) @ I @ [P

Nigam, Pozdnyakov, Fraux, MC, JCP (2022)
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Equivariant graph convolution and ACDC

e Equivariant MP schemes can be understood as carrying around information on the
directionality of the edges

e The construction of N-centers correlations can include features centered on multiple atoms,
and message-passing-like contractions
oY) = 32 10P) @ I @ 10f")

e Symmetry-adapted versions can be obtained with CG iterations
(q14; g2\ ) = Z,mmz (@1]lema) (G2|my) (Limy; Lmy| A

o ® ®

Nigam, Pozdnyakov, Fraux, MC, JCP (2022)
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Details matter: resolution and range

o Empirical tests of the role of MP constructs
o Much better discretization convergence for body-ordered expansions

—_— V=2 —_— =3 —_— 1l

30 -

% RMSE

103 10%
Ntrain

Nigam, Pozdnyakov, Fraux, MC, JCP (2022); Batatia et al. arxiv:2205.06643
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Details matter: resolution and range

o Empirical tests of the role of MP constructs
o Much better discretization convergence for body-ordered expansions
e ... butvery little impact on long-range interactions

(%4

_. % RMSE

Nigam, Pozdnyakov, Fraux, MC, JCP (2022); Batatia et al. arxiv:2205.06643
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Long-distance equivariant representation

o Idea: localrepresentation that reflects long-range asymptotics

Grisafi, MC, JCP (2019); Grisafi, Nigam, MC, Chem. Sci. (2021)
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Long-distance equivariant representation

o Idea: localrepresentation that reflects long-range asymptotics
© Atom-density potential (ar|V) = [ (ar'|p) /|r' — r|dr’
@ Efficient evaluation in reciprocal space

(arlp) = X, Saasg(x 1) {ax|V) = [ {ar'|o) /|r' — x| dr’

Grisafi, MC, JCP (2019); Grisafi, Nigam, MC, Chem. Sci. (2021)
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Long-distance equivariant representation

o Idea: localrepresentation that reflects long-range asymptotics
© Atom-density potential (ar|V) = [ (ar'|p) /|F' —r|dr’
@ Efficient evaluation in reciprocal space

(arlp) = X, Saasg(x 1) {ax|V) = [ {ar'|o) /|r' — x| dr’

Grisafi, MC, JCP (2019); Grisafi, Nigam, MC, Chem. Sci. (2021)
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Long-distance equivariant representation

o Idea: localrepresentation that reflects long-range asymptotics
© Atom-density potential (ar|V) = [ (ar'|p) /|r' — r|dr’
@ Efficient evaluation in reciprocal space
© Usual gig: symmetrize, decompose locally, learn!

Grisafi, MC, JCP (2019); Grisafi, Nigam, MC, Chem. Sci. (2021)
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Long-distance equivariant representation

o Idea: localrepresentation that reflects long-range asymptotics
© Atom-density potential (ar|V) = [ (ar'|p) /|F' —r|dr’
@ Efficient evaluation in reciprocal space
© Usual gig: symmetrize, decompose locally, learn!

a) charged-charged

b) charged-polar

c) charged-apolar
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RIA]

Grisafi, MC, JCP (2019); Grisafi, Nigam, MC, Chem. Sci. (2021)
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Atomistic simulations in the age
of machine learning



Ab initio (thermo)dynamics made easy

o Simulating materials at finite temperature, including quantum effects and dynamics is now
much more affordable

u'" = u* [meV]

37

8 experiment-H,O .
--4-- NN-classical O .
5 —— DFT-classical
, | —# DFT-H0
—¢— DFT-D,0
0
O
5
|
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Temperature [K]
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—— DFT-classical
—¢— DFT-quantum
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100

Cheng, Engel, Behler, Dellago, MC, PNAS (2019)
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Ab initio (thermo)dynamics made easy

o Simulating materials at finite temperature, including quantum effects and dynamics is now
much more affordable

Cheng, Mazzola, Pickard, MC, Nature (2020)
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Ab initio (thermo)dynamics made easy

o Simulating materials at finite temperature, including quantum effects and dynamics is now
much more affordable

1500
lig
Q1000 N
2
o
L As+GaAs lig+GaAs
OEJ 500+
- —— EXP )
—e— NNP Gdas T 4
0 ; ; ; ;
0.0 0.2 0.4 0.6 0.8 1.0
mol Ga

Imbalzano, MC, Phys. Rev. Materials (2021); Imbalzano et al., J. Chem. Phys. (2021)
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Ab initio (thermo)dynamics made easy

o Simulating materials at finite temperature, including quantum effects and dynamics is now
much more affordable

e Accuracy (reference, long range physics, extrapolation) is still a concern: baselining,
uncertainty quantification, free energy perturbation...

1500
lig
Z lia+Gajs -
01000t T
2
o
L As+GaAs lig+GaAs
GE) 500+
- —— EXP ‘
—— NNP o Ex
0 ; ; ; ;
0.0 0.2 0.4 0.6 0.8 1.0
mol Ga

Imbalzano, MC, Phys. Rev. Materials (2021); Imbalzano et al., J. Chem. Phys. (2021)
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Ab initio (thermo)dynamics made easy

o Simulating materials at finite temperature, including quantum effects and dynamics is now
much more affordable

e Accuracy (reference, long range physics, extrapolation) is still a concern: baselining,
uncertainty quantification, free energy perturbation...

e Electronic and functional properties may still need quantum calculations

Time (ps)

Lan et al., Nat. Comm. (2021))
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Integrated ML models beyond size and time limits

o Predicting any property accessible to quantum calculations: spectra, electronic heat capacity...
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Engel, Kapil, MC J. Phys. Chem. Lett. (2021)
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Integrated ML models beyond size and time limits

o Predicting any property accessible to quantum calculations: spectra, electronic heat capacity...

38
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Kapil, Wilkins, Lan, MC, JCP (2020)
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Integrated ML models beyond size and time limits

e Predicting any property accessible to quantum calculations: spectra, electronic heat capacity...
o ...enables realistic time and size scales, with first-principles accuracy and mapping of
structural and functional properties

A ions[48]
electrons[48]
NN ion+el

A
i 4 = = NN classic ion
A —— NN PIMD ion
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o4 A exp
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N. Lopanitsyna, C. Ben Mahmoud, MC, Phys. Rev. Mater. (2021)
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Integrated ML models beyond size and time limits

e Predicting any property accessible to quantum calculations: spectra, electronic heat capacity...
o ...enables realistic time and size scales, with first-principles accuracy and mapping of
structural and functional properties
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Integrated ML models beyond size and time limits

e Predicting any property accessible to quantum calculations: spectra, electronic heat capacity...
o ...enables realistic time and size scales, with first-principles accuracy and mapping of
structural and functional properties
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Gigli et al.,, npj Comp. Mat. (2022)
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Integrated ML models beyond size and time limits

e Predicting any property accessible to quantum calculations: spectra, electronic heat capacity...
o ...enables realistic time and size scales, with first-principles accuracy and mapping of
structural and functional properties
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Between physics and data



Machine learning a la carte

e Understanding the ingredients and the mixing rules to build custom ML frameworks for any
type of atomistic modeling task
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Machine learning a la carte
e Understanding the ingredients and the mixing rules to build custom ML frameworks for any

type of atomistic modeling task

HENDRICKS, | 1
& feature
y engineering

body-ordered
correlations

model
nonlinearity

ffoNic
WATER.

locality

message
passing —
_equn/_arlant
Symmetry iterations
Machine Learning at the Atomic Scale
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Machine learning a la carte

e Understanding the ingredients and the mixing rules to build custom ML frameworks for any
type of atomistic modeling task
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Blurring the lines between ML and QM

o Interoperable quantum mechanical / machine-learning calculations:
mix & match physics and data

= physics-based P data-driven

Ben Mahmoud, Grasselli, MC, PRB (2022)
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Blurring the lines between ML and QM

o Interoperable quantum mechanical / machine-learning calculations:
mix & match physics and data

e Example: finite-T electron free energies from ground state energy and electronic DOS
A(Te) = E(0) + / eg’(€) [f™ () = F° ()] de — Ty / g° (¢)s"* (€) de

60

(%)
[

18F(Te)]
TR

20

4| —e— fromzero-Te DOS #
-4~ from finite-T® DOS !

RMSE (eV/A)
-

102 103 104
electronic temperature T (K)
Ben Mahmoud, Grasselli, MC, PRB (2022)
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Blurring the lines between ML and QM

o Interoperable quantum mechanical / machine-learning calculations:
mix & match physics and data
e Example: finite-T electron free energies from ground state energy and electronic DOS

A(Ta) ~ E(0) + / eg®(c) [F™ (&) - °(e)] de — T / 9 (6)s™ () de

a4

Prof. Michele Ceriotti cosmo.epfl.ch
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Machine Learning at the Atomic Scale



Blurring the lines between ML and QM

o Interoperable quantum mechanical / machine-learning calculations:
mix & match physics and data

e Example: finite-T electron free energies from ground state energy and electronic DOS

A(Ta) = E(0) +/69°(6) [FTe(e) = F° (e)] de — Tet/9° (€)s™ (¢) de

a4

C; (ks)

Prof. Michele Ceriotti cosmo.epfl.ch
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Ben Mahmoud, Grasselli, MC, PRB (2022)
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Blurring the lines between theory and experiments

e Combining electronic structure calculations and experimental constraints into multi-fidelity
models

e Conceptual challenge: reconciling what theory and experiments measure
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affordable
accuracy

flexibility
"beyond models"

PHYSICS

advanced
analytics

DATA

integrated ML models

symmetries

locality

scaling/conservation laws

training targets

Review — Musil et al. Chem. Rev. (2021)

multiparadigm simulations


https://doi.org/10.1021/acs.chemrev.1c00021

Code and resources

On-line demonstrations and ML MOdelS . ... ..ot ettt e e
shiftml.org; alphaml.org;

www.materialscloud.org/discover/kpcovr/

SErUCEUTE-ProPertY @XPlOTer . vttt ettt et ettt chemiscope.org
MLEOOLDOX . it github.com/cosmo-epfl/scikit-cosmo
Tutorials for kernelmethods ..ot github.com/cosmo-epfl/kernel-tutorials
Advanced (path integral) moleculardynamics.........coooiiiiiiiiii i ipi-code.org
Library to compute representations ............cceeiiiiiiinnn.... github.com/cosmo-epfl/librascal
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http://shiftml.org
http://alphaml.org
https://www.materialscloud.org/discover/kpcovr/
https://chemiscope.org
https://github.com/cosmo-epfl/scikit-cosmo/tree/master/notebooks
https://github.com/cosmo-epfl/kernel-tutorials/tree/master/notebooks
https://ipi-code.org
https://github.com/cosmo-epfl/librascal

Recent literature

Review on representations .........c..ovviiiieiiiiiirenenennnn.. Musil et al. arxiv:2101.04673 (2021)
Deep connections between most representations ......................... Willatt et al. JCP (2019)
NICE FALUIES . vttt ettt e ettt e ettt Nigam et al. JCP (2020)
LONG-range equUIVAriantsS . ....uuvr it ieiee e ee s, Grisafi et al. Chem. Sci. (2021)
Symmetry-adapted regression fortensors:..................... Grisafi et al., Phys. Rev. Lett. (2018)

Molecular polarizability.........cooiiiii i Wilkins et al. PNAS (2019)

Electrondensity........cooviiiiiiiiiiii i Grisafi et al., ACS Central Science (2019)

Applications from water to biomolecules ... ..ot
Bartok et al. Science Adv. (2017); Musil et al., Chem. Sci. (2018);

Cheng et al., PNAS (2019); Zamani et al., Adv. Mat. (2020);

Cheng et al., Nature (2020); Deringer et al., Nature (2021)

45 Prof. Michele Ceriotti cosmo.epfl.ch Machine Learning at the Atomic Scale



A software stack For atomistic machine learning

o Integrating ML and atomistic simulations: from representations to models to advanced MD

i-Pl: a universal force

englne for advanced

(PI)MD simulations
model

evaluation S trajectory
E’ visualization
""v‘\
librascal:

e

ibrary for chemiscope ;

density-based Qras al feature P browser-based
selection

features and structure-property

(sparse) kernel explorer
models feature data
calculation analytics

scikit-cosmo:
sklearn-style

python library
of ML utilities

https://github.com/cosmo-epfl/
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A software stack For atomistic machine learning

o Integrating ML and atomistic simulations: from representations to models to advanced MD
o Interoperability and data sharing with the rest of the ecosystem

Quantum i-Pl: a universal force
ESPRESSO engine for advanced LAMMPS
(PI)MD simulations
model Plumed
CP2K evaluation e a? trajectory
d visualization
'Iv"\\
librascal:

features and structure-property

(sparse) kernel explorer
models feature data
calculation analytics
NICE n2p2

scikit-cosmo: AiiDA
sklearn-style signac
TENSOAP python library
Quip of ML utilities

C++/python h ghpil::gﬁgpe:

library for : chemiscope ;

density-based @I"OS al feature P browser-based
selection

https://github.com/cosmo-epfl/
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