
Parallel Programming PHYS-743

Serie OpenMP

Exercise 1. OpenMP: hello world

• In the pi.cc add a function call to get the number of threads.

• Compile using the porper options for OpenMP

• Test that it works by varying the number of threads export OMP NUM THREADS

• To vary the number of threads in a sbatch job you can set the number of threads to the
number of cpus per task.

#!/bin/bash

#SBATCH -c <nthreads>

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

<my_openmp_executable>

Exercise 2. Parallelize the loop

• Add a parallel for work sharing construct around the integral computation

• Run the code

• Run the code

• Run the code

• What can you observe on the value of pi ?

Exercise 3. Naive reduction

• To solve the raise condition from the previous exercise we can protect the computation of
the sum.

• Add a critical directive to protect the sum

• Run the code

• What can you observe on the execution time while varying the number of threads

Exercise 4. Naive reduction ++

• Create a local variable per thread

• Make each thread compute it’s own sum

• After the computation of the integral us a critical directive to sum the local sum to a
shared sum

Exercise 5. Reduction

1

Parallel Programming PHYS-743

• Use the reduction clause

• Compare the timings to the previous versions

Exercise 6. Poisson

• Now you can apply what you learn to the poisson code.

• Remember that 90% of the time is spend in the dumpers. So make sure you dump only
once at the end of the simulation to get a validation image.

2

