
Parallel Programming
Single-core optimization, MPI, OpenMP, and hybrid programming

Nicolas Richart
Emmanuel Lanti
Course based on V. Keller’s lecture notes

15th - 19th of November 2021

What will we learn today?

Hybrid MPI + OpenMP programming

Partitioned point-to-point communications

Matching probe/receive

N. Richart, E. Lanti 2 / 15

Situation

Shared Memory

Core Core Core Core Core

CoreCoreCoreCore Core

Core Core Core Core Core

CoreCoreCoreCore Core

Shared Memory

Core Core Core Core Core

CoreCoreCoreCore Core

Core Core Core Core Core

CoreCoreCoreCore Core

Shared Memory

Core Core Core Core Core

CoreCoreCoreCore Core

Core Core Core Core Core

CoreCoreCoreCore Core

Interconnection Network

Shared Memory

Core Core Core Core Core

CoreCoreCoreCore Core

Core Core Core Core Core

CoreCoreCoreCore Core

Shared Memory

Core Core Core Core Core

CoreCoreCoreCore Core

Core Core Core Core Core

CoreCoreCoreCore Core

Shared Memory

Core Core Core Core Core

CoreCoreCoreCore Core

Core Core Core Core Core

CoreCoreCoreCore Core

Interconnection Network

OpenMP OpenMP OpenMP

MPI

N. Richart, E. Lanti 3 / 15

Situation

Shared Memory

Core Core Core Core Core

CoreCoreCoreCore Core

Core Core Core Core Core

CoreCoreCoreCore Core

Shared Memory

Core Core Core Core Core

CoreCoreCoreCore Core

Core Core Core Core Core

CoreCoreCoreCore Core

Shared Memory

Core Core Core Core Core

CoreCoreCoreCore Core

Core Core Core Core Core

CoreCoreCoreCore Core

Interconnection Network

Shared Memory

Core Core Core Core Core

CoreCoreCoreCore Core

Core Core Core Core Core

CoreCoreCoreCore Core

Shared Memory

Core Core Core Core Core

CoreCoreCoreCore Core

Core Core Core Core Core

CoreCoreCoreCore Core

Shared Memory

Core Core Core Core Core

CoreCoreCoreCore Core

Core Core Core Core Core

CoreCoreCoreCore Core

Interconnection Network

OpenMP OpenMP OpenMP

MPI

N. Richart, E. Lanti 3 / 15

Situation
Problems

Thread safety?

Which thread/process can/will call the MPI library?

MPI process placement in the case of multi-CPU processors?

Data visibility? OpenMP private?

Does my problem fits with the targeted machine?

Levels of parallelism within my problem?

N. Richart, E. Lanti 4 / 15

Hybrid MPI/OpenMP hello world

hybrid/hello_world.cc

1 # include <iostream>
2 # include <mpi.h>
3 # include <omp.h>
4
5 int main(int argc, char *argv[]) {
6 int provided, size, rank, nthreads, tid;
7 MPI_Init_thread(&argc, &argv, MPI_THREAD_SINGLE, &provided);
8
9 MPI_Comm_size(MPI_COMM_WORLD, &size);

10 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
11
12 # pragma omp parallel default(shared) private(tid, nthreads)
13 {
14 nthreads = omp_get_num_threads();
15 tid = omp_get_thread_num();
16 std::printf("Hello from thread %i out of %i from process %i out of %i\n", tid, nthreads, rank,

size);↪→
17 }
18 MPI_Finalize();
19 return 0;
20 }

N. Richart, E. Lanti 5 / 15

Hybrid MPI/OpenMP hello world

Compilation using the GNU g++ compiler:

$> mpicxx -fopenmp hello_world.cc -o hello_world

Compilation using the Intel C++ compiler:

$> mpiicpc -qopenmp hello_world.cc -o hello_world

N. Richart, E. Lanti 6 / 15

Submission script the clusters

#!/bin/bash
#SBATCH --nodes 1
#SBATCH --ntasks 2
#SBATCH --cpus-per-task 3

export OMP_NUM_THREADS=3
srun -n 2 ./hello_world

It will start 2 MPI processes each will spawn 3 threads

Hello from thread 0 out of 3 from process 0 out of 2
Hello from thread 1 out of 3 from process 0 out of 2
Hello from thread 0 out of 3 from process 1 out of 2
Hello from thread 1 out of 3 from process 1 out of 2
Hello from thread 2 out of 3 from process 0 out of 2
Hello from thread 2 out of 3 from process 1 out of 2

N. Richart, E. Lanti 7 / 15

Changes to your code

Change your MPI initialization routine
I MPI_Init is replaced by MPI_Init_thread
I MPI_Init_thread has two additional parameters for the level of thread support required, and for the level

of thread support provided by the library implementation

1 int MPI_Init_thread(int *argc, char ***argv, int required, int *provided)

Make sure that the provided support matches the required one

1 if (provided < required)
2 MPI_Abort(MPI_COMM_WORLD, EXIT_FAILURE);

Add OpenMP directives as long as you stick to the level of thread safety you specified in the call to
MPI_Init_thread

N. Richart, E. Lanti 8 / 15

The 4 options for thread support

MPI_THREAD_SINGLE
I Only one thread will execute (no multi-threading)
I Standard MPI-only application

MPI_THREAD_FUNNELED
I Only the Master Thread will make calls to the MPI library
I A thread can determine whether it is the master thread by a call to MPI_Is_thread_main

MPI_THREAD_SERIALIZED
I Only one thread at a time will make calls to the MPI library, but all threads are eligible to make such calls

MPI_THREAD_MULTIPLE
I Any thread may call the MPI library at any time

In most cases MPI_THREAD_FUNNELED provides the best choice for hybrid programs

1 int MPI_Query_thread(int * thread_level_provided);

Returns the level of thread support provided by the MPI library

N. Richart, E. Lanti 9 / 15

The 4 options for thread support

MPI_THREAD_SINGLE
I Only one thread will execute (no multi-threading)
I Standard MPI-only application

MPI_THREAD_FUNNELED
I Only the Master Thread will make calls to the MPI library
I A thread can determine whether it is the master thread by a call to MPI_Is_thread_main

MPI_THREAD_SERIALIZED
I Only one thread at a time will make calls to the MPI library, but all threads are eligible to make such calls

MPI_THREAD_MULTIPLE
I Any thread may call the MPI library at any time

In most cases MPI_THREAD_FUNNELED provides the best choice for hybrid programs

1 int MPI_Query_thread(int * thread_level_provided);

Returns the level of thread support provided by the MPI library

N. Richart, E. Lanti 9 / 15

The 4 options for thread support

MPI_THREAD_SINGLE
I Only one thread will execute (no multi-threading)
I Standard MPI-only application

MPI_THREAD_FUNNELED
I Only the Master Thread will make calls to the MPI library
I A thread can determine whether it is the master thread by a call to MPI_Is_thread_main

MPI_THREAD_SERIALIZED
I Only one thread at a time will make calls to the MPI library, but all threads are eligible to make such calls

MPI_THREAD_MULTIPLE
I Any thread may call the MPI library at any time

In most cases MPI_THREAD_FUNNELED provides the best choice for hybrid programs

1 int MPI_Query_thread(int * thread_level_provided);

Returns the level of thread support provided by the MPI library

N. Richart, E. Lanti 9 / 15

The 4 options for thread support

Thread support values are monotonic, i.e.
MPI_THREAD_SINGLE < MPI_THREAD_FUNNELED < MPI_THREAD_SERIALIZED < MPI_THREAD_MULTIPLE

Different processes in MPI_COMM_WORLD can have different thread safety

The level(s) of provided thread support depends on the implementation
The rules for thread support attribution are done in the following order:
I return provided = required
I return the least supported level such that provided > required
I return the highest supported level

N. Richart, E. Lanti 10 / 15

MPI partitioned communications

New feature from MPI 4.0 standard (June 2021!)

We have already talked about persistent point-to-point communications

Partitioned comms are just persistent comms where the message is constructed in partitions

Typical case: multi-threading with each thread building a portion of the message

N. Richart, E. Lanti 11 / 15

MPI partitioned communications

Remember the typical cycle for persistent point-to-point communications

Init (Start Test/Wait)* Free

where * means zero or more

Partitioned are very similar

PInit (PStart PReady)* Free

1 MPI_Psend_init(msg, parts, count, MPI_INT, dest, tag, info, MPI_COMM_WORLD, &request);
2 MPI_Start(&request);
3 # pragma omp parallel for shared(request)
4 for (int i = 0; i < parts; ++i) {
5 /* compute and fill partition #i, then mark ready: */
6 MPI_Pready(i, request);
7 }
8 while(!flag) {
9 /* Do useful work */

10 MPI_Test(&request, &flag, MPI_STATUS_IGNORE);
11 /* Do useful work */
12 }
13 MPI_Request_free(&request);

N. Richart, E. Lanti 12 / 15

MPI matching probe

We have already talked about MPI_Probe to obtain information about a message waiting to be
received

This is typically used when the size of the message is unknown (probe, allocate, receive)

Care must be taken because it is a stateful method:
A subsequent receive [...] will receive the message that was matched by the probe, if no other
intervening receive occurs after the probe [...]

Problem with multi-threading!

Imagine two threads A and B that must do a Probe, Allocation, and Receive

AP −→ AA −→ AR −→ BP −→ BA −→ BR

but may also be
AP −→ BP −→ BA −→ BR −→ AA −→ AR

Thread B stole thread A’s message!

N. Richart, E. Lanti 13 / 15

MPI matching probe

We have already talked about MPI_Probe to obtain information about a message waiting to be
received

This is typically used when the size of the message is unknown (probe, allocate, receive)

Care must be taken because it is a stateful method:
A subsequent receive [...] will receive the message that was matched by the probe, if no other
intervening receive occurs after the probe [...]

Problem with multi-threading!

Imagine two threads A and B that must do a Probe, Allocation, and Receive

AP −→ AA −→ AR −→ BP −→ BA −→ BR

but may also be
AP −→ BP −→ BA −→ BR −→ AA −→ AR

Thread B stole thread A’s message!

N. Richart, E. Lanti 13 / 15

MPI matching probe

We have already talked about MPI_Probe to obtain information about a message waiting to be
received

This is typically used when the size of the message is unknown (probe, allocate, receive)

Care must be taken because it is a stateful method:
A subsequent receive [...] will receive the message that was matched by the probe, if no other
intervening receive occurs after the probe [...]

Problem with multi-threading!

Imagine two threads A and B that must do a Probe, Allocation, and Receive

AP −→ AA −→ AR −→ BP −→ BA −→ BR

but may also be
AP −→ BP −→ BA −→ BR −→ AA −→ AR

Thread B stole thread A’s message!

N. Richart, E. Lanti 13 / 15

MPI matching probe

The solution of this problem is the matching probe

MPI provides two versions, MPI_Improbe and MPI_Mprobe
It allows to receive only a message matching a specific probe

Counter part operation are the matching receive MPI_Imrecv and MPI_Mrecv
They are used to receive messages that have been previously matched by a matching probe

N. Richart, E. Lanti 14 / 15

MPI matching probe

The solution of this problem is the matching probe

MPI provides two versions, MPI_Improbe and MPI_Mprobe
It allows to receive only a message matching a specific probe

Counter part operation are the matching receive MPI_Imrecv and MPI_Mrecv
They are used to receive messages that have been previously matched by a matching probe

N. Richart, E. Lanti 14 / 15

Concluding remarks

Always keep in mind that you are mixing threads and processes

You will need to test your code performance on every machine

There are no magic rule on the best configuration to use

Often 1 MPI task per NUMA region seems to give the best performance

N. Richart, E. Lanti 15 / 15

	Hybrid Programming
	What will we learn today?
	Hybrid programming model
	A simple hello world example
	Prepare your code for hybrid execution
	MPI partitioned communications
	MPI matching probe

