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A brief history
of atomic-scale modeling



Simple models, complex physics

Simple models, with minimal number of parameters fitted by comparison with experimental
quantities

Aim: capture the essence of atomic-scale interactions, and understand emergent phenomena
(phase transitions, equations of state...)

V (q) ∼
∑
ij

zizj∣∣qi − qj

∣∣︸ ︷︷ ︸
electrostatics

+
∑
bonds

ki (qi − q′i)
2

︸ ︷︷ ︸
bonded terms

−
∑
ij

Aij∣∣qi − qj

∣∣6︸ ︷︷ ︸
dispersion

+ . . .
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Metropolis et al., JCP (1953); Alder & Wainwright, JCP (1959); Verlet, Phys. Rev. (1969)



First-principles calculations
Practical approaches to evaluate the electronic structure→ quantitatively accurate
simulations that make no use of experimental data
Emergent physics from first principles: still a tremendous challenge
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Kohn & Sham, Phys. Rev. (1965); Cížek, JCP (1966); Car & Parrinello, PRL (1985)



First-principles calculations
Practical approaches to evaluate the electronic structure→ quantitatively accurate
simulations that make no use of experimental data
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Grabowski et al., PRB (2009); Kapil, Engel, Rossi,MC, JCTC (2019)



Pioneers of fitting machine learning

Quantitative structure/property relationships, cheminformatics

Descriptors for analyzing molecular structure

Correlation functions for liquids, classical DFT

Cluster expansions for alloys

Fits of molecular potential energy surfaces
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Andersen, Chandler, JCP (1972); Steinhardt et al., PRB (1983);
Sanchez et al. Physica A (1984); Brown et al. JCP (2004)



Machine learning in a nutshell



ML at the atomic scale
Predictions vs understanding?
Atomic-scale machine learning operates on atomic structures and properties, and performs
different tasks on them

Unsupervised tasks: clustering, dimensionality reduction
Supervised tasks: classification, inference→ML potentials, property models

end-to-end
prediction

bottom-up
modeling

8 Prof. Michele Ceriotti cosmo.epfl.ch Machine Learning at the Atomic Scale

MC, JCP (2019)



ML at the atomic scale
Predictions vs understanding?
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*
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train set
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dimensionality
reduc�on
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Unsupervised learning
Pattern recognition, structural classification & maps from simulations
Very promising results combining supervised/unsupervised ideas
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Helfrecht, Cersonsky, Fraux,MC, MLST (2020); https://chemiscope.org
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Regression, loss & C.
Reproduce target properties y as a function ỹ of input features ξ, optimizing parameters to
minimize a loss

` =
∑

A∈train set

|yA − ỹ (ξA)|2

Many different models for ỹ . Flexibility comes at a cost

linear 
regression

polynomial
regression

kernel
regression

deep
learning

low data
requirements

needs excellent
descriptors

robust to 
overfitting

limited accuracy

interpretable black-box

ultimate 
accuracy

prone to
overfitting

can learn
good features

high data
requirements

model
complexity
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Learning curves

Data is split between a training set - used to determine the parameters of the model - and a
test/validation set used to verify accuracy of predictions

Learning curves provide diagnostics to understand data and model

training set

test set
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MC, Willatt, Csányi, Handbook of Materials Modeling, Springer (2018)
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Learning curves

Data is split between a training set - used to determine the parameters of the model - and a
test/validation set used to verify accuracy of predictions

Learning curves provide diagnostics to understand data and model

learning rate

learning curve

training set

test set
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The role of representations
Key step in any atomistic ML task: mapping an atomic structure to a suitable mathematical
representation
Features, distances, kernels, can largely be used interchangeably

*

* *

*

train set

inference

classifica�on

dimensionality
reduc�on
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Symmetry and locality
in atomistic ML



A phylogenetic tree of ML representations
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Behler-Parrinello (2,3)
DeepMD (2,3)

GTTP (2,3)projectionACE (n*)
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SOAP (3)
FCHL (2,3,4)
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global
transform

translations
& rotations

named features (body order)
   2,3,4: radial, angular, dihedrals
   n: n-body
   n*: complete n-body linear basis
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Musil et al., Chem. Rev. (2021)

http://dx.doi.org/10.1021/acs.chemrev.1c00021


From atoms to properties
Physical/mathematical requirements are imposed on the
structure→[representation]→property mapping
Additivity/locality + translation equivariance→ atom-centered formalism
Roto-inversion (O(3)) and index permutation→ full equivariance
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A Dirac notation for ML representations

features 
index

representation
target & nature

radial indices

angular channels

structure

center
field

correlation
order parity

rot. 
symmetry

A representation maps a structure A (or one environment Ai ) to a vector discretized by a
feature index Q
Bra-ket notation 〈Q|A; rep.〉 indicates in an abstract way this mapping, leaving plenty of room
to express the details of a representation
Dirac-like notation reflects naturally a change of basis, the construction of a kernel, or a linear
model

〈Y |A〉 =
∫

dQ 〈Y |Q〉 〈Q|A〉
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Symmetrized field construction
Start from a non-symmetric representation (Cartesian coordinates)
Define a decorated atom-density |ρ〉 (permutation invariant)
Translational average of a tensor product |ρ〉 ⊗ |ρ〉 yields atom-centred (and t̂ invariant) |ρi〉
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A universal feature construction
Rotationally-averaged representations are essentially the same n-body correlations that are
used in statistical theories of liquids
Linear models built on |ρ⊗νi ; g → δ〉 yield (ν + 1)-body potential expansion

V (Ai) =
∑

ij V
(2)
(
rij
)
+
∑

ij V
(3)
(
rij , rik , ωijk

)
. . .

*
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What you ask is what you get

Understanding what goes into a representation is key to achieve meaningful results from
automated data analytics

Example: you don’t alwayswant to have rotational invariance

0.000 0.005
KPCA1

0.002

0.000

0.002

KP
CA

2

0.05 0.00 0.05
KPCA1

0.05

0.00

0.05

KP
CA

3

19 Prof. Michele Ceriotti cosmo.epfl.ch Machine Learning at the Atomic Scale

data: Shibuta, Sakane, Takaki, Ohno, Acta Mat. (2016)



What you ask is what you get

Understanding what goes into a representation is key to achieve meaningful results from
automated data analytics

Example: you don’t alwayswant to have rotational invariance

0.000 0.005
KPCA1

0.002

0.000

0.002

KP
CA

2

0.05 0.00 0.05
KPCA1

0.05

0.00

0.05

KP
CA

3

19 Prof. Michele Ceriotti cosmo.epfl.ch Machine Learning at the Atomic Scale

data: Shibuta, Sakane, Takaki, Ohno, Acta Mat. (2016)



What you ask is what you get

Understanding what goes into a representation is key to achieve meaningful results from
automated data analytics

Example: you don’t alwayswant to have rotational invariance

0.000 0.005
KPCA1

0.002

0.000

0.002

KP
CA

2

0.05 0.00 0.05
KPCA1

0.05

0.00

0.05

KP
CA

3

19 Prof. Michele Ceriotti cosmo.epfl.ch Machine Learning at the Atomic Scale

data: Shibuta, Sakane, Takaki, Ohno, Acta Mat. (2016)



What you ask is what you get

Understanding what goes into a representation is key to achieve meaningful results from
automated data analytics

Example: you don’t alwayswant to have rotational invariance

0.000 0.005
KPCA1

0.002

0.000

0.002

KP
CA

2

0.05 0.00 0.05
KPCA1

0.05

0.00

0.05

KP
CA

3

19 Prof. Michele Ceriotti cosmo.epfl.ch Machine Learning at the Atomic Scale

data: Shibuta, Sakane, Takaki, Ohno, Acta Mat. (2016)



What you ask is what you get

Understanding what goes into a representation is key to achieve meaningful results from
automated data analytics

Example: you don’t alwayswant to have rotational invariance

0.000 0.005
KPCA1

0.002

0.000

0.002

KP
CA

2

0.05 0.00 0.05
KPCA1

0.05

0.00

0.05

KP
CA

3

19 Prof. Michele Ceriotti cosmo.epfl.ch Machine Learning at the Atomic Scale

data: Shibuta, Sakane, Takaki, Ohno, Acta Mat. (2016)



Smooth overlap of atomic positions
a worked example



Representing chemical environments

Smooth overlap of atomic densities (SOAP): a kernel to compare atomic environments
1 Atomic environments are defined by the relative position of neighbors (translation-invariant)
2 Positions are transformed in a neighbor density (permutation invariant)
3 Similarity between environments→ overlap kernel
4 Averaged over rotations (rotation invariant)
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Symmetrized density correlations
The same information can be encoded in features, equivalent to symmetrized correlations of
the neighbor density

1 Symmetrize over rotations a tensor product of the neighbor densities
2 This is equivalent to a function of two distances and one angle
3 In the limit of sharp Gaussians, this is equivalent to a list of 2-neighbors tuples (rj1 i , rj2 i , r̂j1 i · r̂j2 i)
4 Linear model→ 3-body potential!
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Density trick in an 〈nlm| basis
The symmetrized correlations can be computed in closed form using a discrete basis

The neighbor density can be expanded on a basis of radial functions 〈x|n〉 ≡ Rn(x) and spherical
harmonics 〈x̂|lm〉 ≡ Ym

l (x̂)
Spherical harmonics transform linearly under rotations based on Wigner rotation matrices Dl

(
R̂
)

Orthogonality of Wigner matrices yields the SOAP powerspectrum
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harmonics 〈x̂|lm〉 ≡ Ym

l (x̂)
Spherical harmonics transform linearly under rotations based on Wigner rotation matrices Dl

(
R̂
)

Orthogonality of Wigner matrices yields the SOAP powerspectrum
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There are more things in
heaven and earth, Horatio, than
those transforming like a scalar



Machine-learning for tensors

Want to learn vectors or general tensors?
Need features that are equivariant to rotations

dα
↑
(Ai) =

∑
q

〈d |q〉 〈q|A; ρ⊗νi ;α
↑
〉

dα
(
R̂Ai

)
=
∑
q

〈d |q〉 〈q|R̂A; ρ⊗νi ;α〉
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Machine-learning for tensors

Want to learn vectors or general tensors?
Need features that are equivariant to rotations

dα
↑
(Ai) =

∑
q

〈d |q〉 〈q|A; ρ⊗νi ;α
↑
〉

yλµ
(
R̂Ai

)
=
∑
q

〈d |q〉
∑
µ′

Dλµµ′

(
R̂
)
〈q|A; ρ⊗νi ;λµ〉

* **
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Grisafi, Wilkins, Csányi, & MC, PRL (2018); Willatt, Musil, & MC, JCP (2019)

http://dx.doi.org/10.1103/PhysRevLett.120.036002


Molecular polarizabilities at the CCSD level
Accurate molecular polarizabilities by training a tensorial ML model on high-end CCSD
calculations of small molecules
The model can extrapolate to much large compounds (up to aciclovir C8H11N5O3) with
better-than-DFT accuracy - try it on alphaml.org

2,2-dimethylhexane

octatetraene

cis-4-octene cysteine

tryptophan

guanine

methionine

fructose

Method RMSE
CCSD/ML 0.304
CCSD/DFT 0.573
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Wilkins, Grisafi, Yang, Lao, DiStasio,MC, PNAS (2019);

http://alphaml.org


A transferable model of the electron density
Write the charge density in atom-centered components.
Expand on an atomic basis φk ≡ RnYm

l → tensorial learning of coefficients
Training on a database of small organic dimers
Transferable enough to predict the density of polypeptides
Recently extended to the condensed phase

cc-pVQZ

RI-cc-pVQZ
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A transferable model of the electron density
Write the charge density in atom-centered components.
Expand on an atomic basis φk ≡ RnYm

l → tensorial learning of coefficients
Training on a database of small organic dimers
Transferable enough to predict the density of polypeptides
Recently extended to the condensed phase
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A hierarchy of equivariant features

Equivariant N-body features transform like angular momenta

|R̂A; ρ⊗νi ;λµ〉 ∼
∑
µ′

Dλµµ′ (R) |A; ρ⊗νi ;λµ′〉

Recursive construction based on sums of angular momenta and an expansion of the atom
density→ Clebsch-Gordan iteration

〈n1|ρ⊗1i ;λµ〉 ≡ 〈n1λµ|ρi〉

〈. . . ; nν lνkν ; nlk|ρ⊗(ν+1)
i ;λµ〉 =

∑
qm

〈n|ρ⊗1i ; lm〉 〈. . . ; nν lνkν |ρ⊗νi ; kq〉 〈lm; kq|λµ〉

Can be used to compute efficiently invariant features |ρ⊗νi ;00〉
→ a complete linear basis of invariant polynomials
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Nigam, Pozdnyakov, MC, JCP (2020); https://github.com/cosmo-epfl/nice

http://dx.doi.org/10.1063/5.0021116
https://github.com/cosmo-epfl/nice


NICE features for ML
Problem: number of features grows exponentially with ν
Solution: N-body iterative contraction of equivariants (NICE)

After each body order increase, the most relevant features are selected and used for the next
iteration
Systematic convergence with ν and contraction truncation

body-order
iteration

contraction
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Hamiltonian learning

In an atomic orbital basis the Hamiltonian of a molecule can be decomposed into irreducible
symmetric blocks

These can be learned with a fully equivariant model, that incorporates automatically
molecular orbital theory results for symmetric molecules

O diagonal

H1

H2

cross-species

off-diagonal

30 Prof. Michele Ceriotti cosmo.epfl.ch Machine Learning at the Atomic Scale

Nigam, Willatt,MC, arxiv:2109.12083



Hamiltonian learning

In an atomic orbital basis the Hamiltonian of a molecule can be decomposed into irreducible
symmetric blocks

These can be learned with a fully equivariant model, that incorporates automatically
molecular orbital theory results for symmetric molecules

O
2

p

H1

H
2

±

H2p

s

p

d

±

±

30 Prof. Michele Ceriotti cosmo.epfl.ch Machine Learning at the Atomic Scale

Nigam, Willatt,MC, arxiv:2109.12083



Hamiltonian learning

In an atomic orbital basis the Hamiltonian of a molecule can be decomposed into irreducible
symmetric blocks

These can be learned with a fully equivariant model, that incorporates automatically
molecular orbital theory results for symmetric molecules

target fitted
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How about graph convolution?



Continuous graph convolution networks

Atoms are nodes in a fully-connected network. Edges are decorated by (functions of)
interatomic distances rij
Each node is decorated by the nature of its neighbors and their distance h (Ai) =

(
ai,
{
(aj , rij)

})
The multiset of neighbors and edges is hashed, and used as a label to describe the nodes. The
process can be iterated

*
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Equivariant graph convolution and ACDC
Equivariant MP schemes can be understood as carrying around information on the
directionality of the edges
The construction of N-centers correlations can include features centered on multiple atoms,
and message-passing-like contractions
|ρ⊗[ν←ν1]i 〉 =

∑
i1
|ρ⊗νi 〉 ⊗ |ri1i〉 ⊗ |ρ

⊗ν1
i1
〉

Symmetry-adapted versions can be obtained with CG iterations
〈q1l1; q2l2|λµ〉 =

∑
m1m2

〈q1|l1m1〉 〈q2|l2m2〉 〈l1m1; l2m2|λµ〉
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Details matter: resolution and range

Empirical tests of the role of MP constructs

Much better discretization convergence for body-ordered expansions

. . . but very little impact on long-range interactions
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Long-distance equivariant representation
Idea: local representation that reflects long-range asymptotics

1 Atom-density potential 〈ar|V 〉 =
∫
〈ar′|ρ〉 / |r′ − r|dr′

2 Efficient evaluation in reciprocal space
3 Usual gig: symmetrize, decompose locally, learn!

35 Prof. Michele Ceriotti cosmo.epfl.ch Machine Learning at the Atomic Scale
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http://dx.doi.org/10.1063/1.5128375


Long-distance equivariant representation
Idea: local representation that reflects long-range asymptotics

1 Atom-density potential 〈ar|V 〉 =
∫
〈ar′|ρ〉 / |r′ − r|dr′

2 Efficient evaluation in reciprocal space
3 Usual gig: symmetrize, decompose locally, learn!

35 Prof. Michele Ceriotti cosmo.epfl.ch Machine Learning at the Atomic Scale

Grisafi, MC, JCP (2019); Grisafi, Nigam, MC, Chem. Sci. (2021)

http://dx.doi.org/10.1063/1.5128375


Long-distance equivariant representation
Idea: local representation that reflects long-range asymptotics

1 Atom-density potential 〈ar|V 〉 =
∫
〈ar′|ρ〉 / |r′ − r|dr′

2 Efficient evaluation in reciprocal space
3 Usual gig: symmetrize, decompose locally, learn!

35 Prof. Michele Ceriotti cosmo.epfl.ch Machine Learning at the Atomic Scale

Grisafi, MC, JCP (2019); Grisafi, Nigam, MC, Chem. Sci. (2021)

http://dx.doi.org/10.1063/1.5128375


Long-distance equivariant representation
Idea: local representation that reflects long-range asymptotics

1 Atom-density potential 〈ar|V 〉 =
∫
〈ar′|ρ〉 / |r′ − r|dr′

2 Efficient evaluation in reciprocal space
3 Usual gig: symmetrize, decompose locally, learn!

*

35 Prof. Michele Ceriotti cosmo.epfl.ch Machine Learning at the Atomic Scale

Grisafi, MC, JCP (2019); Grisafi, Nigam, MC, Chem. Sci. (2021)

http://dx.doi.org/10.1063/1.5128375


Long-distance equivariant representation
Idea: local representation that reflects long-range asymptotics

1 Atom-density potential 〈ar|V 〉 =
∫
〈ar′|ρ〉 / |r′ − r|dr′

2 Efficient evaluation in reciprocal space
3 Usual gig: symmetrize, decompose locally, learn!

QM

5.0 5.5 6.0 6.5 7.0 7.5 8.0
R [Å]

0.3

0.2

0.1

0.0

U
 [

e
V

]

4.5 5.0 5.5 6.0 6.5 7.0 7.5
R [Å]

0.050

0.025

0.000

0.025

0.050

0.075

U
 [

e
V

]

4.0 4.5 5.0 5.5 6.0 6.5 7.0
R [Å]

0.08

0.06

0.04

0.02

0.00

0.02

U
 [

e
V

]

35 Prof. Michele Ceriotti cosmo.epfl.ch Machine Learning at the Atomic Scale

Grisafi, MC, JCP (2019); Grisafi, Nigam, MC, Chem. Sci. (2021)

http://dx.doi.org/10.1063/1.5128375


Atomistic simulations in the age
of machine learning



Ab initio (thermo)dynamics made easy

Simulating materials at finite temperature, including quantum effects and dynamics is now
much more affordable

Accuracy (reference, long range physics, extrapolation) is still a concern: baselining,
uncertainty quantification, free energy perturbation...

Electronic and functional properties may still need quantum calculations

37 Prof. Michele Ceriotti cosmo.epfl.ch Machine Learning at the Atomic Scale
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Ab initio (thermo)dynamics made easy
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Integrated ML models beyond size and time limits
Predicting any property accessible to quantum calculations: spectra, electronic heat capacity...
... enables realistic time and size scales, with first-principles accuracy andmapping of
structural and functional properties

38 Prof. Michele Ceriotti cosmo.epfl.ch Machine Learning at the Atomic Scale

Engel, Kapil, MC J. Phys. Chem. Lett. (2021)



Integrated ML models beyond size and time limits
Predicting any property accessible to quantum calculations: spectra, electronic heat capacity...
... enables realistic time and size scales, with first-principles accuracy andmapping of
structural and functional properties
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Integrated ML models beyond size and time limits
Predicting any property accessible to quantum calculations: spectra, electronic heat capacity...
... enables realistic time and size scales, with first-principles accuracy andmapping of
structural and functional properties
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Integrated ML models beyond size and time limits
Predicting any property accessible to quantum calculations: spectra, electronic heat capacity...
... enables realistic time and size scales, with first-principles accuracy andmapping of
structural and functional properties
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Integrated ML models beyond size and time limits
Predicting any property accessible to quantum calculations: spectra, electronic heat capacity...
... enables realistic time and size scales, with first-principles accuracy andmapping of
structural and functional properties
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Between physics and data



Machine learning à la carte

Understanding the ingredients and the mixing rules to build customML frameworks for any
type of atomistic modeling task
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Understanding the ingredients and the mixing rules to build customML frameworks for any
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completeness

locality

symmetry

body-ordered
correlations

message
passing

feature
engineering

equivariant
iterations

model
nonlinearity
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Blurring the lines between ML and QM

Interoperable quantummechanical / machine-learning calculations:
mix & match physics and data
Example: finite-T electron free energies from ground state energy and electronic DOS

A (Tel) ≈ E (0) +
∫
εg0(ε)

[
f Tel (ε)− f 0 (ε)

]
dε− Tel

∫
g0 (ε)sTel (ε)dε

physics-based data-driven
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Example: finite-T electron free energies from ground state energy and electronic DOS

A (Tel) ≈ E (0) +
∫
εg0(ε)

[
f Tel (ε)− f 0 (ε)

]
dε− Tel

∫
g0 (ε)sTel (ε)dε

FI (0)
FI (T el)

ΔFI (T el)
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Blurring the lines between theory and experiments

Combining electronic structure calculations and experimental constraints into multi-fidelity
models

Conceptual challenge: reconciling what theory and experiments measure
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PHYSICS

DATA
symmetries

locality

scaling/conservation laws

training targets

affordable
accuracy

flexibility
"beyond models"

advanced
analytics

integrated ML models

multiparadigm simulations

quantitative description
of emergent behavior

Review→ Musil et al. Chem. Rev. (2021)

https://doi.org/10.1021/acs.chemrev.1c00021


Code and resources

On-line demonstrations and ML models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
shiftml.org; alphaml.org;

www.materialscloud.org/discover/kpcovr/
Structure-property explorer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . chemiscope.org
ML toolbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . github.com/cosmo-epfl/scikit-cosmo
Tutorials for kernel methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . github.com/cosmo-epfl/kernel-tutorials
Advanced (path integral) molecular dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ipi-code.org
Library to compute representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . github.com/cosmo-epfl/librascal

44 Prof. Michele Ceriotti cosmo.epfl.ch Machine Learning at the Atomic Scale

http://shiftml.org
http://alphaml.org
https://www.materialscloud.org/discover/kpcovr/
https://chemiscope.org
https://github.com/cosmo-epfl/scikit-cosmo/tree/master/notebooks
https://github.com/cosmo-epfl/kernel-tutorials/tree/master/notebooks
https://ipi-code.org
https://github.com/cosmo-epfl/librascal


Recent literature

Review on representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Musil et al. arxiv:2101.04673 (2021)
Deep connections between most representations . . . . . . . . . . . . . . . . . . . . . . . . . Willatt et al. JCP (2019)
NICE features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Nigam et al. JCP (2020)
Long-range equivariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Grisafi et al. Chem. Sci. (2021)
Symmetry-adapted regression for tensors: . . . . . . . . . . . . . . . . . . . . . Grisafi et al., Phys. Rev. Lett. (2018)

Molecular polarizability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Wilkins et al. PNAS (2019)
Electron density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Grisafi et al., ACS Central Science (2019)

Applications from water to biomolecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Bartók et al. Science Adv. (2017); Musil et al., Chem. Sci. (2018);

Cheng et al., PNAS (2019); Zamani et al., Adv. Mat. (2020);
Cheng et al., Nature (2020); Deringer et al., Nature (2021)
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A software stack for atomistic machine learning

Integrating ML and atomistic simulations: from representations to models to advanced MD

Interoperability and data sharing with the rest of the ecosystem

i-PI: a universal force
engine for advanced 
(PI)MD simulations

scikit-cosmo: 
sklearn-style 
python library
of ML utilities

librascal: 
C++/python 
library for 
density-based 
features and 
(sparse) kernel 
models 

chemiscope: 
a portable, 
browser-based
structure-property 
explorer

feature 
selection

feature 
calculation

model
evaluation

data
analytics

trajectory
visualization
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