Parallel Programming PHYS-743

Serie OpenMP
Exercise 1. OpenMP: hello world
e In the pi.cc add a function call to get the number of threads.
e Compile using the porper options for OpenMP
e Test that it works by varying the number of threads export OMP_NUM_THREADS

e To vary the number of threads in a sbatch job you can set the number of threads to the
number of cpus per task.

#!/bin/bash
#SBATCH -c <nthreads>

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK
<my_openmp_executable>

Exercise 2. Parallelize the loop

e Add a parallel for work sharing construct around the integral computation
e Run the code
e Run the code
e Run the code

e What can you observe on the value of pi ?
Exercise 3. Naive reduction

e To solve the raise condition from the previous exercise we can protect the computation of
the sum.

e Add a critical directive to protect the sum
e Run the code

e What can you observe on the execution time while varying the number of threads
Exercise 4. Naive reduction ++

e Create a local variable per thread
e Make each thread compute it’s own sum

o After the computation of the integral us a critical directive to sum the local sum to a
shared sum

Exercise 5. Reduction

Parallel Programming PHYS-743

e Use the reduction clause

e Compare the timings to the previous versions
Exercise 6. Poisson

e Now you can apply what you learn to the poisson code.

e Remember that 90% of the time is spend in the dumpers. So make sure you dump only
once at the end of the simulation to get a validation image.

