m SCITAS

e lgertaentee

(
(
[
[
'

Nicolas Richart
Emmanuel Lanti

I
[
*

- 1. ==
Parallel Programming
Single-core optimization, MPI, OpenMP, and hybrid programming

Course based on V. Keller’s lecture notes

15th _ 10th of November 2021

"

L]
‘w
¢

P T

wiv

TR et O Bardesetdeietde s tde . Tdw 2w

|

What will we learn today?

® Hybrid MPI + OpenMP programming
B Partitioned point-to-point communications

B Matching probe/receive

® SCITAS N. Richart, E. Lanti 2 /15

=prL

|BEEEE___[EEERE| |[EEEEE,__[EEERE| |EEEEE___[EEEEE|
HEEEE HEEEE HEEEE HEEEE HEEEE HEEEE
I I I I I I
Shared Memory ‘ ’ Shared Memory ‘ ’ Shared Memory

Interconnection Network

® SCITAS N. Richart, E. Lanti 3/15

=prL

OpenMP OpenMP OpenMP
|BEEEE___[EEERE| |[EEEEE,__[EEERE| |EEEEE___[EEERE|
HEEEE HEEEE HEEEE HEEEE HEEEE HEEEE
I I I I I I
Shared Memory ‘ ’ Shared Memory ‘ ’ Shared Memory

Interconnection Network

® SCITAS N. Richart, E. Lanti 3/15

Situation

Problems

Thread safety?

Which thread/process can/will call the MPI library?

MPI process placement in the case of multi-CPU processors?
Data visibility? OpenMP private?

Does my problem fits with the targeted machine?

Levels of parallelism within my problem?

® SCITAS N. Richart, E. Lanti 4 /18

Hybrid MP1/OpenMP hello world

ybrid/hello world.cc

1 #include <iostream>

2 #include <mpi.h>

3 #1include <omp.h>

4

5 int main(int argc, char *argv[]) {

6 int provided, size, rank, nthreads, tid;

7 MPI_Init_thread(&argc, &argv, MPI_THREAD_SINGLE, &provided);

8

9 MPI_Comm_size (MPI_COMM_WORLD, &size);

10 MPI_Comm_rank (MPI_COMM_WORLD, &rank);

11

12 #pragma omp parallel default(shared) private(tid, nthreads)

13

14 nthreads = omp_get_num_threads() ;

15 tid = omp_get_thread_num();

16 std::printf("Hello from thread %i out of %i from process %i out of %i\n", tid, nthreads, rank,
< size);

17 }

18 MPI_Finalize();

19 return 0;

20 }

® SCITAS N. Richart, E. Lanti 5/ 15

Hybrid MP1/OpenMP hello world

Compilation using the GNU g++ compiler:

{$> mpicxx -fopenmp hello_world.cc -o hello_world

Compilation using the Intel C++ compiler:

l$> mpiicpc -qopenmp hello_world.cc -o hello_world

W SCITAS N. Richart, E. Lanti

6 /15

Submission script the clusters

#!/bin/bash

#SBATCH --nodes 1

#SBATCH --ntasks 2
#SBATCH --cpus-per-task 3

export OMP_NUM_THREADS=3
srun -n 2 ./hello_world

It will start 2 MPI processes each will spawn 3 threads

thread process
thread process
thread process

thread process
thread process
thread process

= SCITAS

Changes to your code

B Change your MPI initialization routine
» MPI_Init is replaced by MPI_Init_thread
» MPI_Init_thread has two additional parameters for the level of thread support required, and for the level
of thread support provided by the library implementation

1 int MPI_Init_thread(int *argc, char ***argv, int required, int *provided)]

B Make sure that the provided support matches the required one

2 MPI_Abort(MPI_COMM_WORLD, EXIT_FAILURE);

1 if (provided < required)

® Add OpenMP directives as long as you stick to the level of thread safety you specified in the call to
MPI_Init_thread

® SCITAS N. Richart, E. Lanti 8/ 15

The 4 options for thread support

MPI_THREAD _SINGLE

» Only one thread will execute (no multi-threading)
» Standard MPl-only application

MPI_THREAD _FUNNELED

» Only the Master Thread will make calls to the MPI library
» A thread can determine whether it is the master thread by a call to MPI_Is_thread_main

MPI_THREAD _SERIALIZED

» Only one thread at a time will make calls to the MPI library, but all threads are eligible to make such calls
MPI_THREAD_MULTIPLE

» Any thread may call the MPI library at any time

® SCITAS N. Richart, E. Lanti 9/ 15

The 4 options for thread support

MPI_THREAD _SINGLE

» Only one thread will execute (no multi-threading)
» Standard MPl-only application

MPI_THREAD _FUNNELED

» Only the Master Thread will make calls to the MPI library
» A thread can determine whether it is the master thread by a call to MPI_Is_thread_main

MPI_THREAD _SERIALIZED

» Only one thread at a time will make calls to the MPI library, but all threads are eligible to make such calls
MPI_THREAD_MULTIPLE

» Any thread may call the MPI library at any time

In most cases MPI_THREAD _FUNNELED provides the best choice for hybrid programs

® SCITAS N. Richart, E. Lanti 9/ 15

The 4 options for thread support

MPI_THREAD _SINGLE

» Only one thread will execute (no multi-threading)
» Standard MPl-only application

MPI_THREAD _FUNNELED

» Only the Master Thread will make calls to the MPI library
» A thread can determine whether it is the master thread by a call to MPI_Is_thread_main

MPI_THREAD _SERIALIZED

» Only one thread at a time will make calls to the MPI library, but all threads are eligible to make such calls
MPI_THREAD_MULTIPLE

» Any thread may call the MPI library at any time

In most cases MPI_THREAD _FUNNELED provides the best choice for hybrid programs

1 int MPI_Query_thread(int * thread_level_provided);

Returns the level of thread support provided by the MPI library

® SCITAS N. Richart, E. Lanti 9/ 15

The 4 options for thread support

B Thread support values are monotonic, i.e.

MPI_THREAD_SINGLE < MPI_THREAD_FUNNELED < MPI_THREAD_SERIALIZED < MPI_THREAD _MULTIPLE
m Different processes in MPI_COMM _WORLD can have different thread safety
B The level(s) of provided thread support depends on the implementation

B The rules for thread support attribution are done in the following order:

» return provided = required
» return the least supported level such that provided > required
» return the highest supported level

® SCITAS N. Richart, E. Lanti 10 / 15

MPI partitioned communications

® New feature from MPI 4.0 standard (June 2021!)
® We have already talked about persistent point-to-point communications
B Partitioned comms are just persistent comms where the message is constructed in partitions

B Typical case: multi-threading with each thread building a portion of the message

® SCITAS N. Richart, E. Lanti 11 / 15

MPI partitioned communications

B Remember the typical cycle for persistent point-to-point communications
Init (Start Test/Wait)* Free
where * means zero or more

B Partitioned are very similar
Plnit (PStart PReady)* Free

1 MPI_Psend_init(msg, parts, count, MPI_INT, dest, tag, info, MPI_COMM_WORLD, &request);
2 MPI_Start(&request);

3 #pragma omp parallel for shared(request)

4 for (int i = 0; i < parts; ++i) {

5 /* compute and fill partition #i, then mark ready: */
6 MPI_Pready(i, request);

7 }

s while(!flag) {

9 /* Do useful work */

10 MPI_Test (&request, &flag, MPI_STATUS_IGNORE);

11 /* Do useful work */

12 }

13 MPI_Request_free(&request);

® SCITAS N. Richart, E. Lanti 12 / 15

MPI matching probe

® We have already talked about MPI_Probe to obtain information about a message waiting to be
received

B This is typically used when the size of the message is unknown (probe, allocate, receive)

® SCITAS N. Richart, E. Lanti 13 / 15

MPI matching probe

® We have already talked about MPI_Probe to obtain information about a message waiting to be
received

B This is typically used when the size of the message is unknown (probe, allocate, receive)

m Care must be taken because it is a stateful method:

A subsequent receive [...] will receive the message that was matched by the probe, if no other
intervening receive occurs after the probe |[...]

W SCITAS N. Richart, E. Lanti

13 / 15

MPI matching probe

® We have already talked about MPI_Probe to obtain information about a message waiting to be
received

B This is typically used when the size of the message is unknown (probe, allocate, receive)

®m Care must be taken because it is a stateful method:
A subsequent receive [...] will receive the message that was matched by the probe, if no other
intervening receive occurs after the probe |[...]

B Problem with multi-threading!
B |magine two threads A and B that must do a Probe, Allocation, and Receive
APHAAHAR*}BPHBA*)BR

but may also be
AP—>BP—>BA—>BR—>AA—)AR

Thread B stole thread A's message!

® SCITAS N. Richart, E. Lanti 13 / 15

MPI matching probe

B The solution of this problem is the matching probe
®m MPI provides two versions, MPI_Improbe and MPI_Mprobe

® |t allows to receive only a message matching a specific probe

® SCITAS N. Richart, E. Lanti 14 / 15

MPI matching probe

B The solution of this problem is the matching probe

®m MPI provides two versions, MPI_Improbe and MPI_Mprobe

® |t allows to receive only a message matching a specific probe

®m Counter part operation are the matching receive MPI_Imrecv and MPI_Mrecv
[

They are used to receive messages that have been previously matched by a matching probe

® SCITAS N. Richart, E. Lanti 14 / 15

Concluding remarks

® Always keep in mind that you are mixing threads and processes
B You will need to test your code performance on every machine
B There are no magic rule on the best configuration to use

m Often 1 MPI task per NUMA region seems to give the best performance

® SCITAS N. Richart, E. Lanti 15 / 15

	Hybrid Programming
	What will we learn today?
	Hybrid programming model
	A simple hello world example
	Prepare your code for hybrid execution
	MPI partitioned communications
	MPI matching probe

