

Computational science & modeling @ EPFL

cosmo.epfl.ch

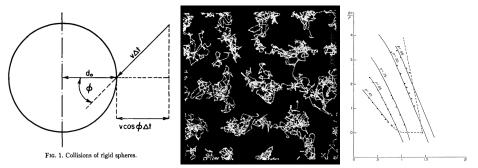
fediscience.org/@lab_COSMO

A brief history of atomic-scale modeling

Simple models, complex physics

- Simple models, with minimal number of parameters fitted by comparison with experimental quantities
- Aim: capture the essence of atomic-scale interactions, and understand emergent phenomena (phase transitions, equations of state...)

$$V\left(\mathbf{q}\right) \sim \underbrace{\sum_{ij} \frac{z_i z_j}{\left|\mathbf{q}_i - \mathbf{q}_j\right|}}_{\text{electrostatics}} + \underbrace{\sum_{\text{bonds}} k_i \left(\mathbf{q}_i - \mathbf{q}_i'\right)^2}_{\text{bonded terms}} - \underbrace{\sum_{ij} \frac{A_{ij}}{\left|\mathbf{q}_i - \mathbf{q}_j\right|^6}}_{\text{dispersion}} + \dots$$



Metropolis et al., JCP (1953); Alder & Wainwright, JCP (1959); Verlet, Phys. Rev. (1969)

First-principles calculations

- ullet Practical approaches to evaluate the electronic structure o quantitatively accurate simulations that make no use of experimental data
- Emergent physics from first principles: still a tremendous challenge

$$\{-\frac{1}{2}\nabla^{2}+\varphi(\mathbf{r})+\mu_{e}(\mathbf{r})\}\psi_{i}(\mathbf{r})$$

$$-\int \frac{n_{1}(\mathbf{r},\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|}\psi_{i}(\mathbf{r}') d\mathbf{r}' = \epsilon_{i}\psi_{i}(\mathbf{r}) , \quad (2.22)$$

where

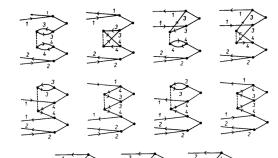
$$\mu_{\rm c} = d(n\epsilon_{\rm c})/dn$$
, (2.23)

$$n_1(\mathbf{r}, \mathbf{r}') = \sum_{j=1}^{N} \psi_j(\mathbf{r}) \psi_j^*(\mathbf{r}')$$
, (2.24)

$$\mu \ddot{\psi}_i(\mathbf{r},t) = -\delta E/\delta \psi_i^*(\mathbf{r},t) + \sum_k \Lambda_{ik} \psi_k(\mathbf{r},t), \quad (5a)$$

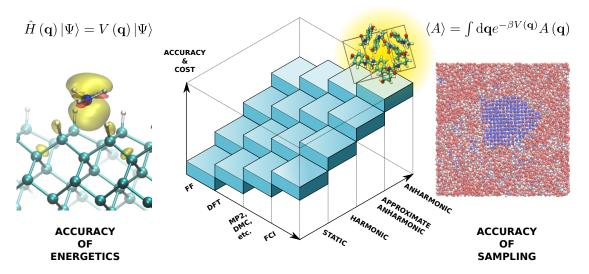
$$M_I \ddot{R}_I = -\nabla_{R_I} E, \tag{5b}$$

$$\mu_{\nu}\ddot{\alpha}_{\nu} = -\left(\partial E/\partial \alpha_{\nu}\right),\tag{5c}$$



First-principles calculations

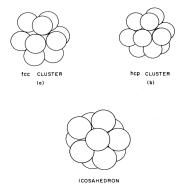
- ullet Practical approaches to evaluate the electronic structure o quantitatively accurate simulations that make no use of experimental data
- Emergent physics from first principles: still a tremendous challenge

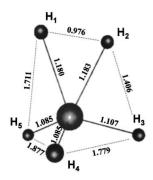


Grabowski et al., PRB (2009); Kapil, Engel, Rossi, MC, JCTC (2019)

Pioneers of fitting machine learning

- Quantitative structure/property relationships, cheminformatics
- Descriptors for analyzing molecular structure
- Correlation functions for liquids, classical DFT
- Cluster expansions for alloys
- Fits of molecular potential energy surfaces



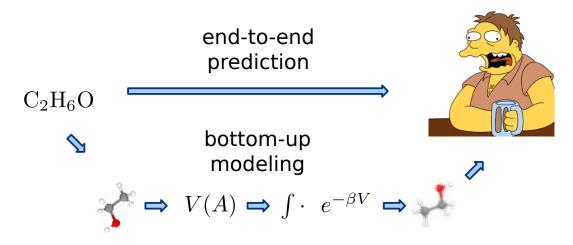


Andersen, Chandler, JCP (1972); Steinhardt et al., PRB (1983); Sanchez et al. Physica A (1984); Brown et al. JCP (2004)

Machine learning in a nutshell

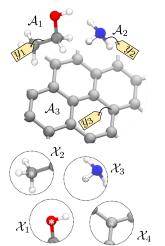
ML at the atomic scale

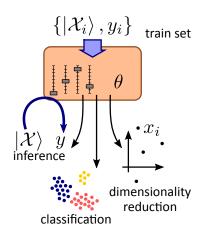
- Predictions vs understanding?
- Atomic-scale machine learning operates on atomic structures and properties, and performs different tasks on them
 - Unsupervised tasks: clustering, dimensionality reduction
 - Supervised tasks: classification, inference \rightarrow ML potentials, property models



ML at the atomic scale

- Predictions vs understanding?
- Atomic-scale machine learning operates on atomic structures and properties, and performs different tasks on them
 - Unsupervised tasks: clustering, dimensionality reduction
 - ullet Supervised tasks: classification, inference o ML potentials, property models

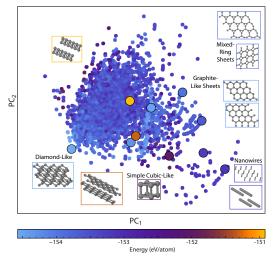




MC, JCP (2019)

Unsupervised learning

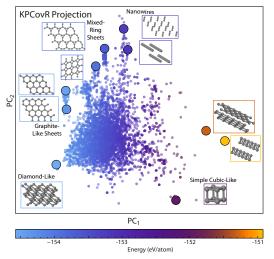
- Pattern recognition, structural classification & maps from simulations
- Very promising results combining supervised/unsupervised ideas



https://www.materialscloud.org/discover/kpcovr/carbons-10

Unsupervised learning

- Pattern recognition, structural classification & maps from simulations
- Very promising results combining supervised/unsupervised ideas



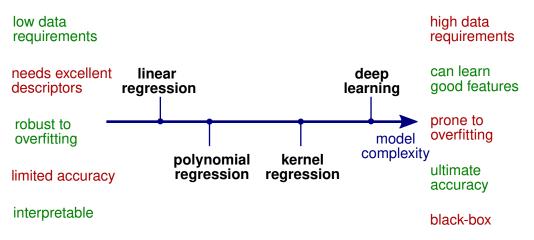
https://www.materialscloud.org/discover/kpcovr/carbons-05

Regression, loss & C.

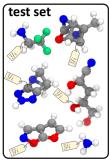
• Reproduce target properties y as a function \tilde{y} of input features ξ , optimizing parameters to minimize a *loss*

$$\ell = \sum_{A \in \text{train set}} \left| y_A - \tilde{y} \left(\xi_A \right) \right|^2$$

• Many different models for \tilde{y} . Flexibility comes at a cost

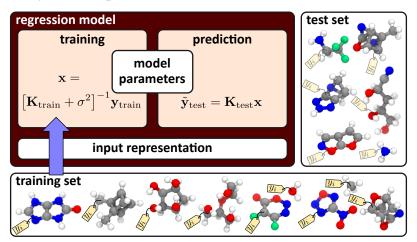


- Data is split between a training set used to determine the parameters of the model and a test/validation set used to verify accuracy of predictions
- Learning curves provide diagnostics to understand data and model

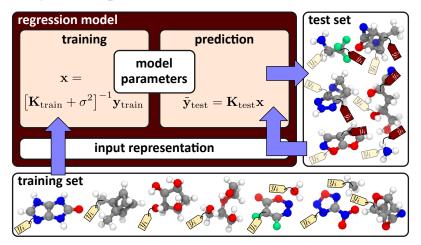




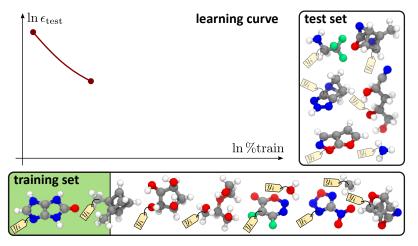
- Data is split between a training set used to determine the parameters of the model and a test/validation set used to verify accuracy of predictions
- Learning curves provide diagnostics to understand data and model



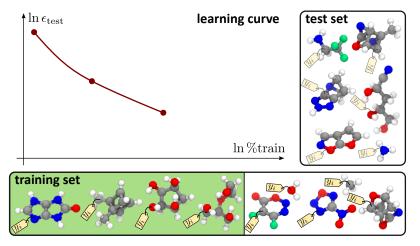
- Data is split between a training set used to determine the parameters of the model and a test/validation set used to verify accuracy of predictions
- Learning curves provide diagnostics to understand data and model



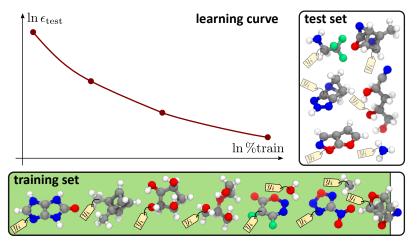
- Data is split between a training set used to determine the parameters of the model and a test/validation set used to verify accuracy of predictions
- Learning curves provide diagnostics to understand data and model



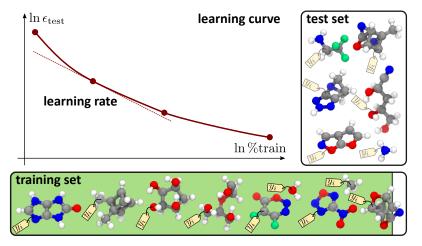
- Data is split between a training set used to determine the parameters of the model and a test/validation set used to verify accuracy of predictions
- Learning curves provide diagnostics to understand data and model



- Data is split between a training set used to determine the parameters of the model and a test/validation set used to verify accuracy of predictions
- Learning curves provide diagnostics to understand data and model

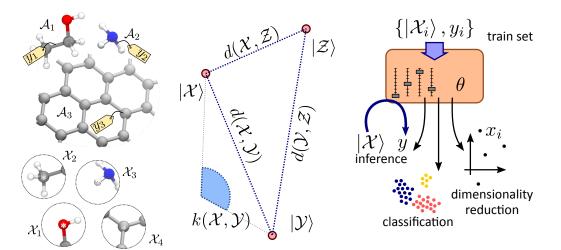


- Data is split between a training set used to determine the parameters of the model and a test/validation set used to verify accuracy of predictions
- Learning curves provide diagnostics to understand data and model



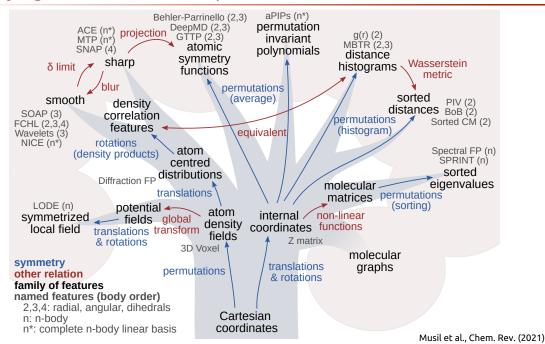
The role of representations

- Key step in any atomistic ML task: mapping an atomic structure to a suitable mathematical representation
- Features, distances, kernels, can largely be used interchangeably

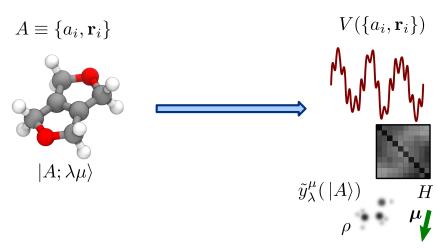


Symmetry and locality in atomistic ML

A phylogenetic tree of ML representations

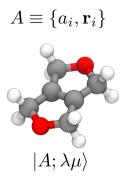


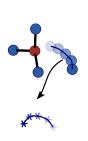
- Physical/mathematical requirements are imposed on the structure→[representation]→property mapping
- ullet Additivity/locality + translation equivariance o atom-centered formalism
- Roto-inversion (O(3)) and index permutation \rightarrow full equivariance

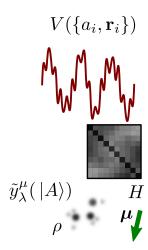


- Physical/mathematical requirements are imposed on the structure→[representation]→property mapping
- ullet Additivity/locality + translation equivariance o atom-centered formalism
- Roto-inversion (O(3)) and index permutation \rightarrow full equivariance

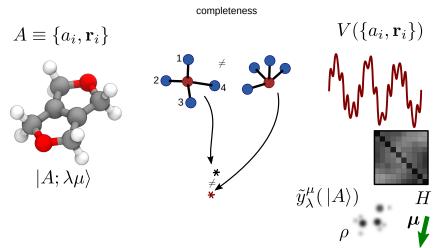
smoothness



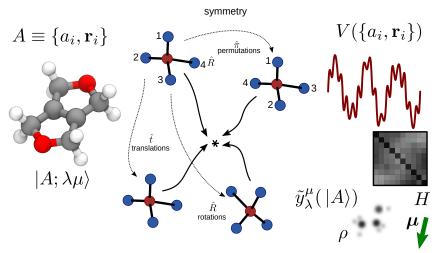




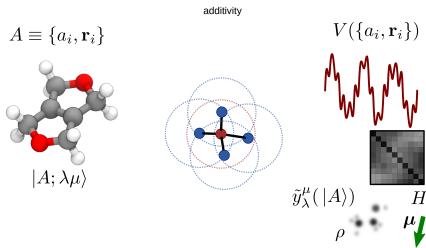
- Physical/mathematical requirements are imposed on the structure→[representation]→property mapping
- ullet Additivity/locality + translation equivariance o atom-centered formalism
- Roto-inversion (O(3)) and index permutation \rightarrow full equivariance



- Physical/mathematical requirements are imposed on the structure→[representation]→property mapping
- Additivity/locality + translation equivariance → atom-centered formalism
- Roto-inversion (O(3)) and index permutation \rightarrow full equivariance



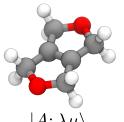
- Physical/mathematical requirements are imposed on the structure→[representation]→property mapping
- ullet Additivity/locality + translation equivariance o atom-centered formalism
- Roto-inversion (O(3)) and index permutation \rightarrow full equivariance

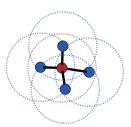


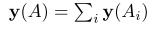
- Physical/mathematical requirements are imposed on the structure→[representation]→property mapping
- ullet Additivity/locality + translation equivariance o atom-centered formalism
- Roto-inversion (O(3)) and index permutation \rightarrow full equivariance

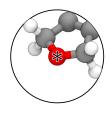
additivity

$$A \equiv \{a_i, \mathbf{r}_i\}$$



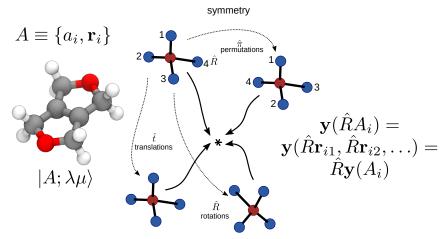




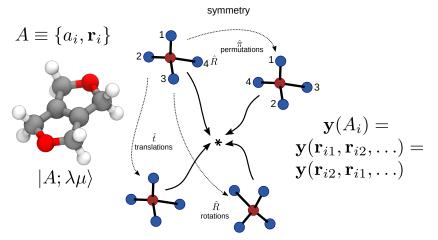


$$A_i \equiv (a_i, \{a_j, \mathbf{r}_{ij}\})$$

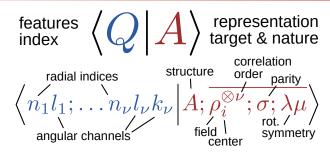
- Physical/mathematical requirements are imposed on the structure→[representation]→property mapping
- ullet Additivity/locality + translation equivariance o atom-centered formalism
- ullet Roto-inversion ($\mathcal{O}(3)$) and index permutation o full equivariance



- Physical/mathematical requirements are imposed on the structure→[representation]→property mapping
- ullet Additivity/locality + translation equivariance o atom-centered formalism
- ullet Roto-inversion ($\mathcal{O}(3)$) and index permutation o full equivariance



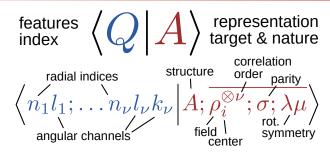
A Dirac notation for ML representations



- A representation maps a structure A (or one environment A_i) to a vector discretized by a feature index O
- Bra-ket notation $\langle Q|A$; rep. indicates in an abstract way this mapping, leaving plenty of room to express the details of a representation
- Dirac-like notation reflects naturally a change of basis, the construction of a kernel, or a linear

$$\langle Y|A\rangle = \int dQ \langle Y|Q\rangle \langle Q|A\rangle$$

A Dirac notation for ML representations

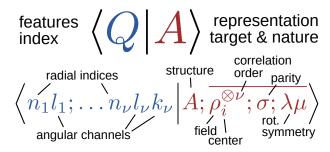


- A representation maps a structure A (or one environment A_i) to a vector discretized by a feature index O
- Bra-ket notation $\langle Q|A; \text{rep.}\rangle$ indicates in an abstract way this mapping, leaving plenty of room to express the details of a representation
- Dirac-like notation reflects naturally a change of basis, the construction of a kernel, or a linear model

$$k(A,A') = \langle A|A' \rangle \approx \int dQ \langle A|Q \rangle \langle Q|A' \rangle$$

Willatt, Musil, MC, JCP (2019); Musil et al., Chem. Rev. (2021); https://tinyurl.com/dirac-rep

A Dirac notation for ML representations

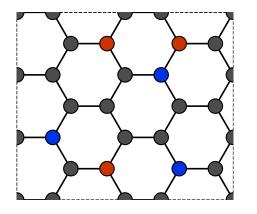


- A representation maps a structure A (or one environment A_i) to a vector discretized by a feature index O
- Bra-ket notation $\langle Q|A$; rep. indicates in an abstract way this mapping, leaving plenty of room to express the details of a representation
- Dirac-like notation reflects naturally a change of basis, the construction of a kernel, or a linear model

$$E(A) = \langle E|A\rangle \approx \int dQ \langle E|Q\rangle \langle Q|A\rangle$$

Symmetrized field construction

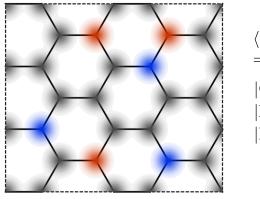
- Start from a non-symmetric representation (Cartesian coordinates)
- ullet Define a decorated atom-density |
 ho
 angle (permutation invariant)
- Translational average of a tensor product $|
 ho
 angle\otimes|
 ho
 angle$ yields atom-centred (and \hat{t} invariant) $|
 ho_i
 angle$



```
A \equiv
C 0.00 0.00 0.00
C 0.00 1.00 0.00
B 1.00 2.00 0.00
```

Symmetrized field construction

- Start from a non-symmetric representation (Cartesian coordinates)
- ullet Define a decorated atom-density |
 ho
 angle (permutation invariant)
- Translational average of a tensor product $|
 ho
 angle\otimes|
 ho
 angle$ yields atom-centred (and \hat{t} invariant) $|
 ho_i
 angle$



$$\langle a\mathbf{x}|\rho\rangle = \sum_{i} \langle \mathbf{x}|\mathbf{r}_{i};g\rangle \,\delta_{aa_{i}}$$

$$= \sum_{i} g(\mathbf{x} - \mathbf{r}_{i})\delta_{aa_{i}}$$

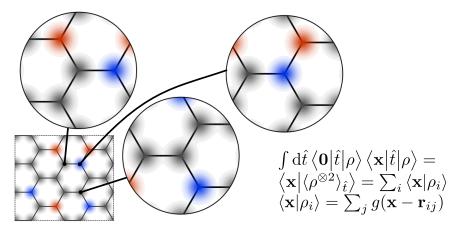
$$|C\rangle \blacksquare$$

$$|N\rangle \blacksquare$$

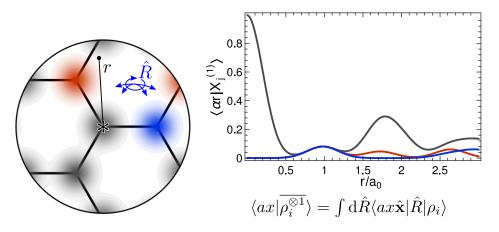
$$|B\rangle \blacksquare$$

Symmetrized field construction

- Start from a non-symmetric representation (Cartesian coordinates)
- ullet Define a decorated atom-density |
 ho
 angle (permutation invariant)
- ullet Translational average of a tensor product $|
 ho
 angle\otimes|
 ho
 angle$ yields atom-centred (and \hat{t} invariant) $|
 ho_i
 angle$

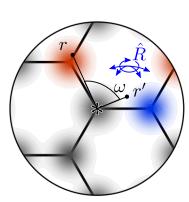


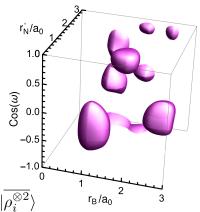
- Rotationally-averaged representations are essentially the same n-body correlations that are used in statistical theories of liquids
- Linear models built on $|\rho_i^{\otimes \nu}; g \to \delta\rangle$ yield $(\nu + 1)$ -body potential expansion



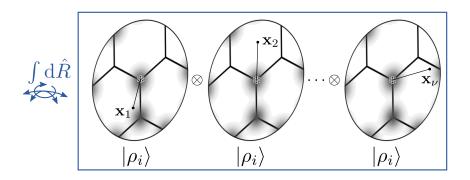
Willatt, Musil, MC, JCP (2019); Bartók, Kondor, Csányi PRB 2013

- Rotationally-averaged representations are essentially the same n-body correlations that are used in statistical theories of liquids
- Linear models built on $|\rho_i^{\otimes \nu}; g \to \delta\rangle$ yield $(\nu + 1)$ -body potential expansion



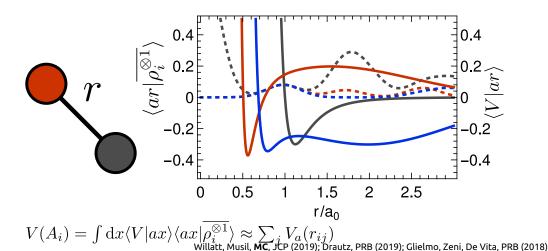


- Rotationally-averaged representations are essentially the same n-body correlations that are used in statistical theories of liquids
- Linear models built on $|\rho_i^{\otimes \nu}; g \to \delta\rangle$ yield $(\nu+1)$ -body potential expansion $V(A_i) = \sum_{ij} V^{(2)}\left(r_{ij}\right) + \sum_{ij} V^{(3)}\left(r_{ij}, r_{ik}, \omega_{ijk}\right)\dots$

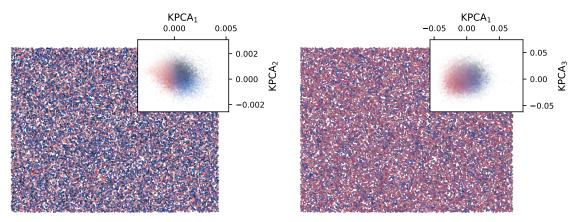


- Rotationally-averaged representations are essentially the same n-body correlations that are used in statistical theories of liquids
- Linear models built on $|\overline{\rho_i^{\otimes \nu}}; g \to \delta\rangle$ yield $(\nu + 1)$ -body potential expansion

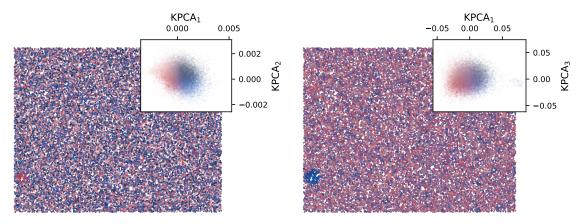
$$V(A_i) = \sum_{ij} V^{(2)}(r_{ij}) + \sum_{ij} V^{(3)}(r_{ij}, r_{ik}, \omega_{ijk}) \dots$$



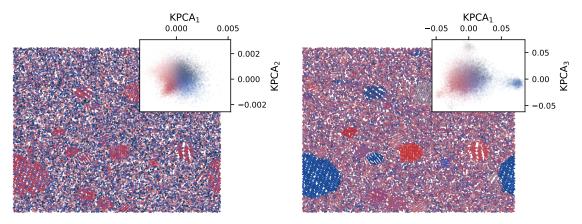
- Understanding what goes into a representation is key to achieve meaningful results from automated data analytics
- Example: you don't always want to have rotational invariance



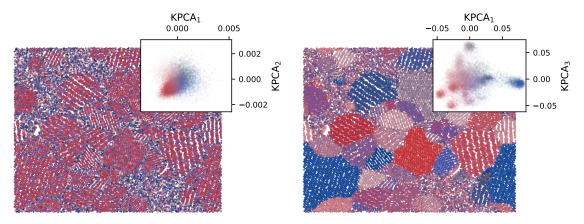
- Understanding what goes into a representation is key to achieve meaningful results from automated data analytics
- Example: you don't always want to have rotational invariance



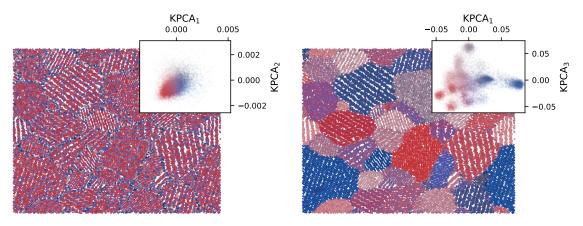
- Understanding what goes into a representation is key to achieve meaningful results from automated data analytics
- Example: you don't always want to have rotational invariance



- Understanding what goes into a representation is key to achieve meaningful results from automated data analytics
- Example: you don't always want to have rotational invariance

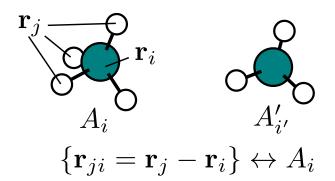


- Understanding what goes into a representation is key to achieve meaningful results from automated data analytics
- Example: you don't always want to have rotational invariance

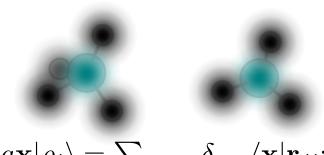


Smooth overlap of atomic positions a worked example

- Smooth overlap of atomic densities (SOAP): a kernel to compare atomic environments
 - Atomic environments are defined by the relative position of neighbors (translation-invariant)
 - Operation in a neighbor density (permutation invariant)
 - ullet Similarity between environments o overlap **kerne**
 - Averaged over rotations (rotation invariant)



- Smooth overlap of atomic densities (SOAP): a kernel to compare atomic environments
 - Atomic environments are defined by the relative position of neighbors (*translation-invariant*)
 - Positions are transformed in a neighbor density (permutation invariant)
 - ullet Similarity between environments o overlap **kerne**
 - Averaged over rotations (rotation invariant)



$$\langle a\mathbf{x}|\rho_i\rangle = \sum_{j\in A_i} \delta_{aa_j} \langle \mathbf{x}|\mathbf{r}_{ji};g\rangle$$
$$\langle \mathbf{x}|\mathbf{r}_{ji};g\rangle \equiv g(\mathbf{x}-\mathbf{r}_{ji})$$

- Smooth overlap of atomic densities (SOAP): a kernel to compare atomic environments
 - Atomic environments are defined by the relative position of neighbors (translation-invariant)
 - Ositions are transformed in a neighbor density (permutation invariant)
 - $\textbf{ 3} \ \, \text{Similarity between environments} \rightarrow \text{overlap } \textbf{kernel} \\$
 - Averaged over rotations (rotation invariant)

$$k(A_i, A'_{i'}) = \int d\mathbf{x} \langle A; \rho_i | \mathbf{x} \rangle \langle \mathbf{x} | A'; \rho_{i'} \rangle$$

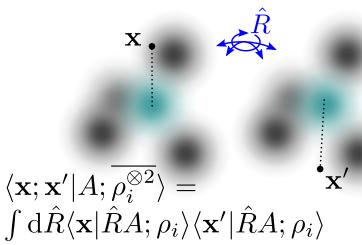
- Smooth overlap of atomic densities (SOAP): a kernel to compare atomic environments
 - Atomic environments are defined by the relative position of neighbors (translation-invariant)
 - Ositions are transformed in a neighbor density (permutation invariant)
 - $oldsymbol{0}$ Similarity between environments o overlap **kernel**
 - Averaged over rotations (rotation invariant)

$$k(A_i, A'_{i'}) = \int d\hat{R} |\int d\mathbf{x} \langle A; \rho_i | \mathbf{x} \rangle \langle \mathbf{x} | \hat{R} A'; \rho_{i'} \rangle|^2$$
Bartók, Kondor, Csánvi, PRB (2013)

- Smooth overlap of atomic densities (SOAP): a kernel to compare atomic environments
 - Atomic environments are defined by the relative position of neighbors (translation-invariant)
 - Positions are transformed in a neighbor density (permutation invariant)
 - $oldsymbol{0}$ Similarity between environments o overlap **kernel**
 - Averaged over rotations (rotation invariant)

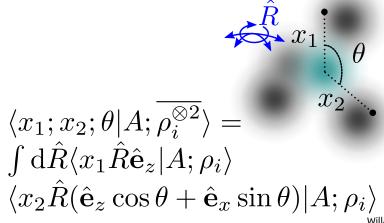
$$k(A_i, A'_{i'}) = \int d\hat{R} |\int d\mathbf{x} \langle A; \rho_i | \mathbf{x} \rangle \langle \mathbf{x} | \hat{R} A'; \rho_{i'} \rangle|^2$$
Bartók, Kondor, Csánvi, PRB (2013)

- The same information can be encoded in features, equivalent to symmetrized correlations of the neighbor density
 - Symmetrize over rotations a tensor product of the neighbor densities
 - 2 This is equivalent to a function of two distances and one angle
 - ullet In the limit of sharp Gaussians, this is equivalent to a list of 2-neighbors tuples $(r_{j_1}i,r_{j_2}i,\hat{r}_{j_4}i\cdot\hat{r}_{j_2}i)$
 - Linear model → 3-body potential!

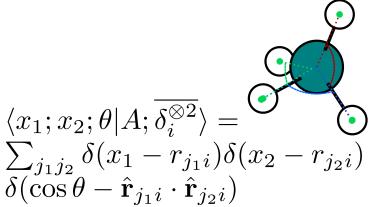


Willatt, Musil, MC, JCP (2019)

- The same information can be encoded in features, equivalent to symmetrized correlations of the neighbor density
 - Symmetrize over rotations a tensor product of the neighbor densities
 - This is equivalent to a function of two distances and one angle
 - ② In the limit of sharp Gaussians, this is equivalent to a list of 2-neighbors tuples $(f_{j_1i}, f_{j_2i}, \hat{\mathbf{r}}_{j_1i} \cdot \hat{\mathbf{r}}_{j_2i})$
 - Linear model → 3-body potential!

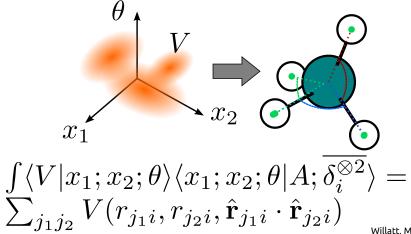


- The same information can be encoded in features, equivalent to symmetrized correlations of the neighbor density
 - Symmetrize over rotations a tensor product of the neighbor densities
 - This is equivalent to a function of two distances and one angle
 - **1** In the limit of sharp Gaussians, this is equivalent to a list of 2-neighbors tuples $(\mathbf{r}_{j_1i}, \mathbf{r}_{j_2i}, \hat{\mathbf{r}}_{j_1i} \cdot \hat{\mathbf{r}}_{j_2i})$
 - \bigcirc Linear model \rightarrow 3-body potential!



Willatt, Musil, MC, JCP (2019)

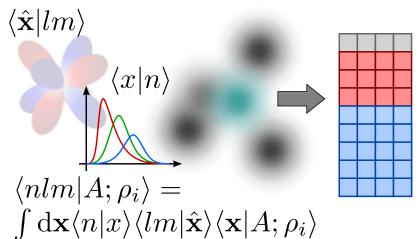
- The same information can be encoded in features, equivalent to symmetrized correlations of the neighbor density
 - Symmetrize over rotations a tensor product of the neighbor densities
 - Output Description of two distances and one angle
 Output Description
 - **1** In the limit of sharp Gaussians, this is equivalent to a list of 2-neighbors tuples $(\mathbf{r}_{j_1i}, \mathbf{r}_{j_2i}, \hat{\mathbf{r}}_{j_1i} \cdot \hat{\mathbf{r}}_{j_2i})$
 - \bigcirc Linear model \rightarrow 3-body potential!



Willatt, Musil, MC, JCP (2019)

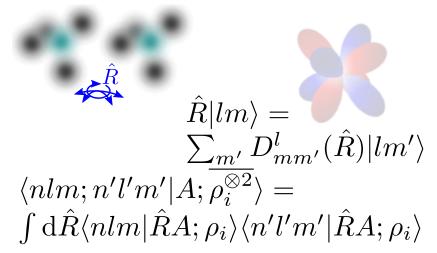
Density trick in an \(nlm \) basis

- The symmetrized correlations can be computed in closed form using a discrete basis
 - The neighbor density can be expanded on a basis of radial functions $\langle x|n\rangle\equiv R_n(x)$ and spherical harmonics $\langle \hat{\mathbf{x}}|lm\rangle\equiv Y_l^m(\hat{\mathbf{x}})$
 - ullet Spherical harmonics transform linearly under rotations based on Wigner rotation matrices $oldsymbol{\mathsf{D}}^l(R)$
 - Orthogonality of Wigner matrices yields the SOAP powerspectrun



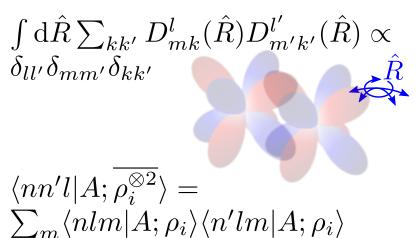
Density trick in an $\langle nlm |$ basis

- The symmetrized correlations can be computed in closed form using a discrete basis
 - The neighbor density can be expanded on a basis of radial functions $\langle x|n\rangle\equiv R_n(x)$ and spherical harmonics $\langle \hat{\mathbf{x}}|lm\rangle\equiv Y_l^m(\hat{\mathbf{x}})$
 - ullet Spherical harmonics transform linearly under rotations based on Wigner rotation matrices ${f D}^l\left(\hat{R}
 ight)$
 - Orthogonality of Wigner matrices yields the SOAP powerspectrum



Density trick in an $\langle nlm |$ basis

- The symmetrized correlations can be computed in closed form using a discrete basis
 - The neighbor density can be expanded on a basis of radial functions $\langle x|n\rangle\equiv R_n(x)$ and spherical harmonics $\langle \hat{\mathbf{x}}|lm\rangle\equiv Y_l^m(\hat{\mathbf{x}})$
 - ullet Spherical harmonics transform linearly under rotations based on Wigner rotation matrices ${f D}^l\left(\hat{R}
 ight)$
 - Orthogonality of Wigner matrices yields the SOAP powerspectrum



There are more things in heaven and earth, Horatio, than

those transforming like a scalar

 Want to learn vectors or general tensors? Need features that are *equivariant* to rotations

$$d_{\underset{\uparrow}{\alpha}}(A_i) = \sum_{q} \langle d|q\rangle \langle q|A; \overline{\rho_i^{\otimes \nu}; \underset{\uparrow}{\alpha}}\rangle$$

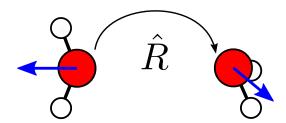
$$d_{\alpha}\left(\hat{R}A_{i}\right) = \sum_{q} \langle d|q\rangle \langle q|\hat{R}A; \overline{\rho_{i}^{\otimes
u}; lpha} \rangle$$



Want to learn vectors or general tensors?
 Need features that are equivariant to rotations

$$d_{\alpha}(A_{i}) = \sum_{q} \langle d|q\rangle \langle q|A; \overline{\rho_{i}^{\otimes \nu}; \underline{\alpha}} \rangle$$

$$d_{\alpha}(\hat{R}A_{i}) = \sum_{q} \langle d|q\rangle \sum_{\alpha'} R_{\alpha\alpha'} \langle q|A; \overline{\rho_{i}^{\otimes \nu}; \alpha'} \rangle = \sum_{\alpha'} R_{\alpha\alpha'} d_{\alpha'}(A_{i})$$



Want to learn vectors or general tensors?
 Need features that are equivariant to rotations

$$d_{\alpha}(A_{i}) = \sum_{q} \langle d|q \rangle \langle q|A; \overline{\rho_{i}^{\otimes \nu}}; \underline{\alpha} \rangle$$

$$d_{\alpha}(\hat{R}A_{i}) = \sum_{q} \langle d|q \rangle \sum_{\alpha'} R_{\alpha\alpha'} \langle q|A; \overline{\rho_{i}^{\otimes \nu}}; \underline{\alpha'} \rangle = \sum_{\alpha'} R_{\alpha\alpha'} d_{\alpha'}(A_{i})$$

$$\overline{\qquad \qquad \qquad }$$
Partial charge / e

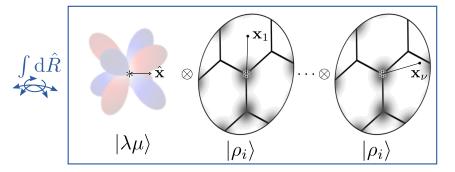
Vector Scalar Combined

Veit, Wilkins, Yang, DiStasio, MC, JCP (2020)

 Want to learn vectors or general tensors? Need features that are *equivariant* to rotations

$$d_{\alpha}(A_{i}) = \sum_{q} \langle d|q \rangle \langle q|A; \overline{\rho_{i}^{\otimes \nu}; \underline{\alpha}} \rangle$$

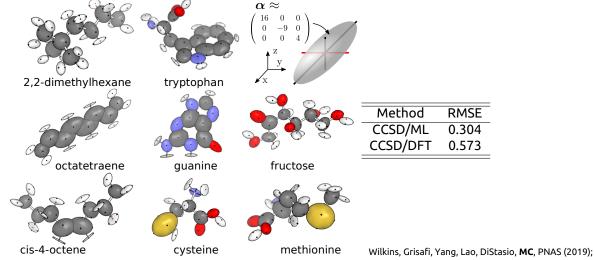
$$y_{\mu}^{\lambda} \left(\hat{R}A_{i} \right) = \sum_{q} \langle d|q \rangle \sum_{\mu'} D_{\mu\mu'}^{\lambda} \left(\hat{R} \right) \langle q|A; \overline{\rho_{i}^{\otimes \nu}; \lambda \mu} \rangle$$



Grisafi, Wilkins, Csányi, & MC, PRL (2018); Willatt, Musil, & MC, JCP (2019)

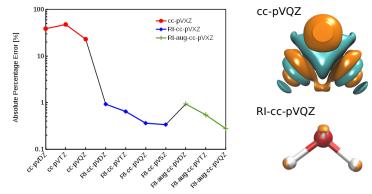
Molecular polarizabilities at the CCSD level

- Accurate molecular polarizabilities by training a tensorial ML model on high-end CCSD calculations of small molecules
- The model can extrapolate to much large compounds (up to aciclovir $C_8H_{11}N_5O_3$) with better-than-DFT accuracy - try it on alphaml.org



A transferable model of the electron density

- Write the charge density in atom-centered components.
- Expand on an atomic basis $\phi_k \equiv R_n Y_l^m \rightarrow$ tensorial learning of coefficients
- Training on a database of small organic dimers
- Transferable enough to predict the density of polypeptides
- Recently extended to the condensed phase

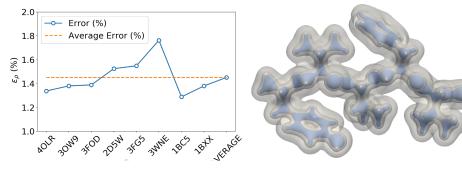


Grisafi, Wilkins, Meyer, Fabrizio, Corminboeuf, MC, ACS Central Science (2019);

Meyer, Grisafi, Fabrizio, MC, Corminboeuf, Chem. Sci., (2019)

A transferable model of the electron density

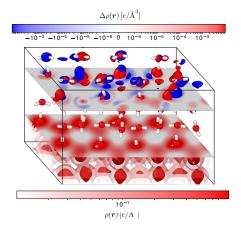
- Write the charge density in atom-centered components.
- Expand on an atomic basis $\phi_k \equiv R_n Y_l^m \rightarrow$ tensorial learning of coefficients
- Training on a database of small organic dimers
- Transferable enough to predict the density of polypeptides
- Recently extended to the condensed phase



Grisafi, Wilkins, Meyer, Fabrizio, Corminboeuf, \mathbf{MC} , ACS Central Science (2019);

A transferable model of the electron density

- Write the charge density in atom-centered components.
- Expand on an atomic basis $\phi_k \equiv R_n Y_l^m \rightarrow$ tensorial learning of coefficients
- Training on a database of small organic dimers
- Transferable enough to predict the density of polypeptides
- Recently extended to the condensed phase



A hierarchy of equivariant features

Equivariant N-body features transform like angular momenta

$$|\hat{\textit{R}}\textit{A}; \overline{\rho_{\textit{i}}^{\otimes \nu}; \lambda \mu}\rangle \sim \sum_{\mu'} \textit{D}_{\mu \mu'}^{\lambda}\left(\textit{R}\right) \, |\textit{A}; \overline{\rho_{\textit{i}}^{\otimes \nu}; \lambda \mu'}\rangle$$

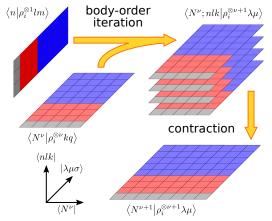
 Recursive construction based on sums of angular momenta and an expansion of the atom. $density \rightarrow Clebsch-Gordan iteration$

$$\begin{split} \langle \mathbf{n_1} | \overline{\rho_i^{\otimes 1}; \lambda \mu} \rangle &\equiv \langle \mathbf{n_1} \lambda \, \mu | \rho_i \rangle \\ \langle \dots; \mathbf{n_\nu} \mathbf{l_\nu} \mathbf{k_\nu}; \mathbf{n} l k | \overline{\rho_i^{\otimes (\nu+1)}; \lambda \mu} \rangle &= \sum_{qm} \langle \mathbf{n} | \overline{\rho_i^{\otimes 1}; lm} \rangle \, \langle \dots; \mathbf{n_\nu} \mathbf{l_\nu} \mathbf{k_\nu} | \overline{\rho_i^{\otimes \nu}; kq} \rangle \, \langle lm; kq | \lambda \mu \rangle \end{split}$$

- Can be used to compute efficiently *invariant* features $|\rho_i^{\otimes \nu}; 00\rangle$
 - \rightarrow a complete linear basis of invariant polynomials

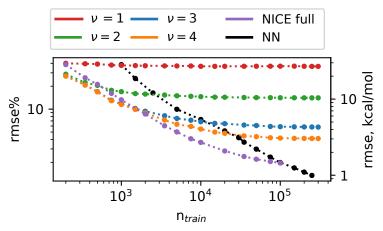
NICE features for ML

- ullet Problem: number of features grows exponentially with u
- Solution: N-body iterative contraction of equivariants (NICE)
 - After each body order increase, the most relevant features are selected and used for the next iteration
 - ullet Systematic convergence with u and contraction truncation



NICE features for ML

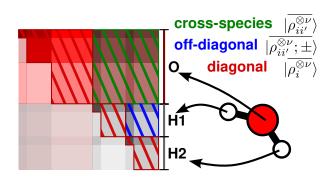
- ullet Problem: number of features grows exponentially with u
- Solution: N-body iterative contraction of equivariants (NICE)
 - After each body order increase, the most relevant features are selected and used for the next iteration
 - Systematic convergence with ν and contraction truncation



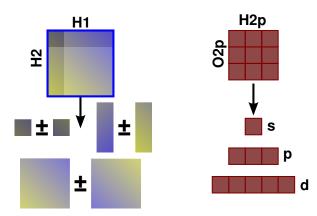
Nigam, Pozdnyakov, MC, JCP (2020); https://github.com/cosmo-epfl/nice

Hamiltonian learning

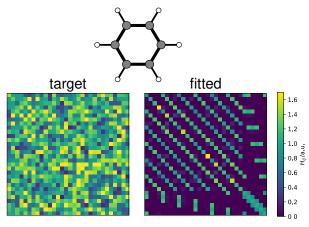
- In an atomic orbital basis the Hamiltonian of a molecule can be decomposed into irreducible symmetric blocks
- These can be learned with a fully equivariant model, that incorporates automatically molecular orbital theory results for symmetric molecules



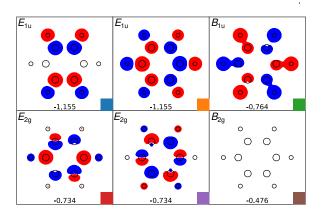
- In an atomic orbital basis the Hamiltonian of a molecule can be decomposed into irreducible symmetric blocks
- These can be learned with a fully equivariant model, that incorporates automatically molecular orbital theory results for symmetric molecules



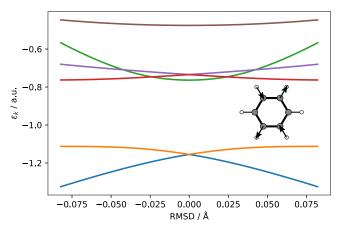
- In an atomic orbital basis the Hamiltonian of a molecule can be decomposed into irreducible symmetric blocks
- These can be learned with a fully equivariant model, that incorporates automatically molecular orbital theory results for symmetric molecules



- In an atomic orbital basis the Hamiltonian of a molecule can be decomposed into irreducible symmetric blocks
- These can be learned with a fully equivariant model, that incorporates automatically molecular orbital theory results for symmetric molecules



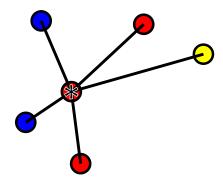
- In an atomic orbital basis the Hamiltonian of a molecule can be decomposed into irreducible symmetric blocks
- These can be learned with a fully equivariant model, that incorporates automatically molecular orbital theory results for symmetric molecules



How about graph convolution?

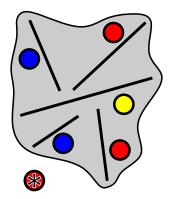
Continuous graph convolution networks

- Atoms are nodes in a fully-connected network. Edges are decorated by (functions of) interatomic distances r_{ij}
- Each node is decorated by the nature of its neighbors and their distance $h(A_i) = \left(a_{i, i} \left\{(a_{j, i}, r_{ij})\right\}\right)$
- The multiset of neighbors and edges is hashed, and used as a label to describe the nodes. The process can be iterated



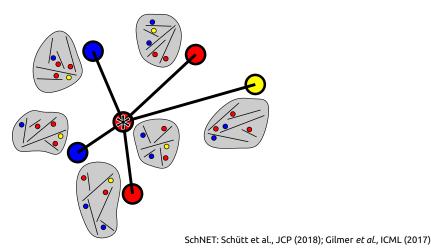
Continuous graph convolution networks

- Atoms are nodes in a fully-connected network. Edges are decorated by (functions of) interatomic distances r_{ij}
- ullet Each node is decorated by the nature of its neighbors and their distance $h(A_i) = ig(a_{i,} ig\{(a_{j}, r_{ij})ig\}ig)$
- The multiset of neighbors and edges is hashed, and used as a label to describe the nodes. The process can be iterated



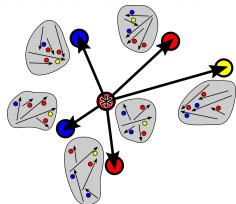
Continuous graph convolution networks

- Atoms are nodes in a fully-connected network. Edges are decorated by (functions of) interatomic distances r_{ij}
- ullet Each node is decorated by the nature of its neighbors and their distance $h(A_i) = ig(a_{i,} ig\{(a_{j}, r_{ij})ig\}ig)$
- The multiset of neighbors and edges is hashed, and used as a label to describe the nodes. The process can be iterated



Equivariant graph convolution and ACDC

- Equivariant MP schemes can be understood as carrying around information on the directionality of the edges
- The construction of N-centers correlations can include features centered on multiple atoms, and message-passing-like contractions $|\rho_i^{\otimes [\nu \leftarrow \nu_1]}\rangle = \sum_{l.} |\rho_i^{\otimes \nu}\rangle \otimes |\mathbf{r}_{hl}\rangle \otimes |\rho_{l.}^{\otimes \nu_1}\rangle$
- Symmetry-adapted versions can be obtained with CG iterations $\langle q_1 l_1; q_2 l_2 | \lambda \mu \rangle = \sum_{m_1, m_2} \langle q_1 | l_1 m_1 \rangle \langle q_2 | l_2 m_2 \rangle \langle l_1 m_1; l_2 m_2 | \lambda \mu \rangle$

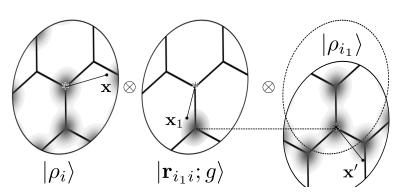


Equivariant graph convolution and ACDC

- Equivariant MP schemes can be understood as carrying around information on the directionality of the edges
- The construction of *N*-centers correlations can include features centered on multiple atoms, and message-passing-like contractions

$$|
ho_i^{\otimes [
u \leftarrow
u_1]}
angle = \sum_{i_1} |
ho_i^{\otimes
u}
angle \otimes |\mathbf{r}_{i_1 i}
angle \otimes |
ho_{i_1}^{\otimes
u_1}
angle$$

• Symmetry-adapted versions can be obtained with CG iterations $\langle q_1 l_1; q_2 l_2 | \lambda \mu \rangle = \sum_{m_1 m_2} \langle q_1 | l_1 m_1 \rangle \langle q_2 | l_2 m_2 \rangle \langle l_1 m_1; l_2 m_2 | \lambda \mu \rangle$



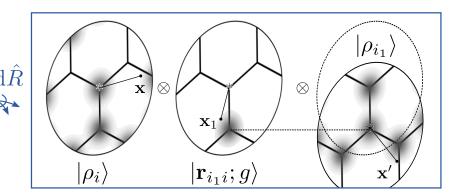
Equivariant graph convolution and ACDC

- Equivariant MP schemes can be understood as carrying around information on the directionality of the edges
- The construction of N-centers correlations can include features centered on multiple atoms, and message-passing-like contractions

$$|\rho_i^{\otimes [
u \leftarrow
u_1]}
angle = \sum_{i_1} |\rho_i^{\otimes
u}
angle \otimes |\mathbf{\Gamma}_{i_1 i}
angle \otimes |
ho_{i_1}^{\otimes
u_1}
angle$$

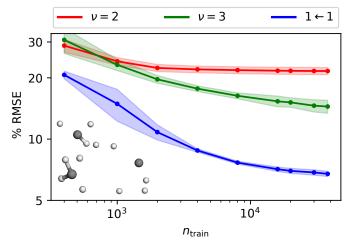
Symmetry-adapted versions can be obtained with CG iterations

$$\langle \mathbf{q}_1 l_1; \mathbf{q}_2 l_2 | \lambda \mu \rangle = \sum_{m_1 m_2} \langle \mathbf{q}_1 | l_1 m_1 \rangle \langle \mathbf{q}_2 | l_2 m_2 \rangle \langle l_1 m_1; l_2 m_2 | \lambda \mu \rangle$$



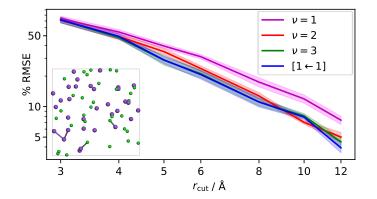
Details matter: resolution and range

- Empirical tests of the role of MP constructs
- Much better discretization convergence for body-ordered expansions
- . . . but very little impact on long-range interactions

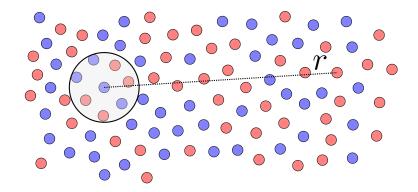


Details matter: resolution and range

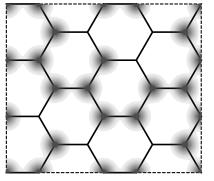
- Empirical tests of the role of MP constructs
- Much better discretization convergence for body-ordered expansions
- . . . but very little impact on long-range interactions



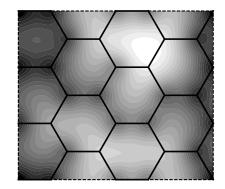
- Idea: local representation that reflects long-range asymptotics
 - Atom-density potential $\langle a\mathbf{r}|V\rangle = \int \langle a\mathbf{r}'|\rho\rangle / |\mathbf{r}' \mathbf{r}| d\mathbf{r}'$
 - 2 Efficient evaluation in reciprocal space
 - Usual gig: symmetrize, decompose locally, learn!



- Idea: local representation that reflects long-range asymptotics
 - Atom-density potential $\langle a\mathbf{r}|V\rangle = \int \langle a\mathbf{r}'|\rho\rangle / |\mathbf{r}'-\mathbf{r}| d\mathbf{r}'$
 - Efficient evaluation in reciprocal space

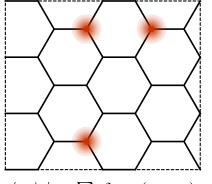


$$\langle a\mathbf{r}|\rho\rangle = \sum_{i} \delta_{aa_{i}} g(\mathbf{r} - \mathbf{r}_{i})$$

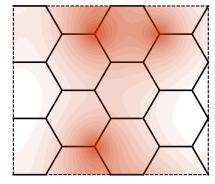


$$\langle a\mathbf{r}|\rho\rangle = \sum_{i} \delta_{aa_{i}} g(\mathbf{r} - \mathbf{r}_{i}) \qquad \langle a\mathbf{r}|V\rangle = \int \langle a\mathbf{r}'|\rho\rangle / |\mathbf{r}' - \mathbf{r}| d\mathbf{r}'$$

- Idea: local representation that reflects long-range asymptotics
 - Atom-density potential $\langle a\mathbf{r}|V\rangle = \int \langle a\mathbf{r}'|\rho\rangle / |\mathbf{r}'-\mathbf{r}| d\mathbf{r}'$
 - Efficient evaluation in reciprocal space

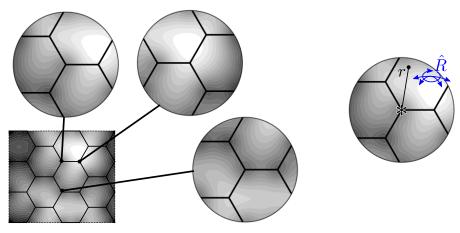


$$\langle a\mathbf{r}|\rho\rangle = \sum_i \delta_{aa_i} g(\mathbf{r} - \mathbf{r}_i)$$

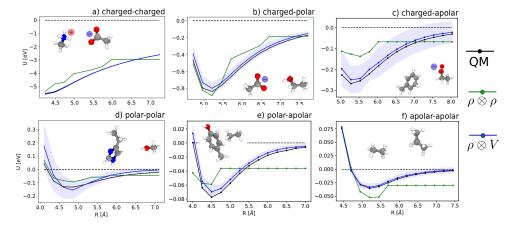


$$\langle a\mathbf{r}|\rho\rangle = \sum_{i} \delta_{aa_{i}} g(\mathbf{r} - \mathbf{r}_{i}) \qquad \langle a\mathbf{r}|V\rangle = \int \langle a\mathbf{r}'|\rho\rangle / |\mathbf{r}' - \mathbf{r}| d\mathbf{r}'$$

- Idea: *local* representation that reflects long-range *asymptotics*
 - Atom-density potential $\langle a\mathbf{r}|V\rangle = \int \langle a\mathbf{r}'|\rho\rangle / |\mathbf{r}' \mathbf{r}| d\mathbf{r}'$
 - Efficient evaluation in reciprocal space
 - Usual gig: symmetrize, decompose locally, learn!



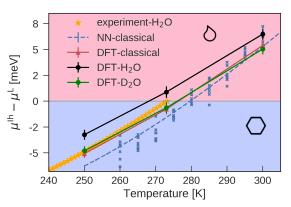
- Idea: *local* representation that reflects long-range *asymptotics*
 - Atom-density potential $\langle a\mathbf{r}|V\rangle = \int \langle a\mathbf{r}'|\rho\rangle / |\mathbf{r}' \mathbf{r}| d\mathbf{r}'$
 - ② Efficient evaluation in reciprocal space
 - Usual gig: symmetrize, decompose locally, learn!

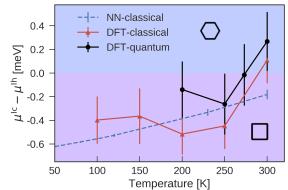


Atomistic simulations in the age

of machine learning

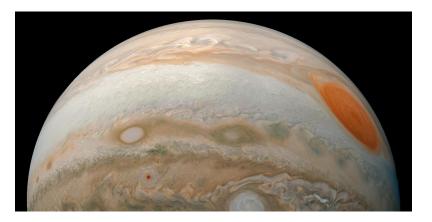
- Simulating materials at finite temperature, including quantum effects and dynamics is now much more affordable
- Accuracy (reference, long range physics, extrapolation) is still a concern: baselining, uncertainty quantification, free energy perturbation...
- Electronic and functional properties may still need quantum calculations



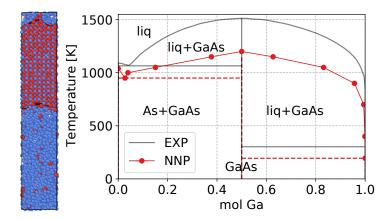


Cheng, Engel, Behler, Dellago, MC, PNAS (2019)

- Simulating materials at finite temperature, including quantum effects and dynamics is now much more affordable
- Accuracy (reference, long range physics, extrapolation) is still a concern: baselining,

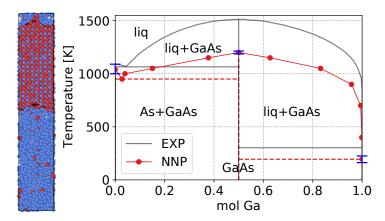


- Simulating materials at finite temperature, including quantum effects and dynamics is now much more affordable
- Accuracy (reference, long range physics, extrapolation) is still a concern: baselining, uncertainty quantification, free energy perturbation...
- Electronic and functional properties may still need quantum calculations

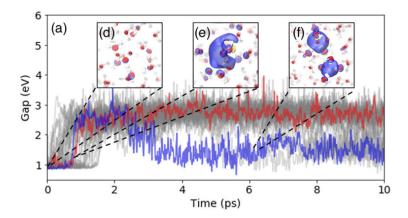


Imbalzano, MC, Phys. Rev. Materials (2021); Imbalzano et al., J. Chem. Phys. (2021)

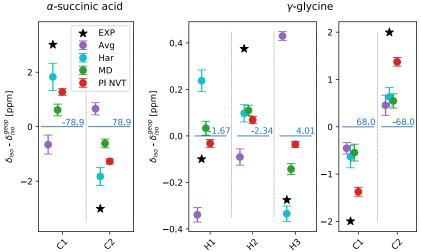
- Simulating materials at finite temperature, including quantum effects and dynamics is now much more affordable
- Accuracy (reference, long range physics, extrapolation) is still a concern: baselining, uncertainty quantification, free energy perturbation...
- Electronic and functional properties may still need quantum calculations



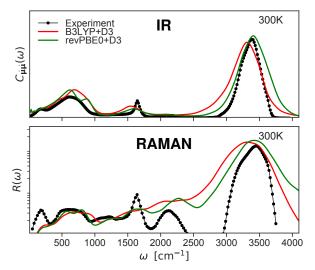
- Simulating materials at finite temperature, including quantum effects and dynamics is now much more affordable
- Accuracy (reference, long range physics, extrapolation) is still a concern: baselining, uncertainty quantification, free energy perturbation...
- Electronic and functional properties may still need quantum calculations



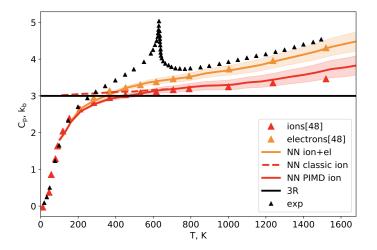
- Predicting any property accessible to quantum calculations: spectra, electronic heat capacity...
- ... enables realistic time and size scales, with first-principles accuracy and mapping of structural and functional properties



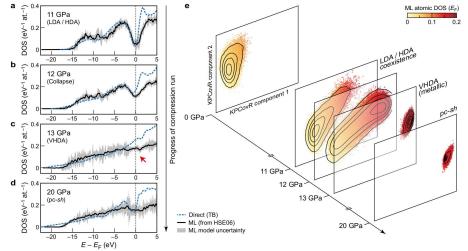
- Predicting any property accessible to quantum calculations: spectra, electronic heat capacity...
- ... enables realistic time and size scales, with first-principles accuracy and mapping of structural and functional properties



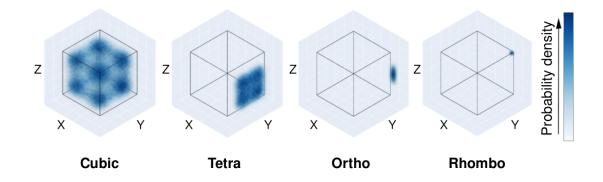
- Predicting *any* property accessible to quantum calculations: spectra, electronic heat capacity...
- ... enables realistic time and size scales, with first-principles accuracy and mapping of structural and functional properties



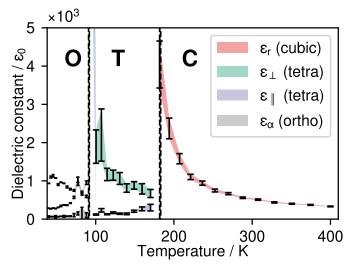
- Predicting *any* property accessible to quantum calculations: spectra, electronic heat capacity...
- ... enables realistic time and size scales, with first-principles accuracy and mapping of structural and functional properties



- Predicting any property accessible to quantum calculations: spectra, electronic heat capacity...
- ... enables realistic time and size scales, with first-principles accuracy and mapping of structural and functional properties



- Predicting any property accessible to quantum calculations: spectra, electronic heat capacity...
- ... enables realistic time and size scales, with first-principles accuracy and mapping of structural and functional properties



Between physics and data

Machine learning à la carte

• Understanding the ingredients and the mixing rules to build custom ML frameworks for any type of atomistic modeling task

Machine learning à la carte

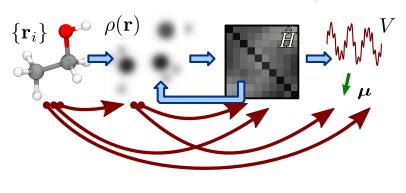
 Understanding the ingredients and the mixing rules to build custom ML frameworks for any type of atomistic modeling task

Machine learning à la carte

• Understanding the ingredients and the mixing rules to build custom ML frameworks for any type of atomistic modeling task

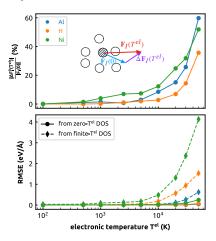
- Interoperable quantum mechanical / machine-learning calculations: mix & match physics and data
- Example: finite-T electron free energies from ground state energy and electronic DOS

$$A(T_{\rm el}) \approx E(0) + \int \epsilon g^{0}(\epsilon) \left[f^{T_{\rm el}}(\epsilon) - f^{0}(\epsilon) \right] d\epsilon - T_{\rm el} \int g^{0}(\epsilon) s^{T_{\rm el}}(\epsilon) d\epsilon$$



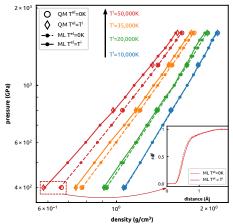
- Interoperable quantum mechanical / machine-learning calculations: mix & match physics and data
- ullet Example: finite-T electron free energies from ground state energy and electronic DOS

$$A(T_{\rm el}) \approx E(0) + \int \epsilon g^{0}(\epsilon) \left[f^{T_{\rm el}}(\epsilon) - f^{0}(\epsilon) \right] d\epsilon - T_{\rm el} \int g^{0}(\epsilon) s^{T_{\rm el}}(\epsilon) d\epsilon$$



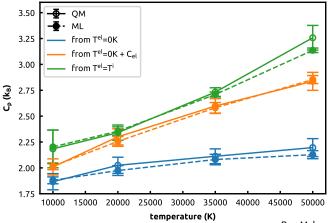
- Interoperable quantum mechanical / machine-learning calculations: mix & match physics and data
- ullet Example: finite-T electron free energies from ground state energy and electronic DOS

$$A\left(T_{\mathrm{el}}
ight)pprox E\left(0
ight)+\int\epsilon g^{0}(\epsilon)\left[f^{T_{\mathrm{el}}}\left(\epsilon
ight)-f^{0}\left(\epsilon
ight)
ight]\mathrm{d}\epsilon-T_{\mathrm{el}}\int g^{0}\left(\epsilon
ight)\mathsf{s}^{T_{\mathrm{el}}}\left(\epsilon
ight)\mathrm{d}\epsilon$$



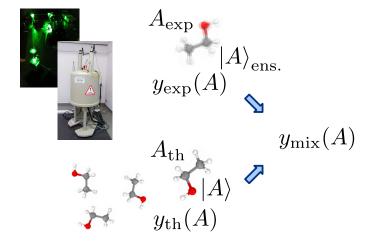
- Interoperable quantum mechanical / machine-learning calculations: mix & match physics and data
- ullet Example: finite-T electron free energies from ground state energy and electronic DOS

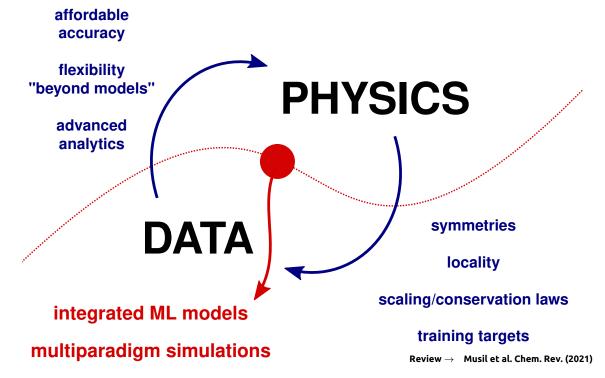
$$A\left(T_{\mathrm{el}}
ight)pprox \emph{\emph{E}}\left(0
ight)+\int\epsilon \emph{\emph{g}}^{0}(\epsilon)\left[\emph{\emph{f}}^{T_{\mathrm{el}}}\left(\epsilon
ight)-\emph{\emph{f}}^{0}\left(\epsilon
ight)
ight]\mathrm{d}\epsilon-\emph{\emph{T}}_{\mathrm{el}}\int\emph{\emph{\emph{g}}}^{0}\left(\epsilon
ight)\emph{\emph{\emph{s}}}^{T_{\mathrm{el}}}\left(\epsilon
ight)\mathrm{d}\epsilon$$



Blurring the lines between theory and experiments

- Combining electronic structure calculations and experimental constraints into multi-fidelity models
- Conceptual challenge: reconciling what theory and experiments measure





Code and resources

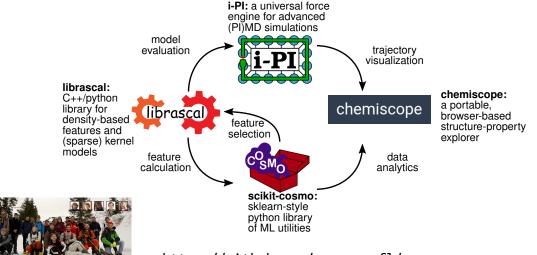
On-line demonstrations and ML models	
	shiftml.org; alphaml.org;
	www.materialscloud.org/discover/kpcovr/
Structure-property explorer	chemiscope.org
ML toolbox	github.com/cosmo-epfl/scikit-cosmo
Tutorials for kernel methods	github.com/cosmo-epfl/kernel-tutorials
Advanced (path integral) molecular dynamics	ipi-code.org
Library to compute representations	github.com/cosmo-epfl/librascal

Recent literature

Review on representations	
Deep connections between most representation	ns
NICE features	Nigam et al. JCP (2020)
Long-range equivariants	Grisafi et al. Chem. Sci. (2021)
Symmetry-adapted regression for tensors:	Grisafi et al., Phys. Rev. Lett. (2018)
Molecular polarizability	Wilkins et al. PNAS (2019)
Electron density	Grisafi et al., ACS Central Science (2019)
Applications from water to biomolecules	
Bartók et al. Science Adv. (2017); Musil et al., Chem. Sci. (2018);	
Cheng	et al., PNAS (2019); Zamani et al., Adv. Mat. (2020);
Cheng	et al., Nature (2020); Deringer et al., Nature (2021)

A software stack for atomistic machine learning

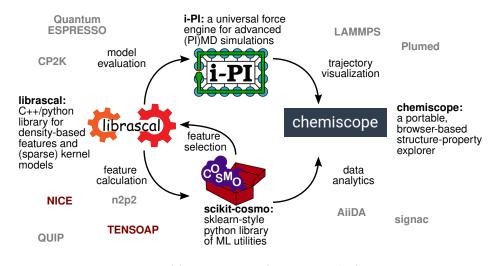
- Integrating ML and atomistic simulations: from representations to models to advanced MD
- Interoperability and data sharing with the rest of the ecosystem



https://github.com/cosmo-epfl/

A software stack for atomistic machine learning

- Integrating ML and atomistic simulations: from representations to models to advanced MD
- Interoperability and data sharing with the rest of the ecosystem



https://github.com/cosmo-epfl/