Gauge Theories and the Standard Model

Problem Set 3

Due Tuesday, October 8, in class (BSP 727)

Problem: Massive vector propagators from the path integral

This problem is a warm up for the lecture on Spontaneous Symmetry Breaking, where we will understand the dynamical origin of theories that take this form.

Consider the theory of a massive vector, A^{μ} , with mass m coupled to a scalar, φ , via a kinetic mixing interaction. In generic ξ gauge the Lagrangian in Minkowski space reads:

$$\mathcal{L} = -\frac{1}{4}F^{\mu\nu}F_{\mu\nu} + \frac{1}{2}\left(\partial^{\mu}\phi - mA^{\mu}\right)\left(\partial_{\mu}\phi - mA_{\mu}\right) + \mathcal{L}_{\text{gauge-fix}}, \quad \text{with}$$

$$\mathcal{L}_{\text{gauge-fix}} = -\frac{1}{2\xi}(\partial_{\mu}A^{\mu} + \tilde{m}\xi\phi)^{2}.$$

In this problem we will derive the Feynman propagator, $\Delta_F(x-y)$, for this theory using the path integral formalism.

(i) Compute the Euclidean action, S_E , of this Lagrangian. Remember that to transform to Euclidean space both coordinates and vector field need to be transformed via

$$x^{0} \rightarrow -ix^{E0}, \qquad x_{0} \rightarrow -ix_{0}^{E},$$

$$x^{i} \rightarrow x^{Ei}, \qquad x_{i} \rightarrow -x_{i}^{E},$$

$$\partial^{0} \rightarrow i\partial^{E0}, \qquad \partial_{0} \rightarrow i\partial_{0}^{E},$$

$$\partial^{i} \rightarrow -\partial^{Ei}, \qquad \partial_{i} \rightarrow \partial_{i}^{E},$$

$$A^{0} \rightarrow iA^{E0}, \qquad A_{0} \rightarrow iA_{0}^{E},$$

$$A^{i} \rightarrow -A^{Ei}, \qquad A_{i} \rightarrow A_{i}^{E}.$$

Below, we do not keep track of all the labels "E" that indicate that the quantities are Euclidean.

(ii) Package all real fields into one field

$$\Phi(x) = (A_0^E(x), A_1^E(x), A_2^E(x), A_3^E(x), \varphi(x))^T$$

and compute the kinetic matrix $\mathcal{K}_{\{M,x\};\{N,y\}}$, defined via

$$S_E = S_E^0 = \frac{1}{2} \int \int d^4x d^4y \Phi_M(x) \mathcal{K}_{\{M,x\};\{N,y\}} \Phi_N(y) ,$$

for this case.

(iii) Compute the matrix $\tilde{\mathcal{K}}(p)$ that is needed to obtain the Feynman propagator in fourier space as

$$\Delta_{MN}^{E}(x-y) = \int \frac{d^4p}{(2\pi^4)} e^{-ip(x-y)} (\tilde{\mathcal{K}}^{-1}(p))_{MN}.$$

- (iv) For the specific case of $\tilde{m}=m$ invert $\tilde{\mathcal{K}}(p)$ to obtain the Euclidean propagator for the vector and scalar field. Continue your result back to Minkowski space and verify by choosing ξ and \tilde{m} appropriately that you recover
 - the photon propagator in generic ξ gauge and
 - the propagator of a massive vector in unitary gauge.
- (v) For generic \tilde{m} the propagator does not split into a block-diagonal form. It is instead a 5×5 matrix in the space of fields. In this case, inverting the matrix $\tilde{\mathcal{K}}(p)$ is trickier. One way of doing this is to decompose $\tilde{\mathcal{K}}(p)$ into transverse and longitudinal parts. Namely

$$\tilde{\mathcal{K}}(p) = A\mathcal{P}_T + \mathcal{P}_i X^i_{\ j} \mathcal{P}^{j\dagger} \,,$$

with

$$\mathcal{P}_T = \begin{bmatrix} g_{\mu\nu} - rac{p_{\mu}p_{\nu}}{p^2} & 0 \\ 0 & 0 \end{bmatrix}, \qquad \qquad \mathcal{P}_1 = \begin{bmatrix} irac{p_{\mu}}{|p|} \\ 0 \end{bmatrix}, \qquad \qquad \mathcal{P}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

Compute A and the 2×2 matrix X. Do you see why this decomposition is useful? (Hint: show that $\tilde{\mathcal{K}}^{-1}(p) = A^{-1}\mathcal{P}_T + \mathcal{P}_i(X^{-1})^i_{\ i}\mathcal{P}^{j\dagger}$)

(vi) Compute $\tilde{\mathcal{K}}^{-1}(p)$ and find the Feynman propagator in fourier space. Continue the result to Minkowski space and verify that you reproduce your previous computation when $\tilde{m}=m$.

(Hint: after the rotation to Minkowski space you should find

$$\Delta_F(x-y) = \int \frac{d^4p}{(2\pi)^4} e^{-ip(x-y)} \hat{K}^{-1}(p) ,$$

with

$$\hat{K}^{-1}(p) = \begin{bmatrix} \frac{-i}{p^2 - m^2} \left(g_{\mu\nu} - (1 - \xi) \frac{p_{\mu}p_{\nu}}{p^2 - \xi m\tilde{m}} \left(1 + \xi \frac{(m - \tilde{m})}{p^2 - \xi m\tilde{m}} \left(\frac{m - \tilde{m}}{1 - \xi} + \tilde{m} \right) \right) \right) & -\xi \frac{(m - \tilde{m})p_{\mu}}{(p^2 - \xi m\tilde{m})^2} \\ \xi \frac{(m - \tilde{m})p_{\nu}}{(p^2 - \xi m\tilde{m})^2} & i \frac{p^2 - \xi m^2}{(p^2 - \xi m\tilde{m})^2} \end{bmatrix}.$$

You probably now realise why most people enjoy working in Feynman gauge, i.e., $\tilde{m} = m$ and $\xi = 1$.)