Gauge Theories and the Standard Model

Problem Set 10

Due Tuesday, December 3, in class (BSP 727)

Problem: Symmetries of the linear σ -model

Consider the theory of QCD with 2 families of light quarks. This theory has a so-called isospin global symmetry, which refers to the approximate unbroken SU(2) global symmetry of the theory. The Lagrangian for the associated linear σ -model is given by

$$\mathcal{L} = \frac{1}{2} \left[(\partial_{\mu} \boldsymbol{\pi})^2 + (\partial_{\mu} \sigma)^2 \right] + \bar{N} i \gamma^{\mu} \partial_{\mu} N$$
$$+ g \bar{N} (\sigma + i \gamma_5 \boldsymbol{\tau} \cdot \boldsymbol{\pi}) N + \mu^2 (\sigma^2 + \boldsymbol{\pi}^2) - \frac{\lambda}{4} (\sigma^2 + \boldsymbol{\pi}^2)^2$$

where $N = \binom{p}{n}$ is an isospin- $\frac{1}{2}$ nucleon field, $\boldsymbol{\pi} = (\pi_1, \pi_2, \pi_3)$ an isospin one pion field, and σ and isospin zero scalar field. It is convenient to use a 2×2 matrix to represent the spin zero fields collectively:

$$\Sigma = \sigma + i\boldsymbol{\tau} \cdot \boldsymbol{\pi}.\tag{1}$$

- (i) Show that the Lagrangian is invariant under the isospin transformations. Find the corresponding conserved isospin vector current V^i_{μ} , with i=1,2,3.
- (ii) Show that the Lagrangian is invariant under the axial isospin transformations

$$N \to N' = \exp\left(i\frac{\boldsymbol{\tau} \cdot \boldsymbol{\beta}}{2}\gamma_5\right), \qquad \Sigma \to \Sigma' = V^{\dagger}\Sigma V^{\dagger},$$
 (2)

where $V = \exp\left(\frac{i}{2}\boldsymbol{\tau}\cdot\boldsymbol{\beta}\right)$ is an arbitrary 2×2 unitary matrix with $\boldsymbol{\beta} = (\beta_1, \beta_2, \beta_3)$ a set of real constants. Find the corresponding axial-vector currents A^i_{μ} .

- (iii) Calculate the charge commutators $[Q^i,Q^j]$, $[Q^i_5,Q^j_5]$ and $[Q^i,Q^j_5]$, where $Q^i=\int d^3x V^i_0(x)$ and $Q^i_5=\int d^3x A^i_0(x)$.
- (iv) Calculate the commutator of particle fields with the vector and axial-vector charges.
- (v) What is the interpretation of these commutators?