


A BIT ABOUT ME
- PhD in Astrophysics from Edinburgh, UK

- Worked at Kaggle developing machine learning
competitions, this includead
- Observing dark worlds
- Galaxy Zoo
- Titanic
- Post-doc Switzerlanc

- Fellowship Leiden, NL
- Machine Learning consultant at Terres des

Hommes
- New position at EPFL

- Machine Learning consultant at Prophy

- Machine Learning consultant at TruthEngine



strophysics difters from almost any science

DISTRIBUTION OF NEARBY GALAXIES
MAPPED BY THE DARK ENERGY SPECTROSCOPIC INSTRUMENT (DESI)
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DISTRIBUTION OF NEARBY GALAXIES
MAPPED BY THE DARK ENERGY SPECTROSCOPIC INSTRUMENT (DESI)

Distribution of matter as seen by the millennium simulation



Bayes theorem as a way to compare what we model to what we see.
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Classical astrophysical inference
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Distribution of matter as seen by the millennium simulation
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Compare the likelihood of the model given the data
to find the best fitting model
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Compare the likelihood of the model given the data
to find the best fitting model

Planck TT
Planck EE

SDSS DR7 LRG
BOSS DR9 Ly-a forest

Wavenumber k& [h Mpc ']

Assuming an analytical model
Assuming a Gaussian likelihood function.
With covariances trom theory or simulations



Why astronomy needs machine learning

- Classical inference requires analytical models that
can be passed in to a MCMC

- The number of posterior calls is normally very large.
- Likelihoods are not Gaussian.

- Direct comparison of simulations to observations
would be impossible in the current situation.

- Astrophysical simulations are often computationally
expensive
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CLASSICAL INFERENCE REQUIRES ANALYTICAL MODELS
THAT CAN BE PASSED IN TO A MCMC WITH MANY CALLS
TO A LIKELIHOOD FUNCTION

EXAMPLE 1: GALAXY CLASSIFICATION
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GALAXY ZOQ

Lintott et al 2008



he Galaxy Zoo decision tree.

Is the galaxy simply smooth and rounded,
with no sign of a disk?

Could this be a disk viewed edge-on?

How rounded is it?

n n = Is there a sign of a bar feature through

Does the galaxy have a bulge at its centre? the centre of the galaxy?

If so, what shape?

Is there anything odd? ‘ ° ~
&| S

Is there any sign of a spiral
arm pattern?

How tightly wound do the spiral arms appear?
Is the odd feature a ring, or is the
galaxy disturbed or irregular?
,O How many splra arms are there? How prominent is the central bulge,
compared to the rest of the galaxy?
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~300,000 Galaxies which took 5 years

Fuclid will observe 50 million....
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https://www.kaggle.com/c/

galaxy-zoo-the-galaxy-
challenge/data



Rotationally invariant convolutional neural networks to predic
what a classifier would measure.

Is the galaxy simply smooth and rounded,
with no sign of a disk?

Could this be a disk viewed edge-on?

How rounded is it? / n
n n = Is there a sign of a bar feature through

Does the galaxy have a bulge at its centre? the centre of the galaxy?
If so, what shape?

Is there anything odd? . c A
»y | ¥ | & S e(p,p) =
)
\
Is there any sign of a spiral k — 1
How tightly wound do the spiral arms appear? arm pattern?

Is the odd feature a ring, or is the
galaxy disturbed or irregular?
M

@ ' O How many spiral arms are there? How prominent is the central bulge,

compared to the rest of the galaxy?
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The winning algorithm
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1. input 2. rotate 3. crop 4. convolutions 5. dense 6. predictions




Winning the game or doing science?

Q3: bar, 2449 examples
average accuracy: 90.16%
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L abelled data for Euclid
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Euclid preparation

XLIll. Measuring detailed galaxy morphologies for Euclid with machine learning
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CLASSICAL INFERENCE REQUIRES ANALYTICAL MODELS
THAT CAN BE PASSED IN TO A MCMC WITH MANY CALLS
TO A LIKELIHOOD FUNCTION
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GALAXY CLUSTERS ARE DOMINATED BY DARK
MATTER

'
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GRAVITATIONAL LENSING HELPS US TRACE THE DARK
MATTER.

galaxy
galaxy cluster

lensed galaxy images

distorted light-rays
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CLASSICAL MODELLING TO INFER PARAMETERS




COMPARE THE PARAMETERS TO SIMULATIONS OF GALAXY
CLUSTERS WITH DIFFERENT MODELS OF DARK MATTER




MODELLING IS SLOW
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Harvey + 20243



BUT INFORMATION CAN BE
LOST IN SIMPLIFICATION.

Harvey + 20243



DEEP NETS CAN HELP US AGNOSTICALLY PROBE
DARK MATTER WHILST SPEEDING UP THE PROCESS
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FIRST WE NEE

D OUR SAMPLES

Fiducial Model

CDM-low CDM-hi CDM
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WE CAN REACH 80% ACCURACY
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CLASSIFICATION TO REGRESSION
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Predictions after forward modelling on

upcoming telescopes
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Why astronomy needs machine learning

- Classical inference requires analytical models that
can be passed in to a MCMC

- The number of posterior calls is normally very large.
- Likelihoods are not Gaussian.

- Direct comparison of simulations to observations
would be impossible in the current situation.

- Astrophysical simulations are often computationally
expensive



Classical interence is slow and requires analytical models that
often lose information resulting in loose and biased inference.
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WHAT WE WANT:

L/{]-

- TO DIRECTLY COMPARE OUR COMPLEX FORWARD
MODELS TO THE DATA

- THAT DO NOT ASSUME HOW THE LIKELIHOOD OF THE
PARAMETERS OF THE MODEL ARE DISTRIBUTED

- QUICKLY, EFFICIENTLY AND UNBIASED

Simulation Based Inference



BASIC PRINCIPLES O
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APPROXIMATE BAYESIAN COMPUTATION

p(t27t0)

p(tna tO)




What | would rather: Estimate the true posterior or
ikelihood of the parameters in a model free way.
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Then train some density estimator to predict the likelihood /
posterior at non-sampled points in the parameter space -

Then evaluate at the location of the observations..

:' Nice that different

| priors can be placed 1|}

{ parameters very well | }




How do we estimate the likelihood for the sampled distribution

Neural Density Estimators
p(t|0; w)

Gaussian mixture model

— Gaussian Mixture Model
-= Actual Data
u=10.58, 0=0.35, w=0.53
u=9.65, 0=0.36, w=0.27
u=11.82, 0=0.31, w=0.08
u=8.61, 0=0.52, w=0.11

10

log(Weights)

Train using a discrete, monte carlo estimation of the
Kullback-Leibler divergence.



HOW THIS WORKS IN PRACTIC

Forward simulations

Score compression

Train Neural Density Estimators

s




Simulations are very expensive to run.

Summaries
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HOW THIS WORKS IN PRACTIC

Forward simulations

Score compression

Train Neural Density Estimators

s




Active learning (with Sequential Neural Likelihood)

First -> more neural density estimators the
better

N Ensembles NDEs

p(t|6; w) Z Bapa(t|0; w)

Secondly -> this tells you where the
ikelihood is important and where there is
uncertainty.



SPEED UP SIMULATIONS WITH
GENERATIVE METHODS.

Dark matter only simulations are
quick(ish

Full simulations are slow

o

TRAIN A METHOD TO LEARN THE CONNECTION
BETWEEN DARK MATTER AND ASTROPHYSICS






SPEED UP SIMULATIONS WITH GENERATIVE METHODS:
VARIABLE AUTOENCODERS

X-ray emission Dark matter distribution

Pl y{

Some parameterised mode|

olriy) = [ oy, Pk

Pe

Prior information on the weights.



ASSUMING GAUSSIAN MIXTURES

p(aly) = / d: p(;\y, p(zly)

Predict the weights of the mixture model using a

CNN then sampled from the resulting distributions
to create new samples

Generte




HOW THIS WORKS IN PRACTIC

ururea| 2AOY

Score compression

Train Neural Density Estimators

s




OTHER METHODS FOR GENERATIVE MODELS IN
ASTRONOMY:

NORMALISING FLOWS (E.G. HTTPS://ARXIV.ORG/PDF/

2211.15161, HTTPS://ARXIV.ORG/ABS/2105.12024)

DIFFUSION MODELS (E.G. HTTPS://ARXIV.ORG/PDEF/
2311.05217)



https://arxiv.org/pdf/2211.15161
https://arxiv.org/pdf/2211.15161
https://arxiv.org/pdf/2311.05217
https://arxiv.org/pdf/2311.05217

CLASSICAL INFERENCE IS SLOW AND REQUIRES ANALYTICAL MODELS THAT
OFTEN LOSE INFORMATION RESULTING IN LOOSE AND BIASED INFERENCE.

ONE CAN USE MACHINE LEARNING DIRECTLY ON SIMULATIONS O
COMPARE AVOIDING LOSING INFORMATION.
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SIMULATION BASED INFERENCE PRESENTS A WAY TO COMPARE
DIRECTLY TO SIMULATIONS IN A ROBUST STATISTICAL WAY WITH
ADVANCE IN GENERATIVE NETWORKS AIDING INFERENCE



DISTRIBUTION OF NEARBY GALAXIES
MAPPED BY THE DARK ENERGY SPECTROSCOPIC INSTRUMENT (DESI)

Distribution of matter as seen by the millennium simulation



