Gauge Theories and the Standard Model

Problem Set 2

Due Tuesday, October 1, in class (BSP 727)

Lecture: Tim Cohen

Exercises: Majid Ekhterachian, Stefan Stelzl

Problem 1: Ward identity for QCD?

In the first problem set you considered the process of electron-positron scattering into two photons. For this problem, consider a similar process in a non-Abelian gauge theory: scattering of quark-antiquark into two gluons.

- (i) Draw all the Feynman diagrams contributing to the amplitude for this process.
- (ii) Writing the amplitude as $\mathcal{M} = \mathcal{M}_{\mu\nu} \epsilon_1^{\mu} \epsilon_2^{\nu}$, where ϵ 's are the gluon polarization vectors, find the expression for $\mathcal{M}_{\mu\nu}$.
- (iii) Check if the Ward identity, $\mathcal{M}_{\mu\nu}\epsilon_1^{\mu}k_2^{\nu} = 0$, holds for the expression you have obtained, for ϵ_1 being the polarization vector for gluon with (a) transverse and (b) non-transverse polarizations. Also check the above for the following two contributions separately: (1) contribution of the diagrams not involving the non-Abelian gluon self-interaction vertex (2) contribution of the other diagram(s).
- (iv) How do you interpret the results you obtained in the previous part?

Problem 2

Taking the matrix element you found in Problem 1, in this problem you will compute the differential cross section for quark-antiquark annihilation into two gluons with transverse polarizations, $\frac{d\sigma}{dt}(q\bar{q} \to gg)$. You can ignore all masses and use explicit polarization vectors and spinors.

- (i) Which combination of initial state helicities give vanishing contribution?
- (ii) Compute the amplitudes for all combination of initial and final state helicities.
- (iii) Find the various helicity cross sections.
- (iv) BONUS: Find the total differential cross section averaged over initial spins and colors.