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Chapter 1

Non-Linear Effects in Plasmas

1.1 Introduction

For many plasmas of interest, the Vlasov-Maxwell system of equations can be considered
as the “fundamental” kinetic description:

• The Vlasov equation describes how the evolution of the phase space distribution
fα(~x,~v, t) for each plasma species α (= electrons “e”, ions “i”) is subject to macro-

scopic electric and magnetic fields ( ~E, ~B):

∂fα
∂t

+ ~v · ∂fα
∂~x

+
qα
mα

(

~E + ~v × ~B
)

· ∂fα
∂~v

= 0. (1.1)

This equation is justified in the limit of weakly coupled plasmas, characterized by
a small value ǫp ≪ 1 of the plasma parameter ǫp = 1/(Nλ3

D) ∼ N1/2T−3/2 (N
is the density, T the temperature, and λD the Debye length). One recalls, that
the parameter ǫp is a measure of the relative fluctuation level of interaction energy
due to particle discreteness compared to the kinetic energy. The weakly coupled
approximation is justified for handling most plasmas of interest in magnetic fusion,
i.e. plasmas with low density and high temperature.

• In turn, Maxwell’s equations describe the evolution of the fields [ ~E(~x, t), ~B(~x, t)]:

∇× ~E = −∂ ~B

∂t
, ∇× ~B = µ0

~j +
1

c2
∂ ~E

∂t
, (1.2)

∇ · ~B = 0, ∇ · ~E =
ρ

ǫ0
, (1.3)

where the charge density ρ and current density ~j are generated by the plasma itself:

ρint =
∑

α

qα

∫

d~v fα, ~jint =
∑

α

qα

∫

d~v ~v fα, (1.4)

as well as by possible external sources (ρext,~jext), so that in general:

ρ = ρint + ρext, ~j = ~jint +~jext. (1.5)
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The system of equations (1.1)-(1.5) clearly show how the plasma is both subject to, and

the source of, electromagnetic fields. The distributions fα and the fields ( ~E, ~B) must
therefore be solved for self-consistently.

Note furthermore, that in terms of the unknown quantities fα and ( ~E, ~B), equations
(1.1)-(1.5) form a non-linear system of integro-differential equations. Indeed, the last
term in Vlasov’s equations (1.1) represents a quadratic non-linearity. This is in fact the
only non-linear term in this system, as Maxwell’s equation are themselves fully linear
[including the evaluation of the sources (ρint,~jint) in terms of fα].

Although collisional effects will not be discussed in any detail in this chapter, let us
nonetheless briefly comment here on the additional non-linearity found in the more gen-
eral Fokker-Planck equation. Indeed, in cases for which the fluctuations due to binary
scattering effects can not be fully neglected, the Vlasov equation is replaced by the more
general Fokker-Planck equation:

∂fα
∂t

+ ~v · ∂fα
∂~x

+
qα
mα

(

~E + ~v × ~B
)

· ∂fα
∂~v

=
∑

β

C[fβ, fα],

where the collision operator C[fβ, fα] represents the scattering of species α off of species
β. This collision operator can in many cases be modeled by the Landau-type operator:

C[fβ, fα] = Γα,β
∂

∂~v
·
∫

d~v ′ U(~v − ~v ′) ·
(

1

mβ

∂

∂~v ′
− 1

mα

∂

∂~v

)

fβ(~v
′)fα(~v), (1.6)

where Γα,β = q2αq
2
β ln Λ/(8πǫ

2
0mα), ln Λ is the Coulomb logarithm, and one has defined

the tensor U(~u) = (u21 − ~u : ~u)/u3. The collision operator scales as C ∼ νcf , where
the collision frequency νc is of the order νc/ωp ∼ O(ǫp), ωp being the plasma frequency.
The collision operator (1.6) obviously provides an additional non-linearity to the Fokker-
Planck equation. The origin of this non-linearity is similar to the one in the Vlasov part
of the equation, i.e. the effect of self-consistent electromagnetic fields on the distribution.
The non-linearity in C however results from the Coulomb forces relative to random bi-
nary interactions, while the non-linearity in the Vlasov part results from the macroscopic
electro-magnetic fields from collective phenomena.

For understanding certain basic mechanisms, one can justify linearizing the Vlasov-Maxwell
system of equations. It is assumed here that the reader is familiar with this linear ap-
proximation, in particular as a first approach to studying the dispersion and dissipation
of small amplitude waves. However, plasmas are fundamentally non-linear in nature, and
the non-linearities pointed out above are thus essential for describing a whole set of im-
portant plasma phenomena.

Non-linear plasma theory is a vast topic, and this chapter only provides an introduc-
tion to the subject through a couple of specific examples. The first part of this chapter
considers the non-linear evolution of a single, finite amplitude Langmuir wave, and in
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particular points out the break down of linear Landau damping. To model the non-
linear evolution of resonant wave-particle interaction naturally requires the framework of
a kinetic description. The second part of this chapter addresses the issue of non-linear
wave-wave interaction, and in particular the mechanism of parametric instabilities. These
wave-wave interactions do not involve resonant particles in their basic form, and thus can
be derived from fluid equations.

The examples of non-linear phenomena considered in this chapter are all cases of weak
non-linearity, for which the wave energy remains small compared to the total plasma en-
ergy. Under these conditions, the dispersion of the considered waves remains near the
dispersion predicted by linear theory (some non-linear corrections may nonetheless occur,
see the section on non-linear frequency shift), so that non-linear effects mainly affect the
evolution of the amplitudes of the waves, by either altering damping in the case of non-
linearly interacting resonant particles, or by providing coupling between waves in the case
of wave-wave interactions.

General Reference: Sagdeev and Galeev Ref. [1].
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1.2 Non-Linear Evolution of an Electron Plasma Wave

1.2.1 Motivation/Illustration

In the following, the terms “Langmuir wave” and “electron plasma wave” (EPW) are used
interchangeably to describe the high frequency (near ωp), electrostatic plasma oscillations.

Figure 1.1 presents results from non-linear Vlasov-Poisson simulations of Langmuir waves
using the SAPRISTI code1. In this case, the code simply solves the 1-Dim Vlasov-Poisson
system of equations, where only the electron distribution fe(x, v, t) is evolved:

∂f

∂t
+ v

∂f

∂x
− e

m
E

∂f

∂v
= 0,

∂E

∂x
=

1

ǫ0

(

−e

∫

dvf + qiNi,0

)

. (1.7)

For studying Langmuir waves, it is a good approximation to assume that the ions form a
fixed, homogeneous, neutralizing background, with density Ni,0. Here, and in the follow-
ing, one drops the subscript “e” for electronic quantities, unless required for clarity.

For practical reasons, it is simpler to initiate a standing wave than a propagating wave.
This is done by choosing the initial electron distribution as a Maxwellian with a sinusoidal
density perturbation δN :

f0(x, v) =

[

1 +
δN

N
cos(k0x)

]

fM (v), fM(v) =
N

(2π)1/2vth
exp(− v2

2v2th
).

Figures 1.1 a) and b) present the evolution of the potential energy, the variation of kinetic
energy, and the total energy for initial conditions with perturbation levels δN/N = 0.01
and 0.1 respectively. For these illustrations, the wavelength is chosen such that k0λD =
0.3, where λD = vth/ωp is the Debye length, and ω2

p = Ne2/mǫ0 the squared plasma
frequency. By numerically solving the linear dispersion relation for Langmuir waves, one
obtains for k0λD = 0.3: Frequency ω0/ωp = 1.1598, and linear Landau damping rate
γL/ωp = 1.2620 · 10−2.

Note, that throughout the simulation the total energy Etot (= Kinetic energy Kin of
electrons + Electrostatic potential energy Pot):

Etot = Kin + Pot =
m

2

∫ λ0

0

dx

∫

dv v2f +
ǫ0
2

∫ λ0

0

dxE2,

remains essentially constant. This is naturally expected as Etot is conserved by the system
of Eqs. (1.7) (check it!).

As shown in Fig. 1.1.a, the very first stage of the wave’s evolution in the non-linear

1The acronym stands for (S)emi-Lagrangian (A)dvection code for (P)a(R)ametric (I)n(ST)ab(I)lity
studies. You are welcome to use this Fortran 90 code to familiarize with the different physical mechanisms
addressed in this chapter. It is available on the SVN web server of the CRPP.
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Figure 1.1: Results from Vlasov-Poisson simulations. Non-linear evolution of a standing Lang-
muir wave. Potential energy, and variation of kinetic energy for initial density perturbation (a)
δN/N = 0.01 and (b) δN/N = 0.1 respectively. Distribution in phase space at tωp = 250 for (c)
δN/N = 0.01 and (d) δN/N = 0.1 respectively.
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simulation is clearly exponential, and in agreement with the estimate γL for the Landau
damping from the linear theory. At later times however, the wave’s amplitude starts to
oscillate. This oscillation ultimately dies out, and the wave amplitude settles at a finite

value. The asymptotic state of the system is thus an undamped mode. These are obvi-
ously features not predicted by the linear theory of Landau damping. Figures 1.1 c) and
d) show the electron distribution at time t = 250ω−1

p in phase space (x, v) near the phase
velocity vφ = ω0/k0 for both cases δN/N = 0.01 and 0.1 respectively. These phase-space
plots clearly illustrate trapping for particles with velocity v in an interval of width 2∆vtrap
around vφ.

The purpose of the following sections is to study the non-linear effects illustrated by
these simulation results. For experimental confirmation of these effects, see the work by
Danielson [3] and the references therein.

In the following sections, the evolution of a traveling Langmuir wave will be consid-
ered, while the simulation results just presented here involve standing waves. So, will the
following discussion apply to these results? Yes, but why? A standing wave can naturally
be considered as the superposition of a forward traveling wave with phase velocity vφ,
and a backward traveling wave with phase velocity −vφ. However, as one considers here
non-linear phenomena, one must be careful before invoking a superposition principal. As
will be discussed in detail, the non-linearities affecting each of these waves involve the
corresponding resonant particles, i.e. particles with velocities within an interval of order
∆vtrap from the corresponding phase velocity. As in general ∆vtrap/vφ ≪ 1, the reso-
nant particles relative to the forward and backward traveling waves thus usually form
two distinct groups with velocities in the vicinity of vφ and −vφ respectively. For this
reason the two traveling components forming a standing Langmuir wave can be assumed
non-interacting.

1.2.2 Re-Deriving Linear Landau Damping Invoking Energy Con-

servation

One considers an initially Maxwellian, homogeneous plasma. The study is limited here to
the evolution of an electron plasma wave, so that ions may be assumed fixed, providing a
neutralizing background for the mobile electrons.

One considers a slab-like system, so that the electron distribution f(x, v, t) verifies the
1-Dim Vlasov equation:

∂f

∂t
+ v

∂f

∂x
− e

m
E

∂f

∂v
= 0.

One furthermore assumes the electrostatic wave to be essentially monochromatic of the
form:

E(x, t) = E0(t) sin(k0x− ω0t),

where the amplitude E0(t) evolves at a slow time scale compared to the frequency ω0. i.e.
|(dE0/dt)/E0| ≪ ω0.
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One is interested here in the rate of change of the kinetic energy Kin of the electrons
in the field E(x, t). The spatially averaged kinetic energy is defined by

Kin =
m

2

∫

dv v2〈f〉x,

where the brackets 〈〉x stand for the spatial average:

〈〉x =
1

λ0

∫ λ0

0

dx,

λ0 = 2π/k0 being one wavelength of the electrostatic field, which can be considered here
as the length of the periodic system.

The rate of change is then given by

dKin

dt
=

m

2

∫

dv v2〈∂f
∂t

〉x. (1.8)

One starts by considering a perturbative approach, so that the distribution is expanded
as

f = f0(v) + f1(x, v, t) + f2(x, v, t) + . . . ,

where fn ∼ O(En), and f0 is the initial unperturbed state. Expanding the Vlasov Eq.
for the first two perturbation orders leads to

∂f1
∂t

+ v
∂f1
∂x

− e

m
E

∂f0
∂v

= 0, (1.9)

∂f2
∂t

+ v
∂f2
∂x

− e

m
E

∂f1
∂v

= 0. (1.10)

Obviously 〈∂f0/∂t〉x = 0 as f0 6= f0(t), and also 〈∂f1/∂t〉x = 0 as f1 ∼ E ∼ cos(k0x−ω0t)
from Eq. (1.9). Thus, to lowest order in the perturbation, equation (1.8) is evaluated by

dKin

dt
=

m

2

∫

dv v2〈∂f2
∂t

〉x =
e

2

∫

dv v2〈E ∂f1
∂v

〉x

= −e

∫

dv v〈E f1〉x, (1.11)

having made use of Eq. (1.10), 〈∂f2/∂x〉x = 0, and performed an integration by parts in
the last step. Note that the last equality in Eq. (1.11) simply corresponds to dKin/dt =

〈~j · ~E〉x, where ~j is the electronic charge current.

One now addresses the problem of deriving 〈E f1〉x. The linear perturbation f1 can
be obtained from Eq.(1.9) by integrating along the unperturbed trajectories. Indeed, Eq.
(1.9) can be written as

df1
dt

∣
∣
∣
∣
u.t.

=
e

m
E

∂f0
∂v

, (1.12)
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where d/dt|u.t. stands for the total time derivative along the unperturbed trajectories (for
more details on solving Vlasov-type equations by integrating along trajectories, see Ap-
pendix B). For the here considered homogeneous, unmagnetized plasma, the unperturbed
trajectories are simply given by (free streaming):

dx′

dt′
= v′,

dv′

dt′
= 0,

with initial conditions x′(t) = x, v′(t) = v,

whose solution is x′ = x + v(t′ − t) and v′ = v. Equation(1.12) can thus be solved by
integrating along these characteristics:

f1(x, v, t)− f1(x− vt, v, 0) =

∫ t

0

dt′
df1(x

′, v′, t′)

dt′

∣
∣
∣
∣
u.t.

=
e

m

∫ t

0

dt′E(x′, t′)
∂f0(v

′)

∂v

=
e

m

∂f0
∂v

∫ t

0

dt′ E0(t
′) sin [k0x+ k0v(t

′ − t)− ω0t
′] .(1.13)

As E(x, t) is assumed a self-consistent field, the initial perturbation f1(x, v, 0) must be
such that Poisson’s equation is verified at t = 0:

∂E(x, 0)

∂x
= k0E0(0) cos(k0x) =

−e

ǫ0

∫

dv f1(x, v, 0).

This equation is verified for

f1(x, v, 0) = f1,0(v) cos(k0x), (1.14)

with f1,0(v) such that
∫

dv f1,0(v) = −ǫ0 k0
e

E0(0).

Combining (1.13) and (1.14), one thus obtains for the linear perturbation:

f1(x, v, t) = f10(v) cos[k0(x− vt)] +
e

m

∂f0
∂v

∫ t

0

dt′ E0(t
′) sin [k0x+ k0v(t

′ − t)− ω0t
′] .

(1.15)
The first term on the right hand side of Eq.(1.15) is a free streaming term, and therefore
is a transient, as will appear clearly further on. The second term is related to the actual
coherent wave.

Equation (1.15) can now be used for computing 〈E f1〉x:

〈E f1〉x = E0(t)f10(v) 〈sin(k0x− ω0t) cos[k0(x− vt)]〉x

+
e

m

∂f0
∂v

E0(t)

∫ t

0

dt′ E0(t
′) 〈sin(k0x− ω0t) sin [k0x+ k0v(t

′ − t)− ω0t
′]〉x

=
1

2
E0(t)f10(v) sin[(k0v − ω0)t]

+
1

2

e

m

∂f0
∂v

E0(t)

∫ t

0

dt′ E0(t
′) cos [(k0v − ω0)(t

′ − t)] , (1.16)
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having applied the relation 〈sin(k0x+ α) sin(k0x+ β)〉x = (1/2) cos(α− β).

The time integral in the second term of this last relation can be carried out after Taylor
expanding the electrostatic field amplitude E0(t

′) = E0(t)+(dE0(t)/dt)(t
′−t)+ . . ., which

is justified by invoking the assumption |(dE0/dt)/E0| ≪ ω0, so that

∫ t

0

dt′E0(t
′) cos [(k0v − ω0)(t

′ − t)]

= E0(t)

∫ t

0

dt′ cos [(k0v − ω0)(t
′ − t)] +

dE0(t)

dt

∫ t

0

dt′ (t′ − t) cos [(k0v − ω0)(t
′ − t)]

= E0(t)
sin[(k0v − ω0)t]

k0v − ω0
+

dE0(t)

dt

∂

∂ω0

1− cos[(k0v − ω0)t]

k0v − ω0
, (1.17)

having used
∫
dτ τ cos[(k0v − ω0)τ ] = −(∂/∂ω0)

∫
dτ sin[(k0v − ω0)τ ].

Combining (1.11), (1.16) and (1.17) finally provides:

dKin

dt
= −e

2
E0(t)

∫

dv v f10(v) sin[(k0v − ω0)t]

− e2

2m
E2

0(t)

∫

dv v
∂f0
∂v

sin[(k0v − ω0)t]

k0v − ω0

− e2

4m

dE2
0(t)

dt

∂

∂ω0

∫

dv v
∂f0
∂v

1− cos[(k0v − ω0)t]

k0v − ω0
.

In this last relation, one notes that the first term phase mixes to zero for times t >
1/(k0vth), where the thermal velocity vth is the typical variation scale of the distribution
in velocity. In the same time limit, one also has sin(Ωt)/Ω → πδ(Ω) and [1−cos(Ωt)]/Ω →
P/Ω, where P stands for principal value, so that

dKin

dt
= − e2

2m
E2

0(t)

∫

dv v
∂f0
∂v

πδ(k0v − ω0) − e2

4m

dE2
0(t)

dt

∂

∂ω0

P

∫

dv
v ∂f0

∂v

k0v − ω0

= −π
ǫ0
2

ω2
p

k0
E2

0(t) v
∂f0/N

∂v

∣
∣
∣
∣
v=ω/k0

︸ ︷︷ ︸

resonant

− ǫ0
4

dE2
0(t)

dt

∂

∂ω0

[

ω0

ω2
p

k2
0

P

∫

dv
∂f0/N
∂v

v − ω0/k0

]

︸ ︷︷ ︸

bulk

, (1.18)

where ω2
p = Ne2/(mǫ0) is the squared plasma frequency, and having used δ(k0v − ω0) =

(1/k0)δ(v−ω0/k0). The first term on the right hand side of Eq.(1.18) is clearly the contri-
bution from the resonant particles with velocities matching the phase velocity vφ = ω0/ko,
while the second term corresponds to the contribution from the bulk of the distribution.
In a sinusoidal wave with fixed amplitude, the bulk particles simply oscillate back and
forth in the electrostatic field, and experience no secular gain or loss in energy. The
resonant particles however experience a nearly constant field, and so can be efficiently
accelerated or decelerated.
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Figure 1.2: Separation of the distribution into a non-resonant and resonant part.

Invoking conservation of the total energy Etot, the kinetic energy gained/lost by the
particles must be compensated by the loss/gain of potential energy:

dEtot

dt
=

dKin

dt
+

dPot

dt
= 0, (1.19)

where the space averaged potential energy Pot, i.e. the electrostatic energy, is given by

Pot = 〈ǫ0
2
E2(x, t)〉x =

ǫ0
2
E2

0(t) 〈sin2(k0x− ω0t)〉x =
ǫ0
4
E2

0(t). (1.20)

Combining (1.18), (1.19) and (1.20) leads to

ǫ0
4

dE2
0(t)

dt

∂

∂ω0

{

ω0

[

1−
ω2
p

k2
0

P

∫

dv
∂f0/N
∂v

v − ω0/k0

]}

= π
ǫ0
2

ω2
p

k0
E2

0(t) v
∂f0/N

∂v

∣
∣
∣
∣
v=vφ

. (1.21)

On the right hand side of Eq.(1.21) one finds again the variation of kinetic energy of the
resonant particles Kinres, while on the left hand side one identifies the time variation of
the wave energy Ewave (= bulk kinetic energy + Pot), given by the general relation:

Ewave = Kinbulk + Pot =
1

4
ǫ0

∂

∂ω
[ω ǫR(ω)]

∣
∣
∣
∣
ω0

E2
0(t), (1.22)

where ǫR is the real, i.e. non-resonant, part of the media’s dielectric function. Thus
Eq.(1.21) reads

dEwave

dt
= −dKinres

dt
. (1.23)

For the Langmuir wave model considered here, with mobile electrons and fixed ions,
one indeed has:

ǫR(k, ω) = 1−
ω2
p

k2
P

∫

dv
∂f0/N
∂v

v − ω/k
. (1.24)
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In the limit vφ/vth ≃ 1/k0λD ≫ 1, one can consider the cold fluid approximation
ǫR = 1− ω2

p/ω
2 of Eq.(1.24), so that ∂(ω ǫR)/∂ω|ω0

≃ 2, as ω0 ≃ ωp.

Assuming an exponential decay of the wave:

E0(t) = E0 e
−γ

L
t =⇒ dE2

0(t)

dt
= −2γLE

2
0(t),

one then recovers from Eq.(1.21) the well-known relation for the linear Landau damping
(in the resonant approximation):

γL = −π

2

ω2
p

k0
v
∂f0/N

∂v

∣
∣
∣
∣
v=vφ

. (1.25)

In the case of a Maxwellian distribution f0(v) = N/(
√
2πvth) exp−v2/(2v2th), Eq.(1.25)

becomes
γL
ω0

=

√
π

8

1

(k0 λD)3
ω0

ωp
exp−1

2

(
ω0

k0vth

)2

. (1.26)

Naturally, Eq.(1.25) leads to growth, i.e. instability, in case v∂f0/∂v|v=vφ > 0. This is
the bump on tail instability.

Note that to re-derive the linear Landau damping relation (1.25) invoking energy con-
servation, one had to consider perturbation terms of the distribution up to second order,
i.e. f2. This is due to the fact that energy is intrinsically a non-linear quantity, as in par-
ticular the potential energy Pot is quadratic in the perturbation field, as appears clearly
in Eq.(1.20).

Exercises:

1.2.2.1 Re-derive relation (1.25) for the linear Landau damping, starting from the linearized
Vlasov-Poisson equations, computing the dispersion function ǫ(k, ω), establishing
the appropriate dispersion relation, and solving using the resonant approximation.

1.2.2.2 Derive the general relation (1.22) for the wave energy of an electrostatic wave. In
fact, Eq. (1.22) can be further generalized to the case of an electromagnetic wave,
for which:

Ewave =
1

4

{

ǫ0 ~E0 ·
∂

∂ω
[ω ǫH(ω)]

∣
∣
∣
∣
ω0

· ~E⋆
0 +

1

µ0

~H0 ·
∂

∂ω
[ω µH(ω)]

∣
∣
∣
∣
ω0

· ~H⋆
0

}

,

1.2.3 Limit of Linear Landau Damping

The derivation of the linear Landau damping presented in the previous section naturally
breaks under conditions for which one reaches the limits of the considered perturbative
approach. This is the case when ∂f1/∂v becomes of the same order as ∂f0/∂v:

Linear Landau damping derivation breaks down when
∂f1
∂v

∼ ∂f0
∂v

.
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To estimate under which conditions this linear limit is met, one considers equation (1.15)
for f1. For our purpose here, one can neglect the time dependence of the field envelope,
and thus directly carry out the remaining time integral in (1.15) to obtain:

f1(x, v, t) = f10(v) cos[k0(x− vt)] +
e

m

∂f0
∂v

E0
cos[k0(x− vt)]− cos(k0x− ω0t)

k0v − ω0
. (1.27)

Away from resonance (Ω = k0v − ω0 6= 0), the derivative ∂f1/∂v obviously produces
secular terms, i.e. which grow linearly in time t. Near resonance, both the numerator and
denominator in the second term on the right hand side of (1.27) go to zero, and so one
must expand the numerator for small Ω = k0v − ω0 to address the variation of f1 in this
region. Noting that near resonance one has

cos[k0(x− vt)] = cos[k0x− ω0t−
Ω

︷ ︸︸ ︷

(k0v − ω0) t]

= cos(k0x− ω0t) + sin(k0x− ω0t) (k0v − ω0)t

−1

2
cos(k0x− ω0t) (k0v − ω0)

2t2 + . . . ,

equation (1.27) can be written in this region as

f1(x, v, t) = f10(v) cos[k0(x−vt)]+
e

m

∂f0
∂v

E0

[

t sin(k0x− ω0t)−
1

2
(k0v − ω0)t

2 cos(k0x− ω0t) + . . . .

]

The term in t2 rapidly becomes dominant when estimating ∂f1/∂v:

∂f1
∂v

≃ −1

2

e

m

∂f0
∂v

k0E0 t
2 cos(k0x− ω0t),

so that

At resonance:
∂f1
∂v

∼ ∂f0
∂v

⇐⇒ t >

(
m

ek0E0

)1/2

=
1

ωb
, (1.28)

where ω2
b = ek0E0/m. The frequency ωb is identified as the bounce frequency of electrons

deeply trapped in the potential wells of the wave. It is indeed important to note, that the
electrons moving in the field E = E0 sin(k0x−ω0t) are separated into two groups: Passing
and trapped. This is discussed in more detail in appendix A, where useful quantities such
as ωb are derived.

In the bulk of the distribution, i.e. away from resonance, one has k0v − ω0 ≃ −ω0

and from Eq.(1.27):
∂f1
∂v

≃ − e

m

∂f0
∂v

k0E0 t
sin[k0(x− vt)]

ω0
,

so that

In bulk:
∂f1
∂v

∼ ∂f0
∂v

⇐⇒ t >
mω0

ek0E0
=

ω0

ω2
b

, (1.29)
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Assuming ω0 ≫ ωb, one sees from Eqs. (1.28) and (1.29) that the linear approximation
breaks down much later in the bulk of the distribution than in the resonant region.

For the linear result, and in particular the handling of resonant particles, to be valid
for describing the full evolution of the damping of the waves thus requires

γL > ωb. (1.30)

Under this condition, the wave has indeed damped out before the linear approximation
breaks down. For a given value of k0λD, this last condition is equivalent to an upper
limit on the amplitude of the wave, which can be written in the case of a Maxwellian
distribution as:

ωb

ωp

=

√

δN

N
<

γL
ωp

≃
√

π

8

1

(k0λD)3
exp

[

−1

2

1

(k0λD)2

]

, (1.31)

where δN is the density perturbation amplitude of the Langmuir wave, and having used
relation (1.26) for γL in the case of a Maxwellian plasma.

Exercises:

1.2.3.1 Show that for Langmuir waves one has the bounce frequency of deeply trapped
electrons verifying ωb/ωp =

√

δN/N . Show also that the trapping width ∆vtrap is

such that ∆vtrap = 2ωb/k0 ≃ 2
√

δN/N vφ.

1.2.3.2 Verify the derivations in appendix A.

1.2.3.3 Draw the parallel between charged particles trapped in a sinusoidal electrostatic
field, and particles trapped in the magnetic well of a large aspect ratio tokamak.

1.2.3.4 Show that the condition described by Eq. (1.30) is equivalent to imposing

∆Kin > Ewave,

where ∆Kin is the variation in kinetic energy which would result from flattening the
electron distribution in the resonant region, and Ewave is the average wave energy
of the Langmuir wave.

1.2.4 “Non-Linear Landau Damping”

In the previous section it was shown that the linear derivation of Landau damping is valid
for describing the full collisionless attenuation of the wave in the limit ωb ≪ γL ≪ ω0.
We shall now consider the case ω2

b/ω0 ≪ γL ≪ ωb ≪ ω0. In this limit the trapped
electrons have time to bounce back and forth many times in the potential wells of the
electrostatic field E(x, t) before the amplitude of the field is damped significantly. In this
case, at least for the resonant particles, one must correctly account for the full non-linear
trajectories of the electrons in the sinusoidal field E = E0 sin(k0x− ω0t). Note however,
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that according to Eq.(1.29), the scaling ω2
b/ω0 ≪ γL ensures that the linear response of

the bulk distribution remains valid over the characteristic time scale of damping. Thus,
the decomposition illustrated by Fig. 1.2 is still preserved, i.e. of a bulk, non-resonant
distribution supporting, through a linear response, the oscillatory motion of the plasma
wave (= dispersion), and of a relatively small fraction of resonant particles leading to
damping/growth. As will appear clearly in the following, let us point out already that
the effect of resonant particles include significant contributions from both the trapped
electrons, as well as passing electrons near the separatrix shown in Fig. A.1.

The basic procedure for handling the non-linear evolution of the wave’s amplitude is
essentially the same as for the linear regime addressed in Sec. 1.2.2. Let us summarize.
One again invokes total energy conservation by equating the rate of change of the wave
energy Ewave to the variation of the kinetic energy of resonant particles Kinres, as already
written in Eq.(1.23):

dEwave

dt
= −dKinres

dt
.

As just pointed out, the bulk of the distribution may still be assumed to respond linearly
under the considered scaling, so that relation (1.22) for the wave energy still holds:

Ewave =
1

4
ǫ0

∂

∂ω
[ω ǫR(ω)]

∣
∣
∣
∣
ω0

E2
0(t).

Recalling that for Langmuir waves one has ∂(ω ǫR)/∂ω|ω0
≃ 2, and allowing for a time

dependant damping/growth rate γ(t) for the wave amplitude:

E0(t) = E0 e
−

∫ t

0
dt′ γ(t′),

the rate of change of wave energy is thus again given by

dEwave

dt
= −γ(t)ǫ0 E0(t)

2. (1.32)

Equation (1.8) for the variation of the kinetic energy of resonant particles is naturally still
valid here:

dKinres

dt
=

m

2

∫

res

dv v2〈∂f
∂t

〉x. (1.33)

Thus from the above relations, the time dependant rate γ(t) is computed from

γ(t) =
1

ǫ0E2
0

dKinres

dt
=

m

2ǫ0E2
0

∫

res

dv v2〈∂f
∂t

〉x. (1.34)

The non-linear calculation differs however from the linear case in the way the distribution
f res of resonant particles is computed. Indeed, here the distribution cannot be derived
applying a perturbative approach as in Sec. 1.2.2, but must be calculated directly from
the non-linear Vlasov equation:

df

dt

∣
∣
∣
∣
n.l.t.

=
∂f

∂t
+ v

∂f

∂x
− e

m
E

∂f

∂v
= 0, (1.35)
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Figure 1.3: Evolution in resonant region of a Maxwellian distribution interacting with a sinu-
soidal wave. Results as seen from the wave frame. Black lines represent orbits of particles. Color
coding reflects amplitude of distribution. Note how the density in phase space is preserved along
the trajectories, but how the difference in the bounce/transit period between neighboring orbits
leads to a filamentation of the distribution.

0 0.5 1 1.5 2 2.5 3 3.5 4

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time  t ω
B
/ 2*π 

)

γ 
(t

) 
/ γ

L

Damping rate of a finite amplitude wave in limit ω
B
 >> γ

L

Results from Matlab script
 ~/TEX/COURS_3EME_CYCLE/NonLinear/MODEL/NonLinLandau_ONeil_V2.m

a b c d e f 

Figure 1.4: Instantaneous rate of change γ(t) of wave amplitude as a function of time, as
computed from Eq. (1.34). The rate γ(t) is normalized with respect to the linear Landau
damping rate γL, while time is given in units of the deeply trapped bounce period τb = 2π/ωb.
The rate γ(t) reflects the change in kinetic energy of the resonant particles, as clearly illustrated
by identifying the states of the distribution shown in Fig. 1.3 to the times a-f pointed out in
this graph: At times when a majority of the resonant electrons are being accelerated (resp.
decelerated), which corresponds to an increase (resp. decrease) in kinetic energy, one indeed
observes positive damping (resp. negative damping = growth) of the wave.
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Figure 1.5: State of the distribution after tωb = 50, clearly illustrating the increased filamen-
tation in time of the distribution. At this stage, on average, the resonant particles are neither
accelerated nor decelerated, and the rate of change γ(t) of the wave amplitude becomes zero.

where d/dt|n.l.t. stands for the total time derivative along the non-linear trajectories, i.e.
along the full characteristics in the electrostatic field E.

The Vlasov equation (1.35) can always be solved formally by integrating along the char-
acteristics (see Appendix B):

f(x, v, t) = f [x′(0; x, v, t), v′(0; x, v, t), 0], (1.36)

where f(x, v, 0) is the initial distribution, and [x′(t′; x, v, t), v′(t′; x, v, t)] the non-linear
trajectories verifying:

dx′

dt′
= v′,

dv′

dt′
= − e

m
E0 sin(k0x

′ − ω0t
′), (1.37)

with initial conditions x′(t) = x, v′(t) = v. (1.38)

Note that one makes use of the time scale separation ωb ≫ γL by considering the ampli-
tude E0 of the field fixed when integrating the non-linear trajectories (1.37)-(1.38), which
are then used for computing (1.36) and (1.34). The time dependence of E0(t) is then
taken account for iteratively when computing dEwave/dt through Eq. (1.32).

The above system of equations can easily be solved numerically, which provides a useful
illustration of the mechanism underlying the non-linear evolution of the wave. This has
been done to obtain the results presented in Figs. 1.3, 1.4 and 1.5.

Figures 1.3 and 1.4 show how the wave amplitude decreases [γ(t) > 0] as a majority
of the resonant particles are accelerated, which corresponds to an increase in kinetic en-
ergy. Inversely, the wave amplitude increases [γ(t) < 0] as a majority of the resonant
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particles are decelerated, which corresponds to a decrease in kinetic energy. This is obvi-
ously the origin of the oscillations in kinetic and potential energy already observed in the
full simulation results shown in Fig. 1.1.

According to the Vlasov equation, the density in phase space remains invariant along
the trajectories of the particles. But as a result of the fact that neighboring orbits of
passing particles (resp. trapped particles) have different transit times (resp. bounce pe-
riods), as shown in Fig. A.2, one observes a filamentation of the distribution over time.
This is clearly illustrated in Fig. 1.5, which shows the distribution as computed from
Eq.(1.36) at time tωb = 50. At this stage, the resonant particles are neither accelerated
nor decelerated on average, and the rate of change γ(t) of the wave amplitude therefore
tends to zero. As a result, the attenuation factor exp[−

∫
∞

0
dtγ(t)] is non-zero, so that

asymptotically in time one has an undamped mode. This resulting wave is a BGK mode.
BGK modes are discussed in some detail in Sec. 1.2.5. As filamentation happens over the
time scale of a few bounce periods ωb, this phenomena is obviously only observed under
the assumed scaling ωb ≫ γ. Note the similarity between Figs. 1.3 & 1.5 and the phase
space plots from the full simulations shown in Fig. 1.1.

The above system of equations (1.34), (1.36)-(1.38) can in fact also be solved analytically.
The corresponding derivation, which is a somewhat lengthy exercise involving Jacobian
elliptic functions [5], is described to some detail in Ref. [6]. From this derivation, the
final result for the damping rate is

γ(t) = γL

∞∑

n=0

64

π

∫ 1

0

dκ { 2nπ2 sin
[
nπ ωbt
κF

]

κ5F 2(1 + q2n)(1 + q−2n)
︸ ︷︷ ︸

passing

+
(2n+ 1)π2κ sin

[
(2n+1)π ωbt

2F

]

F 2(1 + q2n+1)(1 + q−2n−1)
︸ ︷︷ ︸

trapped

} ,

(1.39)
where q = exp(πF ′/F ), F = F (κ2) is the complete elliptic integral of the first kind [5],
and F ′ = F ′(κ2) = F (1− κ2). Equation (1.39) includes the integral

∫
dκ over the energy

variable κ, defined by (A.3), characterizing the different orbits of the resonant particles
in phase space. The first term in the integrand corresponds to the contribution from the
resonant passing particles, while the second term is related to trapped particles. Notice
also the sum

∑

n over harmonics of the transit period τt(κ) = 2κF/ωb (resp. bounce
period τb(κ) = 4F/ωb) of passing (resp. trapped) particles. These relations for τt and τb
for arbitrary energy levels κ are derived in Appendix A.

In the first stage of the evolution, that is in the limit t → 0, one can show that Eq.
(1.39) indeed recovers the linear damping rate γ(t) → γL, as illustrated in Fig. 1.4.
One needs to be careful however in taking this limit, as this is a typical case where
limt→0

∫
dκ 6=

∫
dκ limt→0.

Due to the dependence in κ of τt and τb, as shown in Fig. A.2, one can see that the
integrals in κ over the terms sin[nπ ωb t/κF ] and sin[(2n+ 1)π ωbt/2F ] phase mix to zero
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Figure 1.6: Initial sub-volumes in phase space within the region limited by orbits with energy
levels W and W = δW for both passing and trapped particles. In time, due to the difference in
periods of the neighboring trajectories, these sub-volumes are stretched into ever finer filaments
that ultimately uniformly fill the full volume between the two orbits.

as t becomes large, and thus one can show that limt→∞ γ(t) = 0. This can also be seen in
Fig. 1.4.

The full derivation of Eq.(1.39) is not presented here. However, a direct calculation
of the time integrated damping exponent

∫
∞

0
dt γ(t), which is perhaps one of the most

useful results, is now carried out. From Eq.(1.34) one can write:

∫
∞

0

dt γ(t) =
1

ǫ0E2
0

∆Kinres, (1.40)

where

∆Kinres =
m

2λ0

∫ λ0/2

−λ0/2

dX

∫

res

dV (V + vφ)
2(f∞ − f0), (1.41)

f0 = f(X, V, t = 0) and f∞ = f(X, V, t = ∞) being respectively the initial and time
asymptotic distribution in wave frame variables (X = x − vφt, V = v − vφ). For conve-
nience, the following derivation is indeed carried out in wave frame variables. However, to
lighten notations one reverts to the notation (x, v) for position and velocity in the wave
frame.

The main issue here is to evaluate f∞(x, v). For this purpose, let us analyze in some-
what more detail the mechanism of filamentation. Figure 1.6 shows in the wave frame
a small compact sub-volume in phase space within the region limited by orbits with en-
ergy levels W and W + δW , both for the case of trapped, as well as forward/backward
passing particles. In all cases, the difference in periods of the trajectories with energies
between W and W + δW leads to a stretching over time of the sub-volume into an ever
finer filament that ultimately evenly fills the whole region between the two orbits. As a
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result of the incompressibility of phase space, the density f remains invariant between
the initial and final stretched state of the sub-volume. This stretching obviously happens
for all the other initially compact sub-volumes within the orbits W and W + δW , so
that asymptotically in time all these sub-volumes are finely intertwined with each other.
This effect is clearly illustrated in Fig. 1.5. The coarse grain distribution f̂ obtained by
averaging the actual distribution f over phase elements sufficiently large to be crossed by
many of these filaments thus becomes uniform within the orbits W and W + δW and cor-
responds to the average of the initial distribution f0 within these two orbits. Obviously,
the size of the coarse-graining for computing f̂ can be taken to zero asymptotically in time.

Note, that in a real physical system, even with very low collisionality, these ever finer
phase space structures in fact always end up getting smeared out in a finite time through
collisional diffusion. Indeed, for a given collisionality νc, a structure in the distribution
with scale λv in velocity diffuses in a characteristic time tc ∼ ν−1

c (λv/vth)
2.

On the basis of the above arguments, the distribution for untrapped particles [W >
max(−eφ)] is obtained asymptotically in time from

fu
∞
(W,σ) = f̂∞ =

∫ λ0/2

−λ0/2
dx δv(x,W ) f0[σv(x,W )]
∫ λ0/2

−λ0/2
dx δv(x,W )

,

where the initial distribution f0 is in fact only function of velocity v. In the above
relation, σ = sign(v), v(x,W ) is the velocity at point x of the trajectory with energy W ,
by convention chosen positive, and δv(x,W ) the separation in velocity between orbits W
and W + δW . Note that for untrapped particles each energy level W corresponds to both
a forward passing (σ = +1) as well as a backward passing (σ = −1) trajectory, which
must in general be treated separately. From energy conservation for a single particle, one
has

1

2
mv2 − eφ(x) = W =⇒ v(x,W ) =

[
2

m
(W + eφ)

]1/2

=⇒ δv(x,W ) =
∂v

∂W
δW =

δW

mv(x,W )
.

The asymptotic untrapped distribution thus can be written

fu
∞
(W,σ) =

∫ λ0/2

−λ0/2
f0[σv(x,W )] dx/v(x,W )
∫ λ0/2

−λ0/2
dx/v(x,W )

. (1.42)

For trapped particles [min(−eφ) < W < max(−eφ)] each energy level W represents a
single orbit, which includes however both a forward as well as a backward going segment,
so that for this group of particles the asymptotic distribution is computed from

f t
∞
(W ) = f̂∞ =

∑

σ=±1

∫ x2

x1

f0[σv(x,W )] dx/v(x,W )

2
∫ x2

x1

dx/v(x,W )
. (1.43)
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where x1,2 are the turning points, i.e. where v(x1,2,W ) = 0.

As the time asymptotic distributions (1.42) and (1.43) are to be used for computing the
variation in kinetic energy (1.41) of the resonant particles, the distribution f0 in (1.42)
and (1.43) can be Taylor-expanded around the wave phase velocity, which in the wave
frame is v = 0. This naturally assumes that the resonant region, of the order ∆vtrap, is
such that ∆vtrap/vth ≪ 1. For the purpose of computing ∆Kinres, the leading order effect
is obtained by considering a Taylor expansion to first order:

f0(v) = f0(0) +
df0(0)

dv
v + . . . . (1.44)

Inserting (1.44) in (1.42) thus leads to

fu
∞
(W,σ) = f0(0) +

df0(0)

dv

σ
∫ λ0/2

−λ0/2
dx

∫ λ0/2

−λ0/2
dx/v(x,W )

+ . . . = f0(0) +
df0(0)

dv

σλ0

τt
+ . . . ,

where τt stands for the transit time. Restricting the derivation to sinusoidal waves, one
makes use of Eq. (A.4) to obtain:

fu
∞
(κ, σ) = f0(0) +

df0(0)

dv
σ
π

2

∆vtrap
κF (κ2)

+ . . . ,

so that together with (1.44):

∆fu = fu
∞
− fu

0 =
df0(0)

dv

(

σ
π

2

∆vtrap
κF (κ2)

− v

)

+ . . . . (1.45)

For trapped particles, the term in df0/dv obviously cancels out:

f t
∞
(W ) = f0(0) +

df0(0)

dv

∑

σ=±1 σ
∫ x2

x1

dx

2
∫ x2

x1
dx/v(x,W )

+ . . . = f0(0) + . . . ,

so that

∆f t = f t
∞
− f t

0 = −df0(0)

dv
v + . . . . (1.46)

To the considered order, ∆f = f∞−f0 is clearly odd in v, so that Eq.(1.41) can be written

∆Kinres =
2mvφ
λ0

∫ λ0/2

−λ0/2

dx

∫
∞

0

dv v∆f. (1.47)

Note, that although one is only computing the resonant particle contribution to dKin/dt,
the integration in velocity has been prolonged here to infinity. This is justified by proving
that the relation ∆fu for passing particles derived in Eq. (1.45) actually goes to zero for
v → ∞ (κ → 0), and in this way the velocity integral in (1.47) finds its own cutoff (check
it!).
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By making the change of variables v ↔ κ, so that from Eq.(A.2) dv = ∆v2trap/(vκ
3) dκ,

one can write:

∆Kinres = 2mvφ ∆v2trap








∫ 1

0

dκ

κ3

1

λ0

∫ λ0/2

−λ0/2

dx∆fu

︸ ︷︷ ︸

passing

+

∫
∞

1

dκ

κ3

1

λ0

∫ x2

x1

dx∆f t

︸ ︷︷ ︸

trapped







, (1.48)

where the first term in (1.48) corresponds to the contribution from untrapped electrons,
and the second term to trapped. Expliciting the space integral for passing particles leads
to

1

λ0

∫ λ0/2

−λ0/2

dx∆fu =
df0(0)

dv

[
π

2

∆vtrap
κF (κ2)

− < v >x

]

=
df0(0)

dv

∆vtrap
κ

[
π

2F (κ2)
− 2E(κ2)

π

]

, (1.49)

having made use of Eq. (1.45) for ∆fu and Eq. (A.5) for the spatial averaged velocity
< v >x. The corresponding integral for trapped particles becomes:

1

λ0

∫ x2

x1

dx∆f t = −df0(0)

dv
< v >x

= −df0(0)

dv

2∆vtrap
π

[

E(
1

κ2
) + (

1

κ2
− 1)F (

1

κ2
)

]

, (1.50)

having made use of Eq. (1.46) for ∆f t and Eq. (A.7) for < v >x.

Inserting Eqs. (1.49) and (1.50) into (1.48) then provides

∆Kinres = 4mvφ ∆v3trap
df0(0)

dv

{∫ 1

0

dκ

κ4

[
π

4F (κ2)
− E(κ2)

π

]

−
∫

∞

1

dκ

κ3

1

π

[

E(
1

κ2
) + (

1

κ2
− 1)F (

1

κ2
)

]}

=
γL
ωb

ǫ0E
2
0

64

π

∫ 1

0

dκ

{
1

κ4

[
E(κ2)

π
− π

4F (κ2)

]

+
κ

π

[
E(κ2) + (κ2 − 1)F (κ2)

]
}

, (1.51)

having made the change of variable κ → 1/κ for the trapped contribution, and made use
of Eq. (1.25) for the linear Landau damping γL.

Finally, inserting (1.51) in (1.40) leads to:

∫
∞

0

dt γ(t) =
γL
ωb

64

π

∫ 1

0

dκ







1

κ4

[
E(κ2)

π
− π

4F (κ2)

]

︸ ︷︷ ︸

passing

+
κ

π

[
E(κ2) + (κ2 − 1)F (κ2)

]

︸ ︷︷ ︸

trapped







.

(1.52)
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Note how this result scales as γL/ωb, which is assumed small in the considered ordering.
Recall that for a Maxwellian, γL/ωp is essentially a function of kλD [see Eq.(1.26)], while

ωb/ωp =
√

δN/N .

In the constant factor on the right hand side of Eq. (1.52), one can still distinguish the
contribution of untrapped (first term) from the one of trapped particles (second term).

By numerical integration, this constant can be estimated: (64/π)
∫ 1

0
dκ. . . ≃ 1.96, with

the contribution from untrapped particles being 0.52 and from trapped 1.44.

Exercises:

1.2.4.1 Recover (1.52) from (1.39) making use of the following relations:

2π

F (κ2)

∞∑

n=1

1

(1 + q2n)(1 + q−2n)
=

E(κ2)

π
− π

4F (κ2)
,

2π2

κ2 F (κ2)

∞∑

n=1

1

(1 + q2n−1)(1 + q−2n+1)
=

(

1− 1

κ2

)

F (κ2) +
1

κ2
E(κ2).

1.2.4.2 Compare the “exact” non-linear simulation results shown in Fig. 1.1 to the analytic
relations (1.39) and (1.52). Is there qualitative agreement? Quantitative agreement?
Recall that the simulation results in figure 1.1 are for standing Langmuir waves.

1.2.5 BGK waves

From the previous section, where the regime γL ≪ ωb has been studied, it appears that
the non-linear evolution of a Langmuir wave leads, asymptotically in time, towards a finite
amplitude, undamped mode. Let us now see in more detail how such a state is charac-
terized. In fact, one wants to further convince oneself that such an undamped mode can
actually exist as an exact self-consistent solution of the non-linear Vlasov-Poisson system.

In the wave frame, an undamped mode corresponds to a stationary solution of the Vlasov-
Poisson system. Such a state is thus characterized by a time independent distribution
f = f(x, v) for each species, and a time independent potential field φ = φ(x). The dis-
tribution f for each species, with charge q and mass m, is solution to the corresponding
stationary Vlasov equation:

[

v
∂

∂x
− q

m

dφ(x)

dx

∂

∂v

]

f(x, v) = 0.

As a result, f must be a function of the invariants of motion. For particles trapped
in the troughs of the potential φ, the only conserved quantity is the total energy W =
mv2/2 + qφ(x), while for untrapped particles the sign σ of the velocity is an additional
invariant. The stationary distribution must therefore be of the form:

f(x, v) = f(W,σ) = f t(W ) + fu(W,σ), (1.53)
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where f t(W ) is the distribution of trapped particles, non-zero for min(qφ) < W <
max(qφ), and fu(W,σ) is the distribution of untrapped particles, non-zero for W >
max(qφ).

The potential φ(x) is solution of Poisson’s equation:

d2φ(x)

dx2
= − 1

ǫ0

∑

species

q

∫ +∞

−∞

dv f(x, v)

= − 1

ǫ0

∑

species

q

∫ +∞

−∞

dv f(W = mv2/2 + q φ(x), σ)

= − 1

ǫ0

∑

species

q

∫
∞

qφ

dW
∑

σ=±1 f(W,σ)

[2m(W − qφ)]1/2
. (1.54)

Thus, in principal, given any distribution of the form (1.53), Eq. (1.54) defines a second
order ordinary differential equation (ODE) for φ(x). The so-obtained set [{f}species, φ]
corresponds to a non-linear, undamped state. Such undamped states are the so-called
Bernstein-Greene-Kruskal (BGK) modes [7].

Note from Eq. (1.54), that the potential φ(x) in fact depends only on
∑

σ=±1 f(W,σ). As
a result, φ(x) remains invariant if one varies the partition between forward and backward
passing particles while keeping

∑

σ=±1 f(W,σ) unchanged. Thus, for a given φ one can
arbitrarily vary the phase velocity in the lab frame (defined as the frame in which the
system has zero average momentum).

Equation (1.54) can be written as

d2φ(x)

dx2
= F (φ), (1.55)

where F (φ) is the right hand side of (1.54), and can be viewed as the “force” acting on
a “particle” with “position” φ and evolving in “time” x. By multiplying Eq.(1.55) by
dφ/dx and integrating in x, one thus obtains

1

2
(
dφ

dx
)2 + V (φ) = const., (1.56)

where the “potential” V (φ) is such that dV (φ)/dφ = −F (φ), and is given by

V (φ) = − 1

ǫ0

∑

species

∫
∞

qφ

dW

[
2

m
(W − qφ)

]1/2 ∑

σ=±1

f(W,σ).

Obviously, if V (φ) has a minimum, one can obtain periodic solutions for φ(x).

Equation (1.56) can be solved by quadrature:

±
∫ φ

φ0

dφ

[2 (V (φ0)− V (φ))]1/2
= x− x0
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where the “initial conditions” have been chosen such that at position x = x0 one has
φ(x0) = φ0 and dφ(x0)/dx = 0.

Inversely, one can demonstrate [7] that from any given potential field φ(x) and given dis-
tributions for the various species (electrons and ions) and groups (passing and trapped),
except one (e.g. the distribution f t

e (W ) of trapped electrons), one can build a BGK-type
mode by solving for this undetermined distribution.

Thus, it obviously appears that one can build BGK modes of quite arbitrary shape of
the potential φ(x) and in particular wavelength. Furthermore, as already pointed out,
for a given φ the wave velocity in the lab frame can also be chosen arbitrarily. Hence,
in general, the wave numbers and frequencies of BGK modes do not need to obey the
dispersion relations derived in the framework of linear theory. The larger this deviation
from the linear dispersion relation, the stronger the distribution of the BGK mode must
be deformed from the initial, unperturbed equilibrium distribution (usually a Maxwellian)
considered in linear theory. To reach a state which is far from equilibrium naturally re-
quires the system to be very strongly driven.

1.2.6 Non-Linear Frequency Shift

In Sec. 1.2.4, the non-linear evolution of the amplitude of a Langmuir wave was studied
in the regime ω2

b/ω0 ≪ γL ≪ ωb ≪ ω0. It was shown how such a wave ultimately evolves
towards a finite amplitude, undamped mode, a so-called BGK mode. The characteristics
of these BGK modes were discussed in Sec. 1.2.5, and it was pointed out how in general
they do not necessarily obey the dispersion relations from linear theory. In the case of
interest in section 1.2.4, let us recall however that the assumed scaling ensures that the
main part of the distribution, the so-called bulk, still responds linearly. One therefore
expects in this case, that the frequency and wavelength of the final BGK state verify a
dispersion relation which corresponds to the linear one with at most a small correction
due to the minority fraction of non-linearly behaving resonant particles. The purpose of
this section is to derive this non-linear correction. Note that the evolution of the electron
plasma wave considered in 1.2.4 is an initial value problem, for which the fundamental
wavenumber k0 remains fixed. A non-linear correction to the dispersion relation will thus
affect the frequency, i.e. potentially leading to a non-linear frequency shift.

One starts from Poisson’s equation for the potential φ of the final, BGK-like state of
the electron plasma wave considered in Sec. 1.2.4, i.e. a case with dynamic electrons and
a fixed, neutralizing ion background:

d2φ

dx2
=

1

ǫ0

[

e

∫ +∞

−∞

dv f∞ − qiNi,0

]

, (1.57)
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where f∞ is the time asymptotic distribution given by Eqs. (1.42) and (1.43) for passing
and trapped particles respectively, qi is the charge of ions and Ni,0 their uniform density.

To explicit the purely non-linear response, one adds and subtracts in (1.57) the charge
density related to the linear response of the system:

d2φ

dx2
=

1

ǫ0

[

e

∫ +∞

−∞

dv fL − qiNi,0 + e

∫ +∞

−∞

dv (f∞ − fL)

]

=
e

ǫ0

[∫ +∞

−∞

dv δf +

∫ +∞

−∞

dv (f∞ − fL)

]

, (1.58)

where fL = f0 + δf , f0 being the initial unperturbed electron distribution verifying the
neutrality condition e

∫
dvf0 = qiNi,0, and δf the actual linear perturbation. For a wave

with wave number k and frequency ω in the lab frame, one has

δf = − e

m

kφ

kv − ω

∂f0
∂v

, (1.59)

which is obtained from the linearized Vlasov equation:

∂δf

∂t
+ v

∂δf

∂x
+

e

m

∂φ

∂x

∂f0
∂v

= 0.

Inserting (1.59) in (1.58), and making use of the fact that the wave remains mainly
sinusoidal with wave number k0, enables to write:

−k2
0 ǫL(k0, ω)φ =

e

ǫ0

∫ +∞

−∞

dv∆fNL, (1.60)

having defined the non-linear deviation of the distribution ∆fNL = f∞ − fL. In equation
(1.60) ǫL(k, ω) is the linear dielectric function

ǫL(k, ω) = 1−
ω2
p

k2

∫

dv
∂f0/N
∂v

v − ω/k
.

The non-linear charge density on the right hand side of Eq. (1.60) appears as an external
source term to a system responding linearly with dielectric ǫL.

One now projects Eq. (1.60) onto φ, i.e. carries out 〈φ . . .〉x = (1/λ0)
∫ λ0/2

−λ0/2
dx φ . . .

on each side of the equation, to obtain:

ǫL(k0, ω) = − 2

ǫ0E
2
0

1

λ0

∫ λ0/2

−λ0/2

dx eφ

∫ +∞

−∞

dv∆fNL

= − 2

ǫ0E2
0

1

λ0

∫ λ0/2

−λ0/2

dx eφ

∫ +∞

−eφ

dW

mv(x,W )

∑

σ=±1

∆fNL, (1.61)

having used 〈φ2〉x = E2
0/(2k

2
0). To obtain the last equality in (1.61) one has changed to

wave frame variables, and made a variables transformation from velocity v to wave frame
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energy W = mv2/2 − eφ, so that v(x,W ) = +[(2/m)(W + eφ(x))]1/2. As will clearly
appear in the following, this change of frame and variables is convenient for expliciting
∆fNL = f∞ − fL.

The distribution f∞ is given in wave frame variables by Eqs. (1.42) and (1.43) for passing
and trapped particles respectively. As appears from (1.61), it is in fact

∑

σ=±1 f∞ which is
required. This quantity can actually be represented for both groups of particles, passing
and trapped, by the single, compact relation:

∑

σ=±1

f∞(W,σ) =

∑

σ

∫ λ0/2

−λ0/2
dxf0[σv(x,W )] H(W+eφ)

v(x,W )
∫ λ0/2

−λ0/2
dx H(W+eφ)

v(x,W )

=

∑

σ 〈f0[σv(x,W )]H(W+eφ)
v(x,W )

〉x
〈H(W+eφ)

v(x,W )
〉x

, (1.62)

where H(w) is the Heaviside step function, defined as H(w) = 0 for w < 0, and H(w) = 1
for w > 0.

One expects the non-linear deviation ∆fNL to be essentially non-zero in the resonant
region, i.e. around v = 0 in the wave frame. Thus, as in section 1.2.4 for addressing the
non-linear damping, one can here again Taylor-expand f0 around v = 0. However, as a
result of the summing over σ = ±1, which cancels out the first order terms, the expansion
must be considered in this case to second order:

f0(v) = f0(0) +
df0(0)

dv
v +

1

2

d2f0(0)

dv2
v2 + . . . . (1.63)

Inserting (1.63) in (1.62) provides:

∑

σ=±1

f∞(W,σ) = 2f0(0) +
d2f0(0)

dv2
〈Hv(x,W )〉x
〈 H
v(x,W )

〉x
+ . . . ≃ 2f0(0) +

d2f0(0)

dv2
v̄

mv̄′
, (1.64)

having used the notation v̄ = 〈Hv〉x for the average velocity and v̄′ = dv̄/dW =
(1/m)〈H/v(x,W )〉x. Naturally, H is the shorter notation for H(W + eφ).

The linear distribution fL = f0 + δf is also expanded up to order d2f0/dv
2, so that

using (1.59) in wave frame variables one obtains:

∑

σ=±1

fL =
∑

σ

[

f0(v)−
e

m

φ

v

df0(v)

dv

]

≃
∑

σ

{

f0(0) +
df0(0)

dv
v +

1

2

d2f0(0)

dv2
v2 − e

m

φ

v

[
df0(0)

dv
+

d2f0(0)

dv2
v

]}

= 2f0(0) +
d2f0(0)

dv2

(

v2 − 2
eφ

m

)

= 2f0(0) +
d2f0(0)

dv2
2

m
W. (1.65)
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Combining (1.64) and (1.65) thus provides

∑

σ=±1

∆fNL =
∑

σ

(f∞ − fL) ≃
d2f0(0)

dv2

(
v̄

mv̄′
− 2

m
W

)

= − 2

mv̄′
d2f0(0)

dv2
(Wv̄′ − v̄

2
). (1.66)

Figure 1.7 shows the distributions
∑

σ f∞ and
∑

σ fL in the resonant region.

The above relation derived for
∑

σ ∆fNL is clearly only function of W , so that in Eq.(1.61)
one can invert the integrals over x and W as follows:

ǫL(k0, ω) = − 2

ǫ0E2
0

∫ +∞

min(−eφ)

dW
∑

σ

∆fNL
1

λ0

∫ λ0/2

−λ0/2

dx
eφ H(W + eφ)

mv(x,W )

=
2

ǫ0E
2
0

∫ +∞

min(−eφ)

dW (Wv̄′ − v̄

2
)
∑

σ

∆fNL, (1.67)

having used

1

λ0

∫ λ0/2

−λ0/2

dx
eφH(W + eφ)

mv(x,W )
=

1

λ0

∫ λ0/2

−λ0/2

dx
−(W −mv2/2)H(W + eφ)

mv

= −W

m
〈H
v
〉x +

1

2
〈Hv〉x = −(Wv̄′ − v̄

2
).

Inserting (1.66) into (1.67) thus gives

ǫL(k0, ω) = − 4

mǫ0E
2
0

d2f0(0)

dv2

∫ +∞

min(−eφ)

dW
1

v̄′
(Wv̄′ − v̄

2
)2. (1.68)

Assuming that the potential field φ(x) is still essentially sinusoidal, the average velocity
v̄ is given by Eqs. (A.5) and (A.7) for passing and trapped particles respectively. Fur-
thermore, for passing particles one has 〈H/v(x,W )〉x = τt/λ0 where τt is the transit time
given by relation (A.4), while for trapped particles 〈H/v(x,W )〉x = τb/(2λ0), where τb is
the bounce period given by (A.6). In terms of the energy variable κ, defined in Eq.(A.3),
these terms thus read for passing particles (0 < κ < 1):

v̄ =
2

π

∆vtrap
κ

E(κ2),

v̄′ =
2

π

κF (κ2)

m∆vtrap
,

and for trapped particles (κ > 1):

v̄ =
2∆vtrap

π

[

E(
1

κ2
) + (

1

κ2
− 1)F (

1

κ2
)

]

,

v̄′ =
2

π

F ( 1
κ2 )

m∆vtrap
.
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By inserting these last relations into Eq. (1.68), one then finally obtains:

ǫL(k0, ω) = − 1

2π

m∆v5trap
ǫ0E2

0

d2f0
dv2

∣
∣
∣
∣
vφ

{∫ 1

0

dκ

κ6

1

F (κ2)

[
(2− κ2)F (κ2)− 2E(κ2)

]2

+

∫
∞

1

dκ

κ3

1

F ( 1
κ2 )

[

F (
1

κ2
)− 2E(

1

κ2
)

]2
}

,

= −
ω2
p

k2
0

∆vtrap
d2(f0/N)

dv2

∣
∣
∣
∣
vφ

8

π

∫ 1

0

dκ







1

κ6F

[
2(F − E)− κ2F

]2

︸ ︷︷ ︸

passing

+
κ

F
(F − 2E)2

︸ ︷︷ ︸

trapped







, (1.69)

having used the shortened notations F = F (κ2) and E = E(κ2) for the final equal-
ity. To obtain (1.69) one has transformed integration variable W to κ, so that W =
(m∆v2trap/4)(2/κ

2 − 1) and dW = (m∆v2trap/κ
3)dκ. For the trapped particle contri-

bution, one has furthermore carried out the transformation κ → 1/κ. The integral
α = (8/π)

∫
dκ . . . in (1.69) is a constant, and can be integrated numerically, providing

the value α = 0.823, which is composed of the contribution αu = 0.117 from untrapped
particles and αt = 0.705 from trapped particles.

For a mode with given wave number k0, the non-linear correction derived in Eq.(1.69)
to the linear dispersion relation ǫL(k0, ωL) = 0, obviously leads to a shift δω of the lin-
ear frequency ωL. By assuming the non-linear effect small, so that one may expand
ǫL(ωL + δω) = ǫL(ωL) + δω ∂ǫL(ωL)/∂ω + . . . ≃ δω ∂ǫL(ωL)/∂ω, one obtains:

δω = − α
∂ǫL(ωL)

∂ω

ω2
p

k2
0

∆vtrap
d2(f0/N)

dv2

∣
∣
∣
∣
vφ

= −α

2

ω3
p

k2
0

∆vtrap
d2(f0/N)

dv2

∣
∣
∣
∣
vφ

,

having again made use of the cold fluid approximation ǫL ≃ 1− ω2
p/ω

2 for the dispersion
function of electron plasma waves. This frequency shift is shown for Langmuir waves in
Fig. 1.8 for both the initial value problem considered here (=”sudden”), as well as for
the case of a wave turned on adiabatically (=”adiabatic”. See exercise 1.2.6.1).

Exercises:

1.2.6.1 Derive the non-linear frequency shift in the case of a Langmuir wave turned on
adiabatically instead of “suddenly”, as in the initial value problem which has been
considered in this section. Start by deriving the distribution f adiab. by invoking the
invariance of the action

∫
dxv as the amplitude of the wave is slowly turned on. This

distribution is to be compared to the asymptotic distribution f∞ considered in the
initial value case. This exercise illustrates the non-uniqueness of the trapped particle
distribution for a given wave amplitude, and thus reflects the potential diversity of
BGK modes.

1.2.6.2 Adapt the derivation in this section to handle the non-linear frequency shift of an
ion acoustic wave. Point out the contribution to the frequency shift from both the
ions and the electrons.
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Figure 1.7: Distributions in resonant region for the linear, “sudden”, and “adiabatic” cases.
For the non-linear distributions, a sinusoidal wave is assumed. The “sudden” distribution cor-
responds to the initial value case considered in the main text, while the “adiabatic” case corre-
sponds to the distribution obtained by adiabatically turning on the wave, and is addressed in
exercise 1.2.6.1.
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Figure 1.8: Non-linear frequency shift of a Langmuir wave as a function of the density pertur-
bation amplitude δN/N . The considered wave number is k0λD = 1/3. The numerical simulation
results from the SAPRISTI code are compared to the analytic predictions for both the “sudden”
and “adiabatic” case.
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Figure 1.9: Resonant interaction of trapped particles with sidebands.

1.2.7 Stability of BGK Mode: The Trapped Particle Instability

In general, the undamped BGK modes are not stable equilibrium states. Indeed, they are
subject to be destabilized by the growth of sidebands, which may be resonantly driven
by the particles trapped in the principal wave. The resonant mechanism of this trapped
particle instability (also called modulational instability) is schematized in Fig. 1.9.

1.2.8 Further Reading

• Non-linear Landau damping and frequency shift: See O’Neil [6], Morales and
O’Neil [8], and Dewar [9].

• BGK waves: Bernstein, Greene, and Kruskal [7].

• Trapped Particle Instability: Kruer et. al [10], Goldman [11], and Dewar et. al

[12].

• Experimental evidence of non-linear evolution: Danielson et. al [3] and the
references therein.
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Figure 1.10: Basic mechanism of a parametric instability that may affect a laser beam in a
plasma: The incident light (= wave #1), scatters off a plasma wave (= wave # 2), i.e. either
an electron plasma wave (EPW) or an ion acoustic wave (IAW). If the matching conditions are
met, the scattered light ( = wave # 3) and the incident light may beat together in such a way
as to reinforce the plasma wave.

1.3 Three Wave Interactions and Parametric Insta-

bilities

Parametric instabilities result from the resonant interaction between three non-linearly
coupled waves. The basic mechanism is schematized in figure 1.10 in the case of a laser
beam, i.e. a transverse electromagnetic wave, propagating through an unmagnetized,
under-dense plasma (frequency ω0 of incident light > plasma frequency ωp). This in-
cident light will reflect off any electron density fluctuation, in particular perturbations
related to electron plasma waves (EPWs) or ion acoustic waves (IAWs). Under condi-
tions of appropriate phase matching, the scattered and incident light may beat together
in such a way as to reinforce the plasma wave ( = EPW or IAW) via the ponderomotive
force drive. This reinforced plasma wave will in turn lead to a higher level of scattering,
and this increased scattered light will lead to a stronger beating with the incident light,
which will increase the drive of the plasma wave, thus accelerating its amplification, ob-
viously initiating an instability. The case of an electromagnetic wave scattering off an
EPW is called Stimulated Raman Scattering (SRS), while the case of an electromagnetic
wave scattering off an IAW is called Stimulated Brillouin Scattering (SBS).

The cases of SRS and SBS, as parametric instabilities affecting laser light propagating
through a plasma, are of particular concern in the context of inertial fusion, as they lead
to a loss of control of the laser energy deposition. Due to the relative simplicity in mod-
eling these particular parametric instabilities (mainly the fact that they involve waves
in a non-magnetized plasma), they will also be considered as illustrations in the follow-
ing. However, it is important to emphasize the generality of the underlying instability
mechanism which may affect any set of three non-linearly coupled waves verifying the
appropriate matching conditions.
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1.3.1 System of Three Coupled Oscillators

The problem of three non-linearly interacting waves is closely related to the dynamics of
a system of three coupled oscillators. One therefore starts by considering this somewhat
simpler system. This exercise will in particular point out the necessary condition of phase
matching in time.

A system of three non-linearly coupled oscillators can be characterized by a Hamilto-
nian of the form:

H(x, p) =
3∑

j=1

(
p2j
2

+ ω2
j

x2
j

2

)

+ V x1x2x3, (1.70)

where xj , pj, and ωj are respectively the position, momentum, and eigenfrequency of the
jth oscillator. The strength of the non-linear coupling is defined by the constant V ∈ R+.

The Hamilton-Jacobi equations:

dxj

dt
=

∂H

∂pj
,

dpj
dt

= −∂H

∂xj
,

lead in the case of H given by (1.70) to the following set of coupled equations:

ẍ1 + ω2
1 x1 = −V x2x3, (1.71)

ẍ2 + ω2
2 x2 = −V x1x3, (1.72)

ẍ3 + ω2
3 x3 = −V x1x2. (1.73)

The left hand sides of these equations clearly correspond to the linear equation of motion
for each independent harmonic oscillator, while the right hand sides model a quadratic
non-linear coupling. The doted quantities correspond to the standard notation for time
differentiation.

If the non-linear coupling remains relatively small (|V xj | ≪ |ω2
j′|), a logical represen-

tation for the solution to the system (1.71)-(1.73) is of the form:

xj(t) =
1

2

[
Aj(t)e

iωjt + A⋆
j (t)e

−iωjt
]
, (1.74)

where the (possibly complex) amplitude Aj(t) of the j’th oscillator is expected to vary
slowly compared to the frequency ωj, i.e. |(dAj/dt)/Aj| ≪ |ωj|.

Note, that if one wants to make use of a complex representation, one must be some-
what more careful for the non-linear physical system considered here than in the case
of a linear one. Indeed, if C is a complex solution to a linear, physical (implying with
real coefficients) set of equations, then the real part Re(C) and imaginary part Im(C)
are obviously solutions as well. This property is not verified in the case of a non-linear
system as a result of Re(z1z2) which in general is not equal to Re(z1)Re(z2), where z1,2
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are complex values. When dealing with a non-linear physical system, one must therefore
ensure reality of the solutions from the start, which explains the presence of the complex
conjugate term in Eq. (1.74).

Differentiating relation (1.74) with respect to time leads to

ẋj(t) =
1

2

[

(Ȧj + iωjAj)e
iωjt + c.c.

]

, (1.75)

ẍj(t) =
1

2

[

(Äj + 2iωjȦj − ω2
jAj)e

iωjt + c.c.
]

=
1

2

[

(Äj + 2iωjȦj)e
iωjt + c.c.

]

− ω2
jxj, (1.76)

where “c.c.” stands for complex conjugate. Inserting (1.76) into (1.71) provides an
equation for oscillator #1:

(Ä1 + 2iω1Ȧ1)e
iω1t + c.c. = −V

2

[
A2A3e

i(ω2+ω3)t + A2A
⋆
3e

i(ω2−ω3)t + c.c.
]
,

which, after multiplying by exp(−iω1t), becomes:

(Ä1 + 2iω1Ȧ1) + (Ä⋆
1 − 2iω1Ȧ

⋆
1)e

−2iω1t = −V

2

[
A2A3e

−i(ω1−ω2−ω3)t + A2A
⋆
3e

−i(ω1−ω2+ω3)t

+A⋆
2A3e

−i(ω1+ω2−ω3)t + A⋆
2A

⋆
3e

−i(ω1+ω2+ω3)t
]
.(1.77)

To obtain a slow time scale equation for the amplitude A1(t), one averages this last rela-
tion over the fast time scale of the eigenfrequencies ωj. Note, that the assumption of time
scale separation |Ȧj/Aj| ≪ |ωj| also enables to neglect the terms Äj compared to 2iωjȦj

on the right hand side of Eq.(1.77).

In the case of frequency mismatch, such that all the phase factors exp−i(ω1 ± ω2 ± ω3)t
on the right hand side of Eq.(1.77) vary on the fast time scale, i.e.

|ω1 ± ω2 ± ω3| ∼ |ωj|,

the averaging process applied to Eq.(1.77) simply leads to

2iω1Ȧ1 = 0 =⇒ A1 = const.,

Equivalent equations for A2 and A3 are also obtained by starting from Eqs. (1.72) and
(1.73) respectively. This result clearly shows that in the case of frequency mismatch the
oscillators are essentially decoupled, so that in the absence of damping their amplitude
remains constant.

However, if the condition of resonant coupling is verified, i.e.

ω1 = ω2 + ω3 + δω, (1.78)

35



the fast time scale averaging of Eq. (1.77) gives:

2iω1Ȧ1 = −V

2
A2A3e

−i δω t.

In Eq. (1.78) one has nonetheless allowed for the possibility of a small mismatch δω,
but this mismatch is assumed small such that |δω| ≪ |ωj|. Similar equations for A2 and
A3 are obtained from Eqs. (1.72)-(1.73), providing the following system of non-linearly
coupled equations for the slow time scale variation of the oscillator amplitudes Aj :

2iω1Ȧ1 = −V

2
A2A3e

−i δω t, (1.79)

2iω2Ȧ2 = −V

2
A1A

⋆
3e

+i δω t, (1.80)

2iω3Ȧ3 = −V

2
A1A

⋆
2e

+i δω t. (1.81)

From the set of equations (1.79)-(1.81) one can now start by carrying out a stability
analysis of the state of the system in which one assumes that the oscillator #1 has been
initially excited with a much larger amplitude than the two other ones. Thus, considering
A2 and A3 as small perturbations compared to A1 (|A2,3| ≪ |A1|), one can linearize the
system (1.79)-(1.81), which leads to

2iω1Ȧ1 = 0 =⇒ A1 = A1,0 = const,

2iω2Ȧ2 = −V

2
A1,0A

⋆
3e

+i δω t,

2iω3Ȧ3 = −V

2
A1,0A

⋆
2e

+i δω t.

By considering the Ansatz A2(t) = a2 exp[(γ+i δω/2)t] and A3(t) = a3 exp[(γ
⋆+i δω/2)t],

one then obtains:
{

2iω2(γ + i δω
2
) a2 = −V

2
A1,0 a

⋆
3,

2iω3(γ
⋆ + i δω

2
) a3 = −V

2
A1,0 a

⋆
2,

⇐⇒
(

2iω2(γ + i δω
2
) V

2
A1,0

V
2
A⋆

1,0 −2iω3(γ − i δω
2
)

)(

a2

a⋆3

)

=

(

0

0

)

To obtain a solution with non-zero amplitudes a2,3, the determinant of this last linear
system must be zero, which provides the following relation for γ:

γ2 =

(
V

4

)2 |A1,0|2
ω2ω3

−
(
δω

2

)2

. (1.82)

To have instability requires γ2 > 0. From Eq. (1.82), a necessary condition for instability
is thus

ω2 ω3 > 0, (1.83)

which is also a sufficient condition if there is no mismatch (δω = 0). The two conditions
(1.78) and (1.83) thus lead to

|ω1| > |ω2|, |ω3|.
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Here the conditions for instability must be interpreted as the conditions for effective
energy transfer from oscillator #1 to the oscillators #2 and #3. We thus conclude that
for this transfer to be effective, the frequency ω1 of oscillator #1 must be larger than the
frequencies of the other two oscillators. In the frame of a quantum description, equations
(1.78) and (1.83) correspond to the energy conservation for one quantum of oscillator #1
decaying into one quantum of oscillator # 2 and one quantum of oscillator #3:

~|ω1| = ~|ω2|+ ~|ω3|.

In the presence of a frequency mismatch, condition (1.83) is obviously not sufficient for
instability. From Eq. (1.82), one clearly sees that there is an additional condition on the
amplitude of oscillator #1:

|A1,0| >
2|δω|(ω2ω3)

1/2

V
.

Exercises:

1.3.1.1 Re-derive the system of equations (1.79)-(1.81) but furthermore assuming that the
j’th oscillator undergoes damping with rate γj. Repeat the linear stability analysis
against parametric instabilities (for this, neglect the damping of oscillator #1), and
show that the relation (1.82) for the rate γ now becomes:

γ = −γ2 + γ3
4

±
[(

γ2 − γ3
4

+ i
δω

2

)2

+

(
V

4

)2 |A1,0|2
ω2ω3

]1/2

Re-assess the conditions for instability in this case. In particular, show that there is
now an amplitude threshold even in the case of perfect frequency match (δω = 0).

1.3.2 Illustration of Three Wave Coupling: Stimulated Raman

Scattering

As has been done in the previous section for the amplitudes of three coupled harmonic
oscillators, one now derives the equations governing the evolution of the envelopes of three
non-linearly interacting waves. This derivation is carried out here for the particular case
of stimulated Raman scattering (SRS), which, as we recall, involves the interaction of

1. An incident electromagnetic wave, the so-called pump.

2. A scattered electromagnetic wave.

3. An electron plasma wave (EPW).

The specific case of SRS enables to illustrate the derivation of a system of coupled equa-
tions for the wave amplitudes whose form is generic for any set of three non-linearly
interacting waves.

SRS involves two types of waves: Transverse electromagnetic waves, and electron plasma
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Figure 1.11: Fields ( ~E = Ez~ez , ~B = By~ey) of linearly polarized electromagnetic waves repre-

sented by the vector potential ~A = Az~ez and electrostatic field ~Ees=Ex~ex of plasma wave, for
slab model of SRS and SBS.

waves. One thus needs to derive the corresponding wave equations, and in particular
identify the dominant non-linear coupling terms. As the coupling involves no essential
wave-particle resonance, these equations are derived, for simplicity, in the frame of a fluid
description. One assumes furthermore the system to be one-dimensional (slab), so that
all fields depend on a single spatial variable x.

Equation for Transverse EM Waves

One starts by deriving the wave equation for the transverse EM waves. The corresponding
electric and magnetic fields ( ~E, ~B) verify Maxwell’s equations, and in particular

∇× ~E = −∂ ~B

∂t
,

∇ · ~B = 0.

The general solution to these two equations can be expressed in terms of the vector
potential ~A and scalar potential φ:

~E = −∂ ~A

∂t
−∇φ, ~B = ∇× ~A.

In Coulomb gauge, for which ∇ · ~A = 0, one has for a transverse wave

∇ · ~E = −△ φ = 0 =⇒ φ = 0.

One shall furthermore assume here that the transverse wave is linearly polarized along
the direction Oz (see Fig. 1.11), so that ~A = Az(x, t)~ez, and

~E = Ez ~ez = −∂Az

∂t
~ez, ~B = By ~ey = −∂Az

∂x
~ey. (1.84)
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Inserting these relations into Ampere’s law

∇× ~B = µ0
~j +

1

c2
∂ ~E

∂t
,

provides
1

c2
∂2Az

∂t2
=

∂2Az

∂x2
+ µ0jz, (1.85)

where c is the speed of light, and jz is the current along ~ez induced by the EM fields in
the plasma. This plasma current is derived from the equation of motion for the particles:

m
d~v

dt
= q ( ~E + ~v × ~B).

Projecting onto ~ez and inserting relations (1.84) provides:

m
dvz
dt

= q (Ez + vxBy) = −q (
∂Az

∂t
+ vx

∂Az

∂x
) = −q

dAz

dt
=⇒ d

dt
(mvz + qAz) = 0.

This last relation expresses the invariance of momentum ~p = m~v + q ~A along Oz, which
results from the fact that the system is translationally invariant in this direction. If the
particles are essentially immobile before the passage of the wave, one obtains

vz = −qAz

m
, (1.86)

so that the transverse current can be written

jz =
∑

species

Nqvz = −Az

∑

species

Nq2

m
≃ −Nee

2

me
Az, (1.87)

having only kept the electron contribution, as the ion contribution is smaller by the ratio
me/mi. To lighten notations, the subscript “e” for electron values will be dropped from
here on.

By considering the electron density N = N0 + δN as the superposition of an initial,
homogeneous background N0 and of fluctuations δN , one finally obtains by inserting
(1.87) in (1.85):

∂2Az

∂t2
− c2

∂2Az

∂x2
+ ω2

pAz = −ω2
p

δN

N0

Az, (1.88)

where ω2
p = N0 e

2/mǫ0 is the plasma frequency squared. The left hand side of this last
equation is simply the linear wave equation for transverse electromagnetic waves, giving
rise to the dispersion relation ω2 = ω2

p + (kc)2, and in particular to the well-known
condition for propagation |ω| > ωp. Longitudinal plasma waves (either EPWs or IAWs)
are naturally a source of density fluctuations δN , so that the term on the right hand side
of Eq. (1.88) provides the non-linear coupling term between the transverse EM waves and
the plasma waves.
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Equation for Electron Plasma Waves

For modeling the high frequency EPWs, one can treat the massive ions as an immobile,
uniform, neutralizing background. The electrons are modeled here with a warm fluid
description. For this, one considers the continuity equation and momentum equation
along Ox:

∂N

∂t
+

∂

∂x
(Nvx) = 0, (1.89)

mN (
∂vx
∂t

+ vx
∂vx
∂x

) = −eN (Ex − vzBy)−
∂p

∂x
, (1.90)

as well as the closure from the equation of state:

p

Nγ
= const., (1.91)

where p is the electronic pressure. For EPWs, the phase velocity vφ = ω/k is such that
|vφ| ≫ vth. One thus considers the adiabatic equation of state for which γ = (D + 2)/D,
where D is the number of degrees of freedom. For wave propagation the appropriate value
is D = 1, so that γ = 3.

The electric component Ex on the right hand side of Eq. (1.90) corresponds to the
longitudinal, electrostatic field related to the EPWs, and verifies Poisson’s equation:

∂Ex

∂x
= −e δN

ǫ0
. (1.92)

where δN is the electron density perturbation related to the EPWs.

The next term on the right hand side of Eq. (1.90) is the Lorentz force Fp = e vzBy,
which results from the transverse oscillatory motion represented by Eq. (1.86), and gives
rise to the so-called ponderomotive force:

Fp = e vzBy = e
eAz

m
(−∂Az

∂x
) = −1

2

∂

∂x
(
e2A2

z

m
).

The ponderomotive force provides the non-linear coupling of the EPWs with the transverse
EM waves. This is therefore the only non-linearity which is retained, and all other terms
in Eqs. (1.89)-(1.91) are linearized with respect to the EPW perturbation terms δN , vx,
Ex and δp:

∂ δN

∂t
+N0

∂ vx
∂x

= 0, (1.93)

m
∂ vx
∂t

= −eEx −
1

2

∂

∂x
(
e2A2

z

m
)− 1

N0

∂δp

∂x
, (1.94)

δp = γ
p0
N0

δN = 3 T0 δN, (1.95)
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having used p0 = N0T0, where T0 is the background electron temperature.

Inserting Eq. (1.92) into Eqs. (1.93) and (1.95) enables to express the longitudinal
velocity and pressure perturbations in terms of Ex:

vx =
ǫ0

eN0

∂Ex

∂t
,

δp = −3 ǫ0
T0

e

∂Ex

∂x
.

These relations are in turn inserted into Eq. (1.94), finally providing:

∂2Ex

∂t2
− 3v2th

∂2Ex

∂x2
+ ω2

pEx = −ω2
p

1

2

∂

∂x

eA2
z

m
. (1.96)

The left hand side of Eq. (1.96) is clearly the linear wave equation for EPWs, leading to
the Bohm-Gross dispersion relation ω2 = ω2

p + 3(kvth)
2. The right hand side represents

the non-linear coupling with the transverse EM waves.

Coupled Three Wave Equations

To summarize the above results, one rewrites here the wave equations for the transverse
EM waves with vector potential component Az and EPWs with electrostatic component
Ex:

∂2Az

∂t2
− c2

∂2Az

∂x2
+ ω2

pAz =
e

m

∂Ex

∂x
Az, (1.97)

∂2Ex

∂t2
− 3v2th

∂2Ex

∂x2
+ ω2

pEx = −ω2
p

1

2

∂

∂x

eA2
z

m
, (1.98)

having used (1.92) to replace δN by Ex in Eq. (1.88).

To obtain a model for SRS, one now intends to derive from Eqs. (1.97)–(1.98) a system
of coupled equations for the amplitudes A0, As and E of the incident EM wave, scattered
EM wave, and the EPW respectively. The method for deriving these equations is similar
to the one used for obtaining the system (1.79)–(1.81) for the amplitudes of three cou-
pled harmonic oscillators, with the additional complication however of spatial dependence.

Under the assumption of small non-linear coupling, it is logical to assume that each
wave involved in the SRS mechanism has a wave number k and frequency ω still verifying
the linear dispersion relation, but with an amplitude that may vary slowly both in space
and time. The vector potential field Az in Eqs. (1.97)–(1.98), which is the superposition
of the incident and scattered EM waves, is thus written:

Az(x, t) =
1

2

[
A0(x, t) e

i(k0x−ω0t) + c.c.
]

︸ ︷︷ ︸

Incident EM

+
1

2

[
As(x, t) e

i(ksx−ωst) + c.c.
]

︸ ︷︷ ︸

Scattered EM

, (1.99)
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while a similar Ansatz is considered for the electrostatic field:

Ex(x, t) =
1

2

[
E(x, t) ei(kex−ωet) + c.c.

]

︸ ︷︷ ︸

EPW

, (1.100)

where the wave number-frequency pairs (k, ω) of all three waves verify their respective
linear dispersion relations:

ω2
0 = ω2

p + (k0c)
2, (1.101)

ω2
s = ω2

p + (ksc)
2, (1.102)

ω2
e = ω2

p + 3(kevth)
2. (1.103)

As an example, the condition of slowly varying envelopes reads in the case of the incident
EM wave:

| 1A0

∂A0

∂x
| ≪ |k0|, and | 1A0

∂A0

∂t
| ≪ |ω0|.

Similar scalings hold for As and E .

To obtain the equations for the amplitudes A0 and As for the incident and scattered
EM waves, one starts by differentiating Eq. (1.99) with respect to x and t:

∂xAz =
∑

0,s

1

2

[
(∂xA+ ikA) ei(kx−ωt) + c.c.

]
,

∂xxAz =
∑

0,s

1

2

[
(∂xxA+ 2ik ∂xA− k2A) ei(kx−ωt) + c.c.

]
,

∂tAz =
∑

0,s

1

2

[
(∂tA− iωA) ei(kx−ωt) + c.c.

]
,

∂ttAz =
∑

0,s

1

2

[
(∂ttA− 2iω ∂tA− ω2A) ei(kx−ωt) + c.c.

]
.

Differentiating Eq.(1.100) provides similar relations for Ex, which can then all be inserted
into Eq.(1.97), leading to:

1

2

[
(∂ttA0 − 2iω0 ∂tA0) e

i(k0x−ω0t) + c.c.
]
− c2

1

2

[
(∂xxA0 + 2ik0 ∂xA0) e

i(k0x−ω0t) + c.c.
]

+
1

2

[
(∂ttAs − 2iωs ∂tAs) e

i(ksx−ωst) + c.c.
]
− c2

1

2

[
(∂xxAs + 2iks ∂xAs) e

i(ksx−ωst) + c.c.
]

=
e

m

1

2

[
(∂xE + ike E) ei(kex−ωet) + c.c.

]
×

{
1

2

[
A0 e

i(k0x−ω0t) + c.c.
]
+

1

2

[
As e

i(ksx−ωst) + c.c.
]
}

(1.104)

having made use of Eqs. (1.101)-(1.102). Invoking the assumption of slow variation of the
envelope, one has |∂ttA| ≪ |ω ∂tA|, |∂xxA| ≪ |k ∂xA| and |∂xE| ≪ |ke E|, which justifies
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neglecting these smaller terms in Eq.(1.104).

By multiplying Eq. (1.104) by exp−i(k0x − ω0t) and averaging over the fast space and
time scales of the wave numbers k and wave frequencies ω, one obtains a slow variation
scale equation for the incident wave amplitude A0(x, t). Similarly as for the system of
coupled harmonic oscillators, one sees that the non-linear coupling terms on the right
hand side of Eq. (1.104) will in general average out to zero unless certain resonant con-
ditions are met. These conditions correspond to phase matching of the three waves both
in space and time, and can be written in terms of the wave numbers and frequencies as:

k0 = ks + ke, (1.105)

ω0 = ωs + ωe + δω, (1.106)

having allowed in (1.106) for a possible frequency mismatch δω, such that |δω| ≪ |ω0,s,e|.
Under these matching conditions, one then obtains after averaging:

−2iω0 ∂tA0 − c2 2ik0 ∂xA0 =
e

2m
ike EAs e

iδωt.

In the same way, by multiplying Eq. (1.104) by exp−i(ksx−ωst) and performing the same
averaging leads to the corresponding equation for the scattered wave amplitude As(x, t):

−2iωs ∂tAs − c2 2iks ∂xAs = − e

2m
ike E⋆A0 e

−iδωt.

The equation for the EPW envelope E(x, t) is obtained through a similar derivation by
inserting (1.99) and (1.100) into (1.98), multiplying by exp−i(kex − ωet), and averag-
ing. Again invoking the assumption of phase matching, one then obtains (check it as an
exercise):

−2iωe ∂tE − 3v2th 2ike ∂xE = − e

2m
ω2
p ikeA0A⋆

s e
−iδωt.

The system of non-linearly coupled equations for the three wave amplitudes can thus be
summarized as follows:

∂tA0 + vg,0 ∂xA0 = − e

4m

ke
ω0

E As e
iδωt, (1.107)

∂tAs + vg,s ∂xAs =
e

4m

ke
ωs

A0 E⋆ e−iδωt, (1.108)

∂tE + vg,e ∂xE =
e

4m

ke
ωe

ω2
p A0A⋆

s e
−iδωt, (1.109)

having used the notations vg,0,s = dω0,s/dk0,s = c2k0,s/ω0,s and vg,e = dωe/dke = 3v2thke/ωe

for the group velocities of the three waves.

In case the phase matching conditions (1.105)–(1.106) are not verified, the non-linear
coupling terms on the right hand sides of Eqs. (1.107)–(1.109) are absent. The resulting
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equations then simply represent the independent advection of the three wave envelopes
at their respective group velocity. For example, for the incident wave:

∂tA0 + vg,0 ∂xA0 = 0 =⇒ A0(x, t) = A0(x− vg,0 t, t = 0). (1.110)

In the case of space independent wave amplitudes, one can easily show the equivalence
of the system of coupled equations (1.107)-(1.109) with the system (1.79)-(1.81) for the
amplitudes of the coupled harmonic oscillators. For this, one simply needs to identify the
corresponding terms (harmonic oscillators↔ waves): (A1, ω1) ↔ (−iA0,−ω0), (A2, ω2) ↔
(−iAs,−ωs), (A3, ω3) ↔ (−iE/ωp,−ωe), V ↔ e ke ωp/m, and δω ↔ −δω.

Linear Analysis of the Parametric Instability

As in section 1.3.1, one can now start by carrying out a linear stability analysis of the
state of the system in which the incident EM wave has an amplitude A0 significantly
larger than the amplitudes As and E of the scattered wave and EPW respectively. In
a real physical system, A0 could represent a high intensity laser beam, while the initial
values of As and E could be at the level of thermal fluctuations. One furthermore assumes
here that there is no spatial variations of the envelopes, so that only temporal variations
are considered. Thus, considering As and E as small perturbations, one can linearize the
system (1.107)-(1.109) with respect to these terms, which leads to

∂tA0 = 0 =⇒ A0 = const, (1.111)

∂tAs =
e

4m

ke
ωs

A0 E⋆ e−iδωt, (1.112)

∂tE =
e

4m

ke
ωe

ω2
p A0A⋆

s e
−iδωt. (1.113)

Thus, considering A0 as a constant, Eqs. (1.112)-(1.113) become linear in As and E .
Solutions for these two fields can be found of the form As ∼ exp(γ − iδω/2)t and E ∼
exp(γ⋆ − iδω/2)t, which leads to the rate:

γ2 =

(
kevos
4

)2 ω2
p

ωsωe
−
(
δω

2

)2

, (1.114)

where one has defined vos = e|A0|/m the velocity oscillation amplitude of electrons in the
incident EM wave. Note again the analogy between (1.114) and (1.82).

From Eq. (1.114), one sees that a necessary condition for instability is thus again ωsωe > 0,
which together with (1.106) implies that all three frequencies ω0,s,e must have same sign,
and that |ω0| > |ωs|, |ωe|. From here on, as a convention, all three frequencies ω0,s,e can
thus be assumed positive.

Exercises:

1.3.2.1 Carry out the derivation of equation (1.109).
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1.3.2.2 How do Eqs. (1.107)-(1.109) generalize in the presence of possible damping mecha-
nisms for the various waves?

1.3.2.3 Derive the non-linear coupling equations for the envelopes of the three waves in-
volved in stimulated Brillouin scattering (SBS). Compute the corresponding linear
growth rate of the parametric instability.

1.3.3 Matching Conditions

Let us make some additional comments here relative to the matching conditions for non-
linear three wave coupling. For illustration purposes, one pursues this discussion in the
particular case of SRS.

For the one-dimensional slab model of SRS that was considered in Sec. 1.3.2, it ap-
pears clearly, that having fixed one of the 6 real wave number-frequency values (k0, ω0),
(ks, ωs) and (ke, ωe) the other values are in general determined by the system of 5 equa-
tions formed by the 3 dispersion relations (1.101)-(1.103) and the 2 matching conditions
(1.105) and (1.106).

Note however, that the dispersion relations contain quadratic terms, and therefore, for
a given incident wave with wave number-frequency pair (k0, ω0) their may be zero, one
or two solutions for (ks, ωs) and (ke, ωe) verifying the matching conditions. Obviously,
for SRS, as a result of the properties ωs > ωp and ωe > ωp, one must have from (1.106)
ω0 > 2ωp. By defining the critical density Nc such that ω2

0 = Nce
2/mǫ0 = (Nc/N)ω2

p, one
thus obtains a necessary condition for SRS to be able to develop (density below quarter
critical):

N <
Nc

4
.

The geometrical solution to the matching conditions (1.105)-(1.106) in a one-dimensional
system appears as a sum of vectors in the (k, ω) plane: (k0, ω0) = (ks, ωs) + (ke, ωe),
where the three vectors (k0,s,e, ω0,s,e) must lie on the curves of their respective dispersion
relation. This is shown in the case of SRS in Fig. 1.12. From this figure, one clearly sees

that for ω0

∼

> 2ωp there are in general two solutions to the matching conditions for a given
incident wave (k0, ω0). One solution is such that k0ks < 0, and is called Backward SRS
(BSRS), as it corresponds to the scattered EM wave propagating opposite to the incident
wave. The other solution with k0ks > 0 is called Forward SRS (FSRS), and corresponds
to the scattered wave propagating in the same direction as the incident one. According
to (1.114), the SRS growth rate related to backward scattering tends to be larger than
for forward scattering, as |kBSRS

e | > |kFSRS
e |. This is indeed true as long as damping of

the EPW is not important. However, as Landau damping increases with keλD, FSRS can
become competitive when kBSRS

e λD becomes large.

Given the frequency ω0 of the incident laser light, the matching conditions for SRS can
thus be solved together with the dispersion relations to obtain the wave number-frequency
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Figure 1.12: Geometrical solution to the matching conditions for (a) backward and (b) forward
SRS. The blue curve corresponds to the dispersion relation ω2 = ω2

p + (kc)2 for electromagnetic
waves, and the red curve shows the Bohm-Gross dispersion relation ω2 = ω2

p + 3(kvth)
2 for

EPWs. Space and time phase matching: The purple vector, representing the wave number and
frequency (ω0, k0) of the incident laser light, must be the sum of the vectors (ks, ωs) and (ke, ωe)
representing the scattered light and EPW respectively.
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pairs of all waves involved in the SRS mechanism. This is achieved by first inserting (1.105)
and (1.106) into (1.102), which (neglecting possible mismatch δω) leads to:

(ω0 − ωe)
2 = ω2

p + (k0 − ke)
2c2.

Making use of Eq. (1.101) for (k0, ω0), this relation can then be reduced to

k2
e − 2k0ke −

ωe(ωe − 2ω0)

c2
= 0,

which in turn is solved for ke:

ke = k0 ±
1

c
(k2

0c
2 + ω2

e − 2ω0ωe)
1/2

≃ k0 ±
ω0

c
(1− 2

ωp

ω0

)1/2, (1.115)

having approximated ωe ≃ ωp in the last step, and having again invoked Eq. (1.101).
From the matching condition on the wave numbers, one has ks = k0 − ke, so that

ks = ∓ω0

c
(1− 2

ωp

ω0
)1/2.

For k0 > 0, the solution ke with the + sign in (1.115) is thus related to BSRS, while the
solution with the − sign corresponds to FSRS. From Eq.(1.115) it also appears clearly
that kBSRS

e varies from 2k0 in the limit of low density (N ≪ Nc/4 ⇔ ω0 ≫ 2ωp), down to
k0 in the limit N ≃ Nc/4 ⇔ ω0 ≃ 2ωp.

If the waves are allowed to propagate in more than one dimension, the wave number
matching condition (1.105) is replaced by the vector equation on the wave vectors:

~k0 = ~ks + ~ke. (1.116)

In this case, having fixed for instance the frequency ω0 and direction ~n0 = ~k0/k0 of the
incident wave, there remain 9 parameters to be determined for the wave vectors and fre-
quencies of the three waves involved in the parametric instability: k0, (~ks, ωs), and (~ke, ωe).
These 9 parameters must verify the system of 7 equations formed by the 3 dispersion re-
lations (1.101)-(1.103) and the 4 matching conditions (1.106) and (1.116). Thus, there

remain 2 degrees of freedom. These can be chosen as the scattering direction ~ns = ~ks/ks.
Therefore, in general, scattering can occur in all spatial directions. Note however that
each scattering direction has its own growth rate and interaction length.

In the context of a quantum description, the matching condition (1.116) on the wave
vectors and the matching condition (1.106) on the frequencies correspond respectively to
the conservation of momentum and energy of an incident photon scattering off a plasmon:

~~k0 = ~~ks + ~~ke, (1.117)

~ω0 = ~ωs + ~ωe, (1.118)
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where (~~k0, ~ω0), (~~ks, ~ωs), and (~~ke, ~ωe) are respectively the (momentum, energy) of
the incident photon, scattered photon, and plasmon involved in the process.

Exercises:

1.3.3.1 Draw the geometrical solution to the matching conditions for SBS.

1.3.3.2 From the appropriate plot, convince yourself that matching conditions can be ver-
ified for the potential decay of an EPW into another EPW and an IAW. This
parametric instability is the so-called Langmuir Decay Instability (LDI).

1.3.4 Manley-Rowe Relations

One can show that the non-linear system of coupled equations (1.107)–(1.109) for the
amplitudes of the three waves involved in the parametric instability verifies certain con-
servation laws. These laws are conveniently derived after an appropriate normalization of
the wave amplitudes.

Inspired by the equivalence between the matching conditions on the wave vectors/frequencies
of the waves in the classical description and the conservation laws (1.117)-(1.118) of the
corresponding quantum process, one defines for each wave the complex action amplitude
a, such that the corresponding action density n = |a2| = a a⋆ is related to the wave energy
density Ewave by

Ewave = a a⋆ ω = nω. (1.119)

To a factor ~, the action density n can thus be interpreted as the density of wave quanta.

The wave energy density Ewave for each wave is derived from the general relation for
the wave energy in a dispersive media:

Ewave =
1

4

{

ǫ0 ~E
⋆
0 ·

∂

∂ω
[ω ǫH(ω)] · ~E0 +

1

µ0

~H⋆
0 ·

∂

∂ω
[ω µH(ω)] · ~H0

}

, (1.120)

where ǫH and µH are the hermitian parts of the dielectric and magnetic permeability
tensors respectively, ~E0 and ~B0 = µ ~H0 are the complex amplitudes of the electric and
magnetic field components of the wave respectively, and ω is the frequency of the wave.
Note, that in a plasma, the magnetic permeability tensor µ = 1. Proof of this relation
was the goal of exercise 1.2.2.2.

In the case of transverse electromagnetic waves, the dielectric tensor is given by ǫ =
(1 − ω2

p/ω
2)1, and, according to (1.84), for a given wave with wave number k and fre-

quency ω the amplitude of the electric and magnetic fields are related to the amplitude
A of the vector potential by

E0 = iωA, B0 = −ikA,
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so that by applying Eq. (1.120) one obtains:

Ewave =
1

4

[

ǫ0 ω
2|A|2 ∂

∂ω

(

ω −
ω2
p

ω

)

+
1

µ0
k2|A|2

]

=
1

4
ǫ0 ω

2|A|2
[

1 +
ω2
p + (kc)2

ω2

]

=
1

2
ǫ0 ω

2|A|2, (1.121)

having made use of the dispersion relation ω2 = ω2
p + (kc)2 for transverse waves. Com-

paring Eq. (1.121) with (1.119), the action amplitudes for the incident and scattered
electromagnetic waves participating in the SRS mechanism are thus given respectively
by:

a0 =
(ǫ0 ω0

2

)1/2

A0, as =
(ǫ0 ωs

2

)1/2

As. (1.122)

For EPWs, the dielectric function in the warm fluid limit considered here (see model for
EPW in Sec. 1.3.2) is given by ǫ = 1− ω2

p/[ω
2 − 3(kvth)

2], so that for a given wave with
frequency ω and amplitude E of the electric field, one obtains from Eq. (1.120):

Ewave =
1

4
ǫ0

∂

∂ω
(ωǫ) |E|2 = 1

4
ǫ0 ω

∂ǫ

∂ω
|E|2 = 1

2
ǫ0

ω2

ω2
p

|E|2, (1.123)

having made use of the dispersion relation ǫ = 0, i.e. ω2 = ω2
p + 3(kvth)

2, for the EPWs.
Note that in this case of a longitudinal wave, there is no magnetic field contribution to
the energy. Comparing Eq. (1.123) with (1.119), the action amplitude for the EPW in
the SRS mechanism is thus given by:

ae =
(ǫ0 ωe

2

)1/2 E
ωp

. (1.124)

Inserting relations (1.122) and (1.124) into Eqs. (1.107)–(1.109), one obtains the normal-
ized system of coupled equations for the action amplitudes of the three waves participating
in SRS:

∂ta0 + vg,0 ∂xa0 = −Γ ae as e
iδωt, (1.125)

∂tas + vg,s ∂xas = +Γ a0 a
⋆
e e

−iδωt, (1.126)

∂tae + vg,e ∂xae = +Γ a0 a
⋆
s e

−iδωt, (1.127)

where one has defined the normalized coupling parameter

Γ =
1

2
√
2

e ωp

m
√
ǫ0

ke
(ω0 ωs ωe)1/2

.

Note the symmetry in equations (1.125)–(1.127). Symmetry which was lacking in Eqs.
(1.107)–(1.109).

The form of Eqs. (1.125)–(1.127) is now convenient for deriving conservation relations, in
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particular the conservation of action. Indeed, by multiplying Eqs. (1.125) by a⋆0, and by
multiplying the complex conjugate of Eq. (1.126) by as, one obtains:

a⋆0 ∂ta0 + vg,0 a
⋆
0 ∂xa0 = −Γ a⋆0 as ae e

iδωt,

as ∂ta
⋆
s + vg,s as ∂xa

⋆
s = +Γ a⋆0 as ae e

iδωt.

Then, by adding these two equations:

a⋆0 ∂ta0 + vg,0 a
⋆
0 ∂xa0 + as ∂ta

⋆
s + vg,s as ∂xa

⋆
s = 0. (1.128)

and also considering the complex conjugate of this last relation:

a0 ∂ta
⋆
0 + vg,0 a0 ∂xa

⋆
0 + a⋆s ∂tas + vg,s a

⋆
s ∂xas = 0, (1.129)

one then finally obtains by adding Eqs. (1.128) and (1.129):

∂t|a0|2 + vg,0 ∂x|a0|2 + ∂t|as|2 + vg,s ∂x|as|2 = 0,

which can also be written in terms of the action densities as:

∂tn0 + ∂x(vg,0 n0) = − [∂tns + ∂x(vg,s ns)] . (1.130)

Noting, that vg,0 n0 and vg,s ns are the action fluxes for the incident and scattered waves
respectively, one identifies the left hand side of Eq. (1.130) as the continuity equation for
the action in the incident wave, while the right hand side corresponds to the continuity
equation for action in the scattered wave. Equation (1.130) clearly states that the sink of
action in the incident wave is the source of action in the scattered wave. The integral form
of this local conservation law is obtained by integrating Eq. (1.130) over space, which
leads to ∫

(n0 + ns) dx = const., (1.131)

having assumed that waves do not propagate in or out of the system (true in particular
for a periodic system).

Starting from Eqs. (1.125) and (1.127), one obtains by a similar derivation the equa-
tions for action transfer between the incident wave and the EPW, both in local form:

∂tn0 + ∂x(vg,0 n0) = − [∂tne + ∂x(vg,e ne)] . (1.132)

and in global form: ∫

(n0 + ne) dx = const. (1.133)

Equations (1.130)-(1.133) are the so-called Manley-Rowe relations (in local and global
form). Equations (1.131) and (1.133) state that for each quantum disappearing in the
incident wave, a quantum appears both in the scattered as well as in the electron plasma
wave.
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Together with the frequency matching condition (1.106), the Manley-Rowe equations also
imply energy conservation. Indeed, multiplying Eq. (1.130) by ωs and Eq. (1.132) by ωe

and then adding these two relations, leads to

(ωs +ωe) [∂tn0 + ∂x(vg,0 n0)] +ωs [∂tns + ∂x(vg,s ns)] +ωe [∂tne + ∂x(vg,e ne)] = 0. (1.134)

Invoking the matching condition ω0 = ωs + ωe, Eq. (1.134) can finally be written

∂t(
∑

0,s,e

Ewave) + ∂x(
∑

0,s,e

vgEwave) = 0, (1.135)

having made use of the relation Ewave = nω between the action density and wave energy
density. Identifying

∑

0,s,e vgEwave as the total energy flux from the three waves, Eq.
(1.135) obviously corresponds to the local energy conservation law. The corresponding
global conservation law is again obtained by integrating Eq. (1.135) over space, leading
to

∑

0,s,e

∫

Ewave dx = const. (1.136)

Starting from Eqs.(1.79)–(1.81), relations analog to the global (i.e. space independant)
conservation laws (1.131), (1.133) and (1.136) can be derived for the system of three non-
linearly coupled harmonic oscillators (see following exercise).

Exercise:

1.3.4.1 For the system of three non-linearly coupled harmonic oscillators, define the appro-
priate action amplitude aj for each oscillator. Starting from Eqs. (1.79)–(1.81) for
the oscillator amplitudes Aj , obtain the more symmetric set of equations for the
action amplitudes aj . Finally, derive the conservation laws for action and energy.

1.3.5 Non-Linear Analytic Solution to the Space Independent
Coupling Equations

By carrying out a linear stability analysis of the three wave system (1.107)–(1.109) at
the end of Sec. 1.3.2 [which is naturally equivalent to the stability analysis of the system
(1.125)–(1.127)], one identified under which conditions a parametric instability may de-
velop. One shall now consider the non-linear evolution of the three wave interaction. To
facilitate the analytic derivation, one will assume that the envelopes of the waves are space
independant (valid in an infinitely long or periodic system), and furthermore assume that
there is no frequency mismatch. In this case, Eqs. (1.125)–(1.127) become

ȧ1 = −Γ a2 a3, (1.137)

ȧ2 = +Γ a1 a
⋆
3, (1.138)

ȧ3 = +Γ a1 a
⋆
2, (1.139)
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having replaced the subscripts 0, s, and e used for labeling the waves involved in the SRS
mechanism by the subscripts 1, 2, and 3, so as to emphasize the generality of the following
results to any set of three non-linearly interacting waves. Note that one again uses here
the doted notation for time differentiation. Recall as well that Eqs. (1.137)–(1.139) have
been derived under the assumption of the wave frequencies ω1,2,3 being all positive, which,
together with the frequency matching condition ω1 = ω2 + ω3, ensures |ω1| > |ω2|, |ω3|.
This is the necessary condition for possible decay of quanta from wave #1 into quanta of
wave #2 and #3.

In order to derive the non-linear time evolution of the three wave amplitudes governed
by Eqs. (1.137)–(1.139), one starts by expliciting the modulus αj and phase φj for each
action amplitude aj:

aj(t) = αj(t) e
iφj(t), j = 1, 2, 3. (1.140)

Inserting (1.140) into (1.137)–(1.139), and defining the phase difference θ = φ1 − φ2 − φ3,
one obtains:

α̇1 + i α1 φ̇1 = −Γα2 α3 e
−iθ,

α̇2 + i α2 φ̇2 = +Γα1 α3 e
+iθ,

α̇3 + i α3 φ̇3 = +Γα1 α2 e
+iθ.

Taking the real parts of these relations provides:

α̇1 = −Γα2 α3 cos θ, (1.141)

α̇2 = +Γα1 α3 cos θ, (1.142)

α̇3 = +Γα1 α2 cos θ, (1.143)

and the imaginary parts:

α1 φ̇1 = Γα2 α3 sin θ, (1.144)

α2 φ̇2 = Γα1 α3 sin θ, (1.145)

α3 φ̇3 = Γα1 α2 sin θ. (1.146)

From Eqs. (1.141)–(1.143) one can naturally recover the Manley-Rowe relations:

d

dt
(n1 + n2) = 2α1 α̇1 + 2α2 α̇2 = 0,

d

dt
(n1 + n3) = 2α1 α̇1 + 2α3 α̇3 = 0,

having used the relation n = |a|2 = α2 between the action density n and the modulus α
of the action amplitude a. From Eqs. (1.144)–(1.146), one can obtain an equation for the
time variation of the phase difference θ:

θ̇ = φ̇1 − φ̇2 − φ̇3 = Γ

(
α2α3

α1

− α1α3

α2

− α1α2

α3

)

sin θ,
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and making again use of Eqs. (1.141)–(1.143) one can further write:

θ̇ = −
(
α̇1

α1
+

α̇2

α2
+

α̇3

α3

)

tan θ = − tan θ
d

dt
ln(α1 α2 α3),

which leads to another invariant quantity:

θ̇

tan θ
= − d

dt
ln(α1 α2 α3) =⇒ d

dt
ln(α1 α2 α3 sin θ) = 0.

The invariants for the system (1.137)–(1.139) can thus be summarized as follows:

n1 + n2 = const.
.
= m2, (1.147)

n1 + n3 = const.
.
= m3, (1.148)

α1 α2 α3 sin θ = const.
.
= C. (1.149)

These constants are now used in deriving the non-linear time evolution of the spatially
uniform action densities nj . Starting from Eq. (1.141), one computes the time variation
of n1:

ṅ1 = 2α1 α̇1 = −2 Γα1 α2 α3 cos θ.

Writing cos θ = ±(1 − sin2 θ)1/2 and making use of Eq. (1.149) then leads to:

ṅ1 = ± 2 Γα1 α2 α3

(

1− C2

α2
1 α

2
2 α

2
3

)1/2

= ± 2 Γ (n1 n2 n3 − C2)1/2.

Finally, one invokes the invariants given by Eqs. (1.147) and (1.148) to obtain:

ṅ1 = ± 2 Γ
[
n1 (m2 − n1) (m3 − n1)− C2

]1/2
.

This last equation depends only on n1 and can thus be solved by quadrature:

1

2

∫ n1(t)

n1(t0)

dn1

[n1 (m2 − n1) (m3 − n1)− C2]1/2
︸ ︷︷ ︸

I

= ±Γ (t− t0), (1.150)

where for now, t0 represents an arbitrary reference time. The integral I on the left hand
side of Eq. (1.150) is an elliptic integral [5], and can in fact be expressed in terms of the
elliptic integral of the first kind, as is now shown. For this one notes na, nb and nc the
roots of the cubic equation

n1 (m2 − n1) (m3 − n1)− C2 = 0. (1.151)

These roots can be ordered such that

0 ≤ na ≤ nb ≤ nc. (1.152)
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Figure 1.13: (a) Elliptic integral of the first kind F (ϕ,m). (b) Complete elliptic integral of
the first kind F (m) = F (π/2,m). (c) Jacobian elliptic function sn(u,m). (d) Jacobian elliptic
function cn(u,m).
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The integral I can thus be written:

I =
1

2

∫ n1(t)

n1(t0)

dn1

[(n1 − na) (n1 − nb) (n1 − nc)]
1/2

.

By further making the change of variables

y =

(
n1 − na

nb − na

)1/2

, (1.153)

one obtains (check it):

I =
1

(nc − na)1/2

∫ y(t)

0

dy

[(1− y2)(1− µ2y2)]1/2
=

1

(nc − na)1/2
F [arcsin y(t), µ2], (1.154)

having defined the parameter

µ2 =
nb − na

nc − na
, (1.155)

which, as a result from the ordering (1.152), is such that 0 ≤ µ2 ≤ 1. To obtain the first
equality in (1.154), one has now defined the time t0 such that

n1(t0) = na,

which led to the lower boundary of the integral in y being equal to zero. The second
equality in (1.154) was obtained using the definition of the elliptic integral of the first
kind [5]:

F (ϕ,m) =

∫ ϕ

0

dθ

(1−m sin2 θ)1/2
=

∫ sinϕ

0

dx

[(1− x2)(1−mx2)]1/2
,

with x = sin θ, and 0 ≤ m ≤ 1.

Inserting (1.154) into (1.150) gives then:

F [arcsin y(t), µ2] = ± (nc − na)
1/2 Γ (t− t0).

This last relation can be inverted for y(t):

y(t) = ± sn
[
(nc − na)

1/2 Γ (t− t0), µ
2
]
. (1.156)

Here sn(u,m), 0 ≤ m ≤ 1, is one of the Jacobian elliptic functions defined by

u = F (ϕ,m) ⇐⇒ sn(u,m) = sinϕ. (1.157)

Note that one has sn(u,m = 0) = sin u, and for 0 < m < 1 the elliptic function sn(u,m)
appears as a “flattened” sin function (see Fig. 1.13). Let us immediately introduce here
cn(u,m), which is another Jacobian elliptic function, defined by

u = F (ϕ,m) ⇐⇒ cn(u,m) = cosϕ. (1.158)
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Comparing definitions (1.157) and (1.158) for sn(u,m) and cn(u,m) respectively, one ob-
viously has the relation sn2(u,m) + cn2(u,m) = 1 for any argument u and parameter
0 ≤ m ≤ 1.

Now, inserting (1.156) into (1.153) finally provides the solution for the action density
of wave #1:

n1(t) = na + (nb − na) sn
2
[
(nc − na)

1/2 Γ (t− t0), µ
2
]
. (1.159)

Note that n1(t) oscillates between the values na and nb with period T = 2F (µ2)/[Γ(nc −
na)

1/2], where F (m) = F (π/2, m) is the complete elliptic integral of the first kind, and
that one indeed has n1(t0) = na.

The time evolution of the action densities for wave #2 and #3 are then simply obtained
from (1.147) and (1.148):

n2(t) = m2 − n1(t) = (m2 − nb) + (nb − na) cn
2
[
(nc − na)

1/2 Γ (t− t0), µ
2
]
, (1.160)

n3(t) = m3 − n1(t) = (m3 − nb) + (nb − na) cn
2
[
(nc − na)

1/2 Γ (t− t0), µ
2
]
. (1.161)

Equations (1.159)–(1.161) clearly provide solutions for the action densities of the three
waves in terms of the initial conditions. Note in particular, that the values na, nb and nc,
being solution of Eq. (1.151), are function of the invariants of motion m2, m3 and C, and
thus function of the initial conditions of the system.

One now considers the solutions (1.159)–(1.161) for the action densities of the three non-
linearly coupled waves in two particular cases of initial conditions.

Case 1. n3(0) ≫ n2(0) > n1(0) = 0.

For these initial conditions, the invariants (1.147)–(1.149) become

m2 = n1(0) + n2(0) = n2(0),

m3 = n1(0) + n3(0) = n3(0),

C = [n1(0)n2(0)n3(0)]
1/2 sin[θ(0)] = 0.

The properly ordered roots na,b,c to the cubic equation (1.151) thus are given by

[na = 0] < [nb = m2 = n2(0)] < [nc = m3 = n3(0)],

and the parameter µ2 = n2(0)/n3(0) ≪ 1, so that sn(u, µ2) ≃ sin(u).

In this case, the solutions (1.159)-(1.161) can be written

n1(t) ≃ n2(0) sin
2[
√

n3(0) Γ t], (1.162)

n2(t) ≃ n2(0) cos
2[
√

n3(0) Γ t], (1.163)

n3(t) ≃ n3(0)− n2(0) sin
2[
√

n3(0) Γ t]. (1.164)

This scenario is plotted in figure 1.14.a. It clearly illustrates stability in the case for which
the frequency of the large amplitude wave (here wave # 3) is lower than at least one of
the frequencies of the two other waves.
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Figure 1.14: Time evolution of the action densities for the three non-linearly coupled waves in
the case where the initially finite amplitude wave has a frequency (a) smaller than at least one
of the frequencies of the two other waves, (b) larger than the two other frequencies.

Case 2. n1(0) ≫ n2(0) > n3(0) = 0.

For these initial conditions, the invariants (1.147)–(1.149) are given by

m2 = n1(0) + n2(0),

m3 = n1(0),

C = 0,

and the properly ordered roots na,b,c to Eq. (1.151) by

[na = 0] < [nb = m3 = n1(0)] < [nc = m2 = n1(0) + n2(0)],

so that the parameter µ2 = n1(0)/[n1(0) + n2(0)] ≃ 1.

In this case, the solutions (1.159)–(1.161) can thus be written

n1(t) = n1(0) sn
2
[√

n1(0) + n2(0) Γ (t− t0), µ
2
]

, (1.165)

n2(t) = n2(0) + n1(0) cn
2
[√

n1(0) + n2(0) Γ (t− t0), µ
2
]

, (1.166)

n3(t) = n1(0) cn
2
[√

n1(0) + n2(0) Γ (t− t0), µ
2
]

, (1.167)

where t0 = F (µ2)/Γ [n1(0) + n2(0)]
1/2, so that one indeed has n1(t = 0) = n1(0).

This scenario is plotted in figure 1.14.b. It corresponds to the unstable case where the
frequency of the large amplitude wave (here wave # 1) is larger than the frequencies of
the two other waves. This result illustrates the most obvious saturation mechanism for
the parametric instability: Depletion of the pump. Indeed, once there is no more energy
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in the pump wave, the instability clearly stops to grow. The saturation time is given by
t0 ∼ 1/γ = 1/[Γn1(0)

1/2], i.e. scales as the inverse of the growth rate γ obtained from
the linear stability analysis of system (1.137)–(1.139) in the case |a1| ≫ |a2|, |a3|.

The oscillatory nature of solution (1.165)–(1.167) furthermore points out that the de-
cay of quanta from wave #1 into quanta of wave #2 and #3 is in fact reversible.

1.3.6 Saturation Mechanisms

Pump depletion turns out to be the only saturation mechanism included in the simple
fluid model for the three wave interaction considered in the previous sections. In reality
many other saturation mechanisms, involving additional waves and/or kinetic effects,
may potentially play a role. In the case of SRS for example, let us point out the following
saturation processes:

• As the SRS instability develops and the amplitude of the EPW increases, a non-
linear frequency shift of this wave may be induced (see Sec. 1.2.6). This frequency
shift thus leads to a frequency mismatch of the three wave interaction, and, according
to Eq. (1.114), to a less efficient growth of the parametric instability.

• SRS may saturate as a result of the EPW, generated by parametric instability,
undergoing a secondary instability once it reached a certain amplitude threshold:
The so-called Langmuir Decay Instability (LDI, see exercise 1.3.3.2), in which the
primary EPW decays into another EPW and an IAW.

• The EPW may also be subject to another type of secondary instability once its
amplitude is such that the wave has trapped a significant fraction of electrons: The
Trapped Particle Instability (TPI, see Sec. 1.2.7) [17].

1.3.7 Illustrations from Simulations

Bursting behavior of SRS

Raman Amplifier

1.3.8 Further Reading

• Parametric instabilities in laser plasma interaction (LPI): See the excellent
introductory book by Kruer [13].

• Parametric instability in magnetized plasma: See illustration in Sec. 2 of
Chap. I of Ref. [1] treating the case of coupling between Alvén and sound waves.

• Parametric instabilities in inhomogeneous plasmas: Article by Rosenbluth
[14].

• Systematic study of parametric instabilities affecting EM waves in plas-
mas: See the much referenced article by Drake et. al [15].
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• Simulations: See for example Vu et. al [16] as an example for PIC-type simula-
tions, and Johnston et. al and Brunner & Valeo [17] as examples of Eulerian-type
calculations.

• Raman amplifiers: For theory see work by Shvets, Fish, Malkin et. al [18, 19],
for simulation results the thesis by Clark [20], and for experimental results see the
work by Ping [21].
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Appendix A

Particles in a Sinusoidal Potential

A.1 Trapped and Untrapped Particles

One considers here the trajectories of electrons in a sinusoidal wave E(x, t) = E0 sin(k0x−
ω0t). One notes that the electrons moving in the field E are separated into two groups:
Passing and trapped. This is clearly seen by working in the frame of reference moving
with the wave, i.e. at velocity vφ = ω0/k0 with respect to the lab frame. In this wave
frame, the electrostatic field becomes E = E0 sin(k0x) = −∂φ/∂x, with the potential
φ = (E0/k0) cos(k0x), so that the total energy of an electron is given by

W =
1

2
mv2 − eE0

k0
cos(k0x). (A.1)

If one assumes the amplitude E0 to be time independent, the energy W is conserved for
each particle. As illustrated in Fig. A.1, electrons with energy levels −eE0/k0 < W <
eE0/k0 are trapped, while particles with energy levels W > eE0/k0 are untrapped. The
terms “untrapped” and “passing” are used interchangeably.

A.2 Deeply Trapped Particles

To start, one considers the case of electrons with energies near Wmin = −eE0/k0, which
remain at the bottom of the potential wells, i.e. around the positions xmin = nλ0 =
n 2π/k0, n integer. These are the so-called deeply trapped particles. By expanding the
potential to second order at the bottom of the well, the total energy (A.1) can be written

W =
1

2
mv2 +

1

2
ek0E0(x− xmin)

2 + const,

which is simply the energy of a harmonic oscillator with frequency ωb = (ek0E0/m)1/2,
the so-called deeply trapped bounce frequency.
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Figure A.1: a) Sinusoidal potential −eφ(x) in wave frame. b) Untrapped and trapped orbits of
particles.
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A.3 General Case of Untrapped Particles

One now considers the case of untrapped electrons in a sinusoidal wave with no further
assumption. From Eq. (A.1), one obtains

v(x,W ) =

[
2

m

(

W +
eE0

k0
cos(k0x)

)]1/2

=
∆vtrap

κ
(1− κ2 sin2 ξ)1/2, (A.2)

having defined ξ = k0x/2, as well as the transformed energy variable

κ2 =
2eE0

k0W + eE0
. (A.3)

Here one has also made use of the notation ∆vtrap = 2ωb/k0 for the trapping width in
velocity (see Fig. A.1). In terms of κ, the passing condition becomes 0 < κ < 1.

The transit time τt, i.e. the time required for an untrapped particle to cover one pe-
riod λ0 = 2π/k0, is derived as follows

τt(κ) =

∫ λ0/2

−λ0/2

dx

v(x, κ)
=

κ

∆vtrap

2

k0

∫ π/2

−π/2

dξ

(1− κ2 sin2 ξ)1/2
=

2κ

ωb
F (κ2), (A.4)

where F (m) =
∫ π/2

0
dθ/(1 − m sin2 θ)1/2, 0 < m < 1, is the complete elliptic integral of

the first kind [5]. The transit time τt is plotted as a function of κ in Fig. A.2. Note how
τt becomes infinite in the limit κ → 1−, i.e. for marginally passing particles.

The space averaged velocity is another useful quantity:

v̄(κ) =< v >x =
1

λ0

∫ λ0/2

−λ0/2

dx v(x, κ) =
∆vtrap

κ

2

λ0k0

∫ π/2

−π/2

dξ (1− κ2 sin2 ξ)1/2

=
2

π

∆vtrap
κ

E(κ2), (A.5)

where E(m) =
∫ π/2

0
dθ(1−m sin2 θ)1/2, 0 < m < 1, is the complete elliptic integral of the

second kind [5].

A.4 General Case of Trapped Particles

Here one treats the case of trapped electrons which are not necessarily deeply trapped.
Noting that equation (A.2) is still valid here, and that in terms of κ the trapping condition
becomes κ > 1, the bounce period τb is derived as follows:

τb(κ) = 2

∫ x2

x1

dx

v(x, κ)
= 2

κ

∆vtrap

2

k0

∫ ξ2

ξ1

dξ

(1− κ2 sin2 ξ)1/2

=
2

ωb

∫ π/2

−π/2

dη

(1− 1
κ2 sin

2 η)1/2
=

4

ωb

F (
1

κ2
), (A.6)
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where the turning points x1,2 = 2ξ1,2/k0 verify cos(k0x1,2) = −k0W/eE0 ⇐⇒ κ sin ξ1,2 =
±1. One has also made use here of the change of variables ξ ↔ η defined by κ sin ξ = sin η,
so that κdξ/(1−κ2 sin2 ξ)1/2 = dη/(1−sin2 η/κ2)1/2. Note that in deriving (A.6) one took
account of both the time for the forward and backward segment of the trapped particle
orbit [factor 2 in first equality of relation(A.6)]. The bounce period τb is also plotted as
a function of κ in Fig. A.2. In the limit κ → 1+, i.e. for marginally trapped particles, τb
becomes infinite.

Deeply trapped particles correspond to κ → ∞, so that, as expected, one recovers
from Eq.(A.6) the bounce period for deeply trapped particles derived previously: τdeepb =
limκ→∞ τb = 2π/ωb, having used F (0) = π/2.

The space averaged velocity is again obtained in a similar way:

v̄(κ) =< v >x =
1

λ0

∫ x2

x1

dx v(x, κ) =
∆vtrap

κ

2

λ0k0

∫ ξ2

ξ1

dξ (1− κ2 sin2 ξ)1/2

=
∆vtrap
πκ2

∫ π/2

−π/2

dη
cos2 η

(1− 1
κ2 sin

2 η)1/2

=
2∆vtrap

π

[

E(
1

κ2
) + (

1

κ2
− 1)F (

1

κ2
)

]

, (A.7)

having used cos2 η = (1− κ2) + κ2(1− sin2 η/κ2) for obtaining the final relation.
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Appendix B

Solving the (Linearized) Vlasov
Equation by Integrating Along
Trajectories

One discusses here the general approach to solving the non-linear Vlasov equation or its
linearized form. One thus considers the Vlasov equation for the distribution f(~x,~v, t) in
phase space (~x,~v) of a given species with charge q and mass m evolving in the electro-

magnetic fields [ ~E(~x, t), ~B(~x, t)]:

∂f

∂t
+ ~v · ∂f

∂~x
+

q

m

(

~E + ~v × ~B
)

· ∂f
∂~v

= 0. (B.1)

To lighten notations in the following, one writes ~F = q( ~E + ~v × ~B) the total force on the
particles.

B.1 Brief Review of the Vlasov Equation

Let us recall, that the Vlasov equation results from the incompressibility of phase space
flux ~V (~z, t) = [~v, ~F (~x,~v, t)/m], which in general is a 6-dimensional vector in phase space
~z = (~x,~v). This is briefly reviewed here.

Indeed, if the total number of particles remains constant (no sources or sinks for the
considered species, such as ionization or recombination processes), one can write a conti-
nuity equation for the phase space density f(~x,~v, t) of particles:

∂f

∂t
+

∂

∂~z
· (~V f) =

∂f

∂t
+

∂

∂~x
· (~vf) + ∂

∂~v
· (

~F

m
f) = 0. (B.2)

One notes that for the considered electromagnetic forces ~F , related to the macroscopic
fields ( ~E, ~B), the phase space flux ~V is such that:

∂

∂~z
· ~V =

∂

∂~x
· ~v

︸ ︷︷ ︸

=0

+
∂

∂~v
· q

m
( ~E + ~v × ~B)

︸ ︷︷ ︸

=0

= 0, (B.3)
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having in particular used the fact that ~E(~x, t) is velocity independent, and

∂

∂~v
· (~v × ~B) = ~B · ( ∂

∂~v
× ~v)

︸ ︷︷ ︸

=0

−~v · ( ∂
∂~v

× ~B)
︸ ︷︷ ︸

=0

= 0.

Equation (B.3) describes the incompressibility of phase space flux ~V .

As a result of relation (B.3), the continuity equation (B.2) becomes:

∂f

∂t
+

∂

∂~z
· (~V f) =

∂f

∂t
+ (

∂

∂~z
· ~V )

︸ ︷︷ ︸

=0

f + ~V · ∂f
∂~z

= 0.

This last relation clearly provides Vlasov’s equation (B.1).

Vlasov’s equation in fact states that the distribution f remains invariant along the particle
trajectories in phase space, which naturally again reflects phase space incompressibility.
One can indeed write Eq. (B.1) as

df

dt

∣
∣
∣
∣
traj.

= 0, (B.4)

where d/dt|traj is the total time derivative along the trajectories. To convince oneself that
Eq. (B.4) is equivalent to the Vlasov equation, one considers the trajectory [~x ′(t′), ~v ′(t′)]
in phase space of any given particle. This trajectory must verify the equations of motion:

d~x ′(t′)

dt′
= ~v ′(t′), (B.5)

d~v ′(t′)

dt′
=

q

m
~F [~x ′(t′), ~v ′(t′), t′]. (B.6)

The value of the distribution along the particle trajectory, i.e. f [~x ′(t′), ~v ′(t′), t′], is func-
tion of the single variable t′. The variation in time of this function is thus:

d

dt′
f [~x ′(t′), ~v ′(t′), t′] =

∂f(~x ′, ~v ′, t′)

∂t′
+

d~x ′

dt′
· ∂f(~x

′, ~v ′, t′)

∂~x ′
+

d~v ′

dt′
· ∂f(~x

′, ~v ′, t′)

∂~v ′

=

[

∂f

∂t
+ ~v · ∂f

∂~x
+

~F (~x,~v, t)

m
· ∂f
∂~v

]∣
∣
∣
∣
∣
(~x ′,~v ′,t′)

= 0, (B.7)

having used Eqs.(B.5)-(B.6) and the Vlasov equation (B.1). This last result clearly proves
Eq. (B.4), and validates the notation for the Vlasov operator:

d

dt

∣
∣
∣
∣
traj.

=
∂

∂t
+ ~v · ∂

∂~x
+

~F

m
· ∂

∂~v
.
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B.2 Solving the Vlasov Equation

One considers solving the full Vlasov equation

df

dt

∣
∣
∣
∣
traj.

=
∂f

∂t
+ ~v · ∂f

∂~x
+

~F

m
· ∂f
∂~v

= 0,

for the initial condition
f(~x,~v, 0) = f0(~x,~v).

Formally at least, the solution f(~x,~v, t) can be written in terms of the particle trajectories,
by invoking the invariance of f along these characteristics. Indeed, by integrating (B.7)
between time t′ = 0 and t′ = t for the trajectory [~x ′(t′; ~x,~v, t), ~v ′(t′; ~x,~v, t)] verifying the
particular initial conditions:

~x ′(t′ = t) = ~x, and ~v ′(t′ = t) = ~v,

one simply obtains:

f(~x,~v, t)− f0[~x
′(0; ~x,~v, t), ~v ′(0; ~x,~v, t)] =

∫ t

0

dt′
d

dt′
f [~x ′(t′), ~v ′(t′), t′] = 0,

=⇒ f(~x,~v, t) = f0[~x
′(0; ~x,~v, t), ~v ′(0; ~x,~v, t)].

One must however point out here, that computing the trajectories (~x ′, ~v ′) may not be

straightforward, as the electromagnetic forces ~F = q( ~E+~v× ~B) determining these trajecto-
ries are themselves function of f [the plasma itself provides sources to the electromagnetic

fields ( ~E, ~B)]. This issue reflects the non-linear nature of the plasma.

B.3 Solving the Linearized Vlasov Equation

The method of integrating along particle trajectories can also be applied when solving
the linearized Vlasov equation. Let us assume that (f0, ~E0, ~B0) is a known unperturbed
state of the Vlasov-Maxwell system. Note that this state need not be necessarily time
independent. In particular, Vlasov’s equation reads

df0
dt

∣
∣
∣
∣
u.traj.

=

[

∂

∂t
+ ~v · ∂

∂~x
+

~F0

m
· ∂

∂~v

]

f0 = 0,

where (d/dt)|u.traj. stands for the total time derivative along the unperturbed trajectories

in the force field ~F0 = q( ~E0 + ~v × ~B0).

One now considers a perturbation (δf, δ ~E, δ ~B) to this state. The Vlasov equation for
the full distribution f = f0 + δf reads

df

dt

∣
∣
∣
∣
traj.

=

[

∂

∂t
+ ~v · ∂

∂~x
+

~F0 + δ ~F

m
· ∂

∂~v

]

(f0 + δf) = 0, (B.8)
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where (d/dt)|traj. stands for the total time derivative along the trajectories in the full (i.e.

including perturbations) force field ~F = ~F + δ ~F , with δ ~F = q(δ ~E + ~v × δ ~B). Assuming
small amplitude perturbation, one can justify linearizing Eq. (B.8), which leads to the
linearized Vlasov equation for δf :

dδf

dt

∣
∣
∣
∣
u.traj.

=

[

∂

∂t
+ ~v · ∂

∂~x
+

~F0

m
· ∂

∂~v

]

δf = −δ ~F

m
· ∂f0
∂~v

, (B.9)

noting that on the left hand side of Eq. (B.9) one finds again the total time derivative
along the unperturbed trajectories. Note, that as a result of the non-zero right hand side
term in Eq. (B.9), δf is not invariant along the unperturbed trajectories. Only the full
distribution f = f0 + δf is invariant along the full trajectories as stated by Eq. (B.8).

Equation (B.9) can nonetheless be solved for δf by integrating along trajectories. The
non-zero right hand side provides however an additional contribution. Indeed, by evaluat-
ing Eq. (B.9) along an unperturbed trajectory [~x ′(t′; ~x,~v, t), ~v ′(t′; ~x,~v, t)], and integrating
again from time t′ = 0 to t′ = t, one obtains:

δf(~x,~v, t)− δf0[~x
′(0; ~x,~v, t), ~v ′(0; ~x,~v, t)] =

∫ t

0

dt′
d

dt′
δf [~x ′(t′), ~v ′(t′), t′]

= −
∫ t

0

dt′
δ ~F

m
· ∂f0
∂~v

∣
∣
∣
∣
∣
(~x ′,~v ′,t′)

,

=⇒ δf(~x,~v, t) = δf0[~x
′(0; ~x,~v, t), ~v ′(0; ~x,~v, t)]−

∫ t

0

dt′
δ ~F

m
· ∂f0
∂~v

∣
∣
∣
∣
∣
(~x ′,~v ′,t′)

,

where δf0(~x,~v) = δf(~x,~v, t = 0) is the initial distribution perturbation, and the unper-
turbed trajectory now verifies

d~x ′(t′)

dt′
= ~v ′(t′),

d~v ′(t′)

dt′
=

q

m
~F0[~x

′(t′), ~v ′(t′), t′].

with initial conditions

~x ′(t′ = t) = ~x, and ~v ′(t′ = t) = ~v.
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