Gauge Theories and the Standard Model

Problem Set 9

Due Tuesday, November 26, in class (BSP 727)

Problem: Extracting $\sin^2\theta_w$ from lepton data (Part 2)

In the last problem set we discovered that neutrino-scattering data provided information to test the Standard Model, and even extract s_w^2 . However, these data could not eliminate a two-fold ambiguity in the $g_A^e - g_V^e$ plane. To solve this ambiguity new observables need to be employed. Here, we will use $e^+e^- \to \mu^+\mu^-$ measurements from MARK-J at PETRA. The MARK-J collaboration provides measurements of the observable

$$A = \frac{N^- - N^+}{N^- + N^+}$$

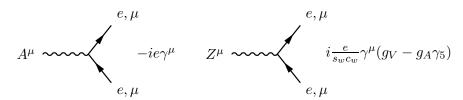
where N^- (N^+) is the number of events with $\mu^-(\mu^+)$ observed in the solid-angle range $50^{\circ} \le \theta \le 80^{\circ}$, with θ the angle between the incoming e^- and the outgoing $\mu^-(\mu^+)$. The collaboration reports the measurements

$$A = -0.07 \pm 0.02$$
 for $\sqrt{s} = 30 \,\text{GeV}$
 $A = -0.1 \pm 0.03$ for $\sqrt{s} = 35 \,\text{GeV}$.

In addition it has provided measurements of the total cross-section of $e^+e^- \to \mu^+\mu^-$ for various \sqrt{s} 's. For this exercise we will use

$$\sigma_{\mathrm{tot}} = (96 \pm 4) \,\mathrm{pb}$$
 for $\sqrt{s} = 30 \,\mathrm{GeV}$,
 $\sigma_{\mathrm{tot}} = (71 \pm 6) \,\mathrm{pb}$ for $\sqrt{s} = 35 \,\mathrm{GeV}$.

(i) In order to test the Standard Model, we will compute within the theory in which the Z boson has generic vector and axial-vector couplings such that the relevant Feynman rules are



with $s_w \equiv \sin \theta_w$ and $c_w \equiv \cos \theta_w$. Here we have assumed that g_V and g_A are universal, i.e., same for electrons and muons. What is the value of g_V and g_A in the Standard Model? Show that this definition of g_V and g_A agrees with the definition of g_V and g_A in the Fermi theory in the lecture.

(ii) Compute the unpolarised, differential cross section for $e^+e^- \to \mu^+\mu^-$ as a function of the s and t parameters. Neglect the fermion masses, but not the Z boson width, i.e., use the Breit-Wigner propagator for the Z boson. In the center-of-mass frame show that

$$\frac{d\sigma}{d\cos\theta} = \frac{\pi\alpha^2}{2s} \left(A(1+\cos^2\theta) + B\cos\theta \right)$$

with

$$A = 1 - 8\sqrt{2} \frac{G_{\rm F}s}{e^2} \text{Re}[\mathcal{K}(s)] g_V^2 + 32G_{\rm F}^2 s^2 |\mathcal{K}(s)|^2 (g_A^2 + g_V^2)^2$$

$$B = -16\sqrt{2} \frac{G_{\rm F}s}{e^2} \text{Re}[\mathcal{K}(s)] g_A^2 + (16)^2 G_{\rm F}^2 s^2 |\mathcal{K}(s)|^2 g_A^2 g_V^2,$$

and

$$\mathcal{K}(s) \equiv \frac{M_Z^2}{M_Z^2 - s - iM_Z\Gamma_Z} \,.$$

What would be the corresponding result if, instead, you had computed directly in the Fermi theory?

(iii) Now, do take the limit in which the Fermi theory is a good effective theory and combine the three neutrino-scattering measurements of the previos problem set and the four $ee \to \mu\mu$ measurements above by constructing a χ^2 function that depends on the observations and (g_A, g_V) . In the plane of $g_A - g_V$, show the preferred 68.27% Confidence Level (CL) regions, i.e., the 1σ regions, of the different measurements and their combination. Is there still a two-fold ambiguity?

Hint: since there are two independent parameters $(g_A \text{ and } g_V)$ the preferred 68.27% CL regions are those for which (g_A, g_V) satisfy $\chi^2(g_A, g_V) - \chi^2_{min} \leq 2.3$.

(iv) Finally, assume the Standard model is correct and use the χ^2 function that you constructed to extract s_w^2 and its 1σ uncertainty. Compare it to the PDG value.