
Gauge Theories and the Standard Model

Problem Set 3

Due Tuesday, October 8, in class (BSP 727)

Problem: Massive vector propagators from the path integral

This problem is a warm up for the lecture on Spontaneous Symmetry Breaking, where we will
understand the dynamical origin of theories that take this form.

Consider the theory of a massive vector, Aµ, with mass m coupled to a scalar, φ, via a kinetic
mixing interaction. In generic ξ gauge the Lagrangian in Minkowski space reads:

L = −1

4
FµνFµν +

1

2
(∂µϕ−mAµ) (∂µϕ−mAµ) + Lgauge-fix , with

Lgauge-fix = − 1

2ξ
(∂µA

µ + m̃ξϕ)2 .

In this problem we will derive the Feynman propagator, ∆F (x− y), for this theory using the
path integral formalism.

(i) Compute the Euclidean action, SE , of this Lagrangian. Remember that to transform to
Euclidean space both coordinates and vector field need to be transformed via

x0 → −ixE0 , x0 → −ixE0 ,

xi → xEi , xi → −xEi ,

∂0 → i∂E0 , ∂0 → i∂E
0 ,

∂i → −∂Ei , ∂i → ∂E
i ,

A0 → iAE0 , A0 → iAE
0 ,

Ai → −AEi , Ai → AE
i .

Below, we do not keep track of all the labels “E” that indicate that the quantities are
Euclidean.

(ii) Package all real fields into one field

Φ(x) =
(
AE

0 (x), A
E
1 (x), A

E
2 (x), A

E
3 (x), φ(x)

)T
and compute the kinetic matrix K{M,x};{N,y}, defined via

SE = S0
E =

1

2

∫ ∫
d4xd4yΦM (x)K{M,x};{N,y}ΦN (y) ,

for this case.

(iii) Compute the matrix K̃(p) that is needed to obtain the Feynman propagator in fourier
space as

∆E
MN (x− y) =

∫
d4p

(2π4)
e−ip(x−y)(K̃−1(p))MN .
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(iv) For the specific case of m̃ = m invert K̃(p) to obtain the Euclidean propagator for the
vector and scalar field. Continue your result back to Minkowski space and verify by
choosing ξ and m̃ appropriately that you recover

• the photon propagator in generic ξ gauge and

• the propagator of a massive vector in unitary gauge.

(v) For generic m̃ the propagator does not split into a block-diagonal form. It is instead a
5× 5 matrix in the space of fields. In this case, inverting the matrix K̃(p) is trickier. One
way of doing this is to decompose K̃(p) into transverse and longitudinal parts. Namely

K̃(p) = APT + PiX
i
jPj† ,

with

PT =

[
gµν − pµpν

p2
0

0 0

]
, P1 =

[
i
pµ
|p|
0

]
, P2 =

[
0
1

]
.

Compute A and the 2× 2 matrix X. Do you see why this decomposition is useful?
(Hint: show that K̃−1(p) = A−1PT + Pi(X

−1)i jPj†)

(vi) Compute K̃−1(p) and find the Feynman propagator in fourier space. Continue the result to
Minkowski space and verify that you reproduce your previous computation when m̃ = m.

(Hint: after the rotation to Minkowski space you should find

∆F (x− y) =

∫
d4p

(2π)4
e−ip(x−y)K̂−1(p) ,

with

K̂−1(p) =


−i

p2−m2

(
gµν − (1− ξ)

pµpν
p2−ξmm̃

(
1 + ξ (m−m̃)

p2−ξmm̃

(
m−m̃
1−ξ + m̃

)))
−ξ

(m−m̃)pµ
(p2−ξmm̃)2

ξ (m−m̃)pν
(p2−ξmm̃)2

i p2−ξm2

(p2−ξmm̃)2

 .

You probably now realise why most people enjoy working in Feynman gauge, i.e., m̃ = m
and ξ = 1.)
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