Parallel Programming PHYS-743

Serie MPI

1 Different parallelisation of the Pi reduction
Exercise 1. MPI Hello world

e Initialize/finialize properly MPI

e Print out the number of processes and the rank of each process

e Write a batch script to run your parallel code

#!/bin/bash

#SBATCH -n <ntasks>
module purge

module load <mpi library>
srun <my_mpi_executable>

\

Note : To use MPI on the cluster you first have to load a MPI implementation through
the module mvapich2 or intel-mp<. In addition in the SLURM environment you should
use srun instead of mpiexec or mpirun

Exercise 2. MPI Ring point to point synchronous

In this exercise every process will compute a portion of the integral. And then the partial
sum will turn in ring in order for every process the be able to compute the full integral by
summing all the partial sums.

e Split the sum space between the processes

e Implement a ring to communicate the partial sum between the processes. using MPI_Ssend
and MPI Recv

Remember : each MPI process runs the same code!

Note : in a loop the next process is (prank + 1) J psize and the previous is (prank -
1 + psize) ) psize

Exercise 3. MPI Ring point to point synchronous sendrecv
Modify the previous exercise to use MPI_Sendrecv

Exercise 4. MPI Ring point to point asynchronous
Modify the previous exercise to use MPI_Isend and MPI_Recv

Exercise 5. MPI Ring collective gather

Instead of the ring to communicate a value between every process use the collective com-
munication, MPI_Gather the partial sums to the root process. Then MPI_Bcast the total sum
to everyone

Exercise 6. MPI Ring collective reduce
Modify the previous exercise to use MPI_Reduce



Parallel Programming PHYS-743

2 Poisson

Exercise 7. Parallelization with MPI

Parallelize the Poisson 2D problem using the Messages Passing Interface (MPI). As a starting
point, you can use the debugged, profiled and optimized serial version of the serie 4 or start
from scratch. Here follows some advises for your work:

The memory allocation in C is done in “Row-Major Order” : make your domain decom-
position by lines

(In Fortran, the memory allocation is “Column-Major Order” (make the decomposition
by columns))

Try to keep the size of the MPI messages as large as possible (i.e. send/receive a full line
instead of single elements). In order to avoid deadlocks, use MPI_Sendrecv first.

Same problem as with OpenMP : the main bottleneck is the file writings: be sure not to
call dump(). The verification is done by comparing the number of iterations to reach a
given error (Lgy). To be sure your parallel implementation is correct: compare your results
against the serial implementation.

To increase the performance of your code, the communications can be hidden behind
computation by using non-blocking communications (MPI_Isend/MPI_Irecv)

Increase the size of the grid so that the total execution time on one node is close to 3-4
seconds

Run your application on an increasing number of nodes by fixing the total size of the
problem. Draw a log-log graph with the speedup (S, = t1/tp) on the y axis, the number
of nodes on the x axis (strong scaling)

Run your application on an increasing number of nodes by fixing the size of the problem
per processor. Draw a graph with the parallel efficiency (E, = S,/p) on the y axis, the
number of nodes on the x axis (weak scaling)

Exercise 8. Naive 10s
The first approach for the dump (write_to_file) function is to gather everything on the
root node, usually the rank 0.

For this exercise gather all the lines on the process of rank 0 and write the file on disk.

Check the effect of this approach on the scalability.



