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1 Energy Conservation for Vlasov-Poisson Sys-

tem

We present here the proof of the energy conservation for the Vlasov-Poisson
system:

∂f

∂t
+ v

∂f

∂x
− e

m
E

∂f

∂v
= 0, (1)

∂E

∂x
=

1

ǫ0

(

−e
∫

dvf + qiNi,0

)

, (2)

assuming the system is periodic over the length x ∈ [0, λ].

The total kinetic energy Kin and potential energy Pot are given by

Kin =
m

2

∫ λ0

0

dx

∫

dv v2f, (3)

Pot =
ǫ0
2

∫ λ0

0

dxE2. (4)

Let us show that the total energy Etot = Kin + Pot is a constant.

One starts by deriving the temporal variation of kinetic energy:

d

dt
Kin =

m

2

∫ λ0

0

dx

∫

dv v2
∂f

∂t

= −m
2

∫

dv v3
∫

dx
∂f

∂x
︸ ︷︷ ︸

=0

+
e

2

∫

dxE

∫

dv v2
∂f

∂v

=

∫

dxE (−e)
∫

dv v f =

∫

dx j E, (5)

having made use of the Vlasov equation (1), the periodic boundaries in x,
integrated by parts in v, and having defined j = (−e)

∫
dv v f the charge

current. By taking the time derivative of the Poisson Eq. (2), one obtains:

∂2E

∂x∂t
=
−e
ǫ0

∫

dv
∂f

∂t

=
e

ǫ0

∫

dv v
∂f

∂x
− e2

mǫ0
E

∫

dv
∂f

∂v
︸ ︷︷ ︸

=0

=
∂

∂x

(
e

ǫ0

∫

dv v f

)

= − ∂

∂x

j

ǫ0

=⇒ ǫ0
∂E

∂t
+ j = 0. (6)
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This last relation is simply Ampere’s law written for zero magnetic field, and
is useful for deriving the temporal variation of the potential energy:

d

dt
Pot = ǫ0

∫

dxE
∂E

∂t
= −

∫

dx j E. (7)

From Eqs. (5) and (7) one then finally obtains:

d

dt
Etot =

d

dt
Kin +

d

dt
Pot = 0.
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2 Linear Landau Damping of Langmuir Waves

This provides the solution to exercise 1.2.2.1. The goal here is to derive the
dispersion relation, i.e the equation providing the relation between the wave
number k and the frequency ω, of Langmuir waves.

The starting equations are given by the linearized Vlasov-Poisson system for
electrons:

∂f1
∂t

+ v
∂f1
∂x

=
e

m
E

∂f0
∂v

, (8)

∂E

∂x
= − e

ǫ0

∫

dvf1. (9)

Where f0 = f0(v) is the background velocity distribution and f1(x, v, t) the
fluctuating part of the distribution. As the unperturbed system is homoge-
neous in x and t, one may consider fluctuations of the form:

f1 ∼ E ∼ ei(kx−ωt).

In this Fourier representation, Eqs (8) and (9) become:

i(kv − ω)f1 =
e

m
E

∂f0
∂v

, (10)

ik E = − e

ǫ0

∫

dvf1. (11)

From Eq. (10) one obtains

f1 =
e

m

E

i(kv − ω)

∂f0
∂v

,

which can then be inserted into Eq. (11), providing:

ik

(

1−
ω2
p

k2

∫

dv
∂f0/N
∂v

v − ω/k

)

E = ik ǫ(k, ω)E = 0,

having defined the dielectric function ǫ(k, ω):

ǫ(k, ω) = 1−
ω2
p

k2

∫

dv
∂f0/N
∂v

v − ω/k
,

where ω2
p = N e2/m ǫ0 is the squared plasma frequency.

The dispersion relation is thus given by

ǫ(k, ω) = 0. (12)
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Let us now solve the dispersion relation (12) in the resonant approximation.
For a given wave number k, one solves for the frequency ω, assuming that

ω = ωR + iγ, with | γ
ωR
| ≪ 1,

where ωR and γ are respectively the real and imaginary part of the complex
frequency. One then expands the complex dispersion function ǫ in Eq. (12) as
follows:

ǫ(ωR + iγ) = ǫR(ωR + iγ)
︸ ︷︷ ︸

real part

+ i ǫI(ωR + iγ)
︸ ︷︷ ︸

imag. part

= ǫR(ωR) + iγ
∂ǫR
∂ω

(ωR) + i ǫI(ωR)− γ
∂ǫI
∂ω

(ωR) = 0 (13)

The term γ ∂ǫI/∂ω is dropped as |ǫI/ǫR| ∼ |γ/ωR| ≪ 1.

From the real and imaginary parts of Eq. (13) one then obtains:

ǫR(ωR) = 0, (14)

γ = − ǫI(ωR)

∂ǫR(ωR)/∂ω
. (15)

From equation (14) one computes the real frequency ωR, which then enables
to directly estimate the growth/damping rate γ using (15).

To apply the resonant approximation relations (14) and (15) requires to eval-
uate ǫR(ωR) and ǫI(ωR) with ωR the real frequency. One has

ǫ(ωR) = ǫR(ωR) + i ǫI(ωR) = 1−
ω2
p

k2

∫

Γ

dv
∂f0/N
∂v

v − ωR/k
. (16)

The integral path Γ over v is essentially along the real axis, except at the
resonance v = ωR/k. Correctly avoiding this pole is determined by imposing
causality: At time t = −∞, the field E(x, t) = E exp i(kx− ωt) does not yet
exist, one thus considers ω = ω + iν, with ν a small positive imaginary part.
The pole ωR/k is thus displaced above the real axis, indicating that in general
the path Γ must avoid the pole ω/k from below. Noting that

1

v − ωR+iν
k

=
v − ωR/k

(v − ωR/k)2 + (ν/k)2
+ i

ν/k

(v − ωR/k)2 + (ν/k)2

ν→0
=

P
v − ωR/k

+ i π δ(v − ωR/k), (17)
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where P stands for the principal part and δ(x) is the Dirac function. Inserting
(17) into (16) leads to

ǫR(ωR) = 1−
ω2
p

k2
P
∫ +∞

−∞

dv
∂f0/N
∂v

v − vφ
, (18)

ǫI(ωR) = −π
ω2
p

k2

∂f0/N

∂v

∣
∣
∣
∣
v=vφ

, (19)

where vφ = ωR/k is the phase velocity of the wave.

In the case of Langmuir waves, one typically has |vφ| ≫ vth, where vth =
(T/m)1/2 is the thermal velocity. In this limit, the resonant denominator of
(18) can be expanded as follows

1

v − vφ
= − 1

vφ

1

1− v/vφ
= − 1

vφ

[

1 +
v

vφ
+ (

v

vφ
)2 + (

v

vφ
)3 . . .

]

,

so that after integrating by parts

ǫR(ωR) = 1−
ω2
p

ωRk

∫ +∞

−∞

dv
f0
N

[
k

ωR
+ 2(

k

ωR
)2v + 3(

k

ωR
)3v2 . . .

]

= 1−
ω2
p

ω2
R

(1 + 3
k2v2th
ω2
R

+ . . . ) ≃ 1−
ω2
p

ω2
R − 3 (kvth)2

, (20)

having assumed that f0(v) is even (e.g. Maxwellian) and used the definitions

N =

∫

dvf0, (21)

N v2th =

∫

dvf0 v
2. (22)

Making use of the approximate relation (20), one can now solve Eq. (14), which
provides the well-known thermal dispersion of Langmuir waves (Bohm-Gross
relation):

ω2 = ω2
p + 3 k2v2th.

From (20) one also estimates

∂ǫR
∂ω

(ωR) ≃ 2
ω2
p

ω3
R

≃ 2

ωp
,

having neglected here the higher order thermal corrections, so that ωR ≃ ωp.
Together with (19) the damping rate (15) can thus finally be evaluated:

γ =
π

2

ω3
p

k2

∂f0/N

∂v

∣
∣
∣
∣
v=vφ

=
π

2

ω2
p

k
v
∂f0/N

∂v

∣
∣
∣
∣
v=vφ

, (23)
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which, accounting for the different sign convention on γ, indeed agrees with
Eq. (1.25) of the notes.

Note also that using ωR ≃ ωp, the condition |vφ| ≫ vth is equivalent to
|kλD| ≪ 1. This assumption had been made for deriving Eq. (20).

Considering f0 to be Maxwellian, one obtains from (23):

∣
∣
∣
∣

γ

ωp

∣
∣
∣
∣
=

√
π

8

1

(kλD)3
exp−1

2

1

(kλD)2
,

so that the condition |kλD| ≪ 1 also enables to justify the original assumption
|γ/ωR| ≪ 1 made for the resonant approximation derivation.
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3 Wave Energy in a Dispersive Media

This provides the solution to exercise 1.2.2.2. The derivation given here is sim-
ilar to the one in section 61, Vol. 8, “Electrodynamics of Continuous Media”,
of the Landau & Lifshitz series.

The starting point are Maxwell’s equations in a continuous media:

∇× ~E = −∂
~B

∂t
, (24)

∇× ~H = µ0
~jext +

1

c2
∂ ~D

∂t
, (25)

∇ · ~B = 0, (26)

∇ · ~D =
ρext

ǫ0
, (27)

where one has defined the electric displacement field ~D =
↔
ǫ ~E and the mag-

netic field ~B =
↔
µ ~H,

↔
ǫ and

↔
µ standing respectively for the dielectric tensor

and the magnetic permeability tensor.

From Eqs. (24)-(27) one can derive a continuity equation for local energy
conservation. Starting as follows:

ǫ0 ~E · ∂
~D

∂t

(25)
= ǫ0 ~E · c2(∇× ~H − µ0

~jext)

c2=1/ǫ0µ0

=
1

µ0

~E · (∇× ~H)
︸ ︷︷ ︸

−∇·(~E× ~H)+ ~H·(∇× ~E)

−jext · ~E

(24)
= −

~H

µ0
· ∂

~B

∂t
−∇ ·

(
~E × ~H

µ0

)

− jext · ~E,

one finally obtains:

ǫ0 ~E · ∂
~D

∂t
+

1

µ0

~H · ∂
~B

∂t
+ ∇ ·

(
~E × ~H

µ0

)

= −jext · ~E. (28)

In a media without dispersion, when
↔
ǫ and

↔
µ are real constants, one has

~D = ǫ ~E and ~B = µ ~H , so that the rate of change of energy per unit volume
becomes

ǫ0 ~E · ∂
~D

∂t
+

1

µ0

~H · ∂
~B

∂t
=

∂

∂t

[
1

2
ǫ0ǫE

2 +
B2

2µ0µ

]

=
∂U

∂t
,
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ω

Ẽ(ω)

ω
0

narrow

Figure 1: Electric field spectrum

where U = ǫ0ǫE
2/2 +B2/2µ0µ can be identified as the wave energy density.

In a dispersive media, one has in general

~̃D(~k, ω) =
↔
ǫ (~k, ω) ~̃E(~k, ω)

~̃B(~k, ω) =
↔
µ(~k, ω) ~̃H(~k, ω)

these relations having been written in Fourier space.

The goal here is again to be able to identify an appropriate relation for the
wave energy U .

Let us consider a wave with wave vector ~k0 and dominant frequency ω0.
To study the energy build-up of the wave as it grows to finite amplitude re-
quires taking account of a certain frequency spread around ω0. For example,
the spectrum Ẽ(ω) of the electric field takes on a form as shown in Fig. 1,

and one obtains [to lighten notation, exp(i~k0 · ~x) is understood to be factored
into Ẽ(ω)]:

~E(~x, t) =
1

2






∫

~̃E(ω) eiωt dω + c.c
︸︷︷︸

complex conj.






=
1

2

[

eiω0t

∫

~̃E(ω0 +∆ω) ei∆ωt d∆ω + c.c

]

=
1

2

[

~E(t) eiω0t + c.c
]

, (29)
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having defined the time varying complex amplitude ~E(t):

~E(t) =
∫

~̃E(ω0 +∆ω) ei∆ωt d∆ω. (30)

The fact that the frequency spread in Fig. 1 is narrow compared to ω0 implies
the time scale separation |(1/E)dE/dt| ≪ |ω0|.

In real space, the electric displacement field in turn becomes:

~D(~x, t) =
1

2

[∫
↔
ǫ (ω) ~̃E(ω) eiωt dω + c.c

]

,

so that its time derivative can be written as

∂ ~D

∂t
(~x, t) =

1

2

[∫

iω
↔
ǫ (ω) ~̃E(ω) eiωt dω + c.c

]

=
1

2

[

eiω0t

∫

i(ω0 +∆ω)
↔
ǫ (ω0 +∆ω) ~̃E(ω0 +∆ω) ei∆ωt d∆ω + c.c

]

.

In this last relation one expands

(ω0 +∆ω)
↔
ǫ (ω0 +∆ω) = ω0

↔
ǫ (ω0) + ∆ω

[

↔
ǫ (ω0) + ω0

∂
↔
ǫ (ω0)

∂ω

]

︸ ︷︷ ︸

∂
∂ω

(ω
↔

ǫ )|ω0

+O(∆ω2),

so that

∂ ~D

∂t
(~x, t) =

1

2

[

iω0
↔
ǫ (ω0) e

iω0t

∫

~̃E(ω0 +∆ω) ei∆ωt d∆ω + c.c

]

+
1

2

[

∂

∂ω
(ω

↔
ǫ )

∣
∣
∣
∣
ω0

eiω0t

∫

i∆ω ~̃E(ω0 +∆ω) ei∆ωt d∆ω + c.c

]

=
1

2

[

iω0
↔
ǫ (ω0) ~E(t) eiω0t + c.c

]

+
1

2

[

∂

∂ω
(ω

↔
ǫ )

∣
∣
∣
∣
ω0

∂~E(t)
∂t

eiω0t + c.c

]

, (31)

having made use of Eq. (30).

One now estimates the time-average of the first term ǫ0 ~E · ∂ ~D/∂t on the
left hand side of Eq. (28) over the fast time scale ω0. For this one makes
use of the following: Let A and B be two fields with rapid time variation of
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frequency ω0:

A =
1

2

(
Aeiω0t + c.c

)
,

B =
1

2

(
Beiω0t + c.c

)
,

where A and B are the complex amplitudes of the fields A and B respectively.

The time average of the product of these two fields over the fast time variation
is then given by

〈AB〉t =
1

4
(AB 〈e2iω0t〉t

︸ ︷︷ ︸

=0

+AB⋆ +A⋆ B +A⋆ B⋆ 〈e−2iω0t〉t
︸ ︷︷ ︸

=0

)

=
1

4
(AB⋆ +A⋆ B) = 1

2
Re(AB⋆).

Applying this relation to ǫ0 ~E · ∂ ~D/∂t using Eqs. (29) and (31) then provides

〈ǫ0 ~E · ∂
~D

∂t
〉t =

1

4

[

−iω0 ǫ0 ~E ·
↔
ǫ
⋆
(ω0)~E⋆ + iω0 ǫ0 ~E⋆ ·

↔
ǫ (ω0)~E

+ǫ0 ~E ·
∂

∂ω
(ω

↔
ǫ
⋆
)

∣
∣
∣
∣
ω0

∂~E⋆(t)
∂t

+ ǫ0 ~E⋆ ·
∂

∂ω
(ω

↔
ǫ )

∣
∣
∣
∣
ω0

∂~E(t)
∂t

]

.(32)

Assuming that dissipation is small, the dielectric tensor
↔
ǫ is essentially a

Hermitian matrix. As a result, the first two terms in Eq. (32) cancel, and the
last two combine to give:

〈ǫ0 ~E · ∂
~D

∂t
〉t =

∂

∂t

[

ǫ0
4
~E⋆ · ∂

∂ω
(ω

↔
ǫ )

∣
∣
∣
∣
ω0

~E(t)
]

.

A similar relation can be derived for 1
µ0

~H · ∂ ~B/∂t, so that the time average of

the rate of change of energy on the left hand side of Eq. (28) can finally be
written

〈ǫ0 ~E ·∂
~D

∂t
+

1

µ0

~H ·∂
~B

∂t
〉t =

∂

∂t

[

ǫ0
4
~E⋆ · ∂

∂ω
(ω

↔
ǫ )

∣
∣
∣
∣
ω0

~E + 1

4µ0

~H⋆ · ∂

∂ω
(ω

↔
µ)

∣
∣
∣
∣
ω0

~H
]

,

where ~H is the complex amplitude of field ~H:

~H =
1

2
( ~H eiω0t + c.c).

In the case of low dissipation, the time-averaged wave energy density can thus
be identified as

Ū =
ǫ0
4
~E⋆ · ∂

∂ω
(ω

↔
ǫ )

∣
∣
∣
∣
ω0

~E + 1

4µ0

~H⋆ · ∂

∂ω
(ω

↔
µ)

∣
∣
∣
∣
ω0

~H, (33)
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where ~E and ~H are the complex amplitudes of fields ~E and ~H respectively.

In the case of an electrostatic wave in a media with dielectric function ǫ,
one in particular has

Ū =
ǫ0
4

∂

∂ω
(ωǫR)

∣
∣
∣
∣
ω0

|~E|2 = ∂

∂ω
(ωǫR)

∣
∣
∣
∣
ω0

Pot, (34)

where Pot = ǫ0|~E|2/4 is the potential energy of the wave. In a non-magnetized
plasma, the dielectric function is given by

ǫ(k, ω) = 1 +
∑

species

χ = 1−
∑

species

ω2
p

k2

∫

dv
∂f0/N
∂v

v − ω/k
, (35)

where χ is the contribution to the electric susceptibility from each species.

3.1 Case of Electron Plasma Waves (EPWs)
= Langmuir waves

In this case, one has from Eq. (20):

ǫR(ωR) = 1−
ω2
p

ω2
R − 3(kvth,e)2

.

At the frequency ω0 of the EPW, verifying the dispersion relation ǫR(ω0) = 0,
one thus has:

∂

∂ω
(ωǫR)

∣
∣
∣
∣
ω0

= ǫR(ω0)
︸ ︷︷ ︸

=0

+ω0
∂ǫR
∂ω

(ω0) = 2
ω2
p ω

2
0

[ω2
0 − 3(k0vth,e)2]2

= 2
ω2
0

ω2
p

,

so that from Eq. (34), the wave energy density for EPWs reads

Ū = 2
ω2
0

ω2
p

Pot.

As Ū = Kin+Pot, where Kin is the kinetic energy of oscillation in the presence
of the wave, one has

Kin = [2
ω2
0

ω2
p

− 1]Pot ≃ Pot,

having invoked ω0 ≃ ωp.
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3.2 Case of Ion Acoustic Waves (IAWs)

Here one needs to consider the dielectric function (35) with both electron and
ion contributions in the appropriate limit.

With respect to electrons, the phase velocity of IAWs is such that |ω/k| ≪ vth,e,
which implies an essentially adiabatic response from this species, and their
contribution to the electric susceptibility derives from

χel. = −
ω2
pe

k2

∫

dv
∂f0e/Ne

∂v

v − ω/k

|v|≫|ω/k|≃ −
ω2
pe

k2

∫

dv
∂f0e/Ne

∂v

v
=

1

(kλDe)2
,

having used ∂f0e/∂v = −(v/v2th,e)f0e, assuming f0e Maxwellian.

With respect to ions, |ω/k| ≫ vth,i, i.e. similar to the relation between the
phase velocity of Langmuir waves and vth,e, so that the contribution of ions to
the dielectric function in the case of IAWs is the same as the one of electrons
to (20).

The dielectric function for IAWs thus finally reduces to

ǫR(ωR) ≃ 1 +
1

(kλDe)2
−

ω2
pi

ω2
R − 3 (kvth,i)2

≃ 1

(kλDe)2
−

ω2
pi

ω2
R − 3 (kvth,i)2

,

having furthermore invoked the assumption kλDe ≪ 1.

The dispersion relation for IAWs thus reads:

ǫR(ω0) =
1

(kλDe)2
−

ω2
pi

ω2
0 − 3 (kvth,i)2

= 0,

which leads to

ω2
0 = (kλDe)

2ω2
pi + 3(kvth,i)

2 = c2s

(

1 + 3
Ti

Z Te

)

k2,

where c2s = ZTe/mi is the squared sound speed, Z the ionization degree of
ions, and having used the condition of global neutrality Ne = ZNi.

Neglecting the ion thermal corrections, so that ω0 ≃ kcs, one obtains:

∂

∂ω
(ωǫR)

∣
∣
∣
∣
ω0

= ǫR(ω0)
︸ ︷︷ ︸

=0

+ω0
∂ǫR
∂ω

(ω0) ≃ 2
ω2
pi

ω2
0

≃ 2

(kλDe)2

The wave energy density for IAWs thus finally reads

Ū = Kin + Pot ≃ 2

(kλDe)2
Pot.

For |kλDe| ≪ 1, one therefore has Kin≫ Pot in this case.
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3.3 Transverse Electromagnetic Waves in a Non-Magnetized
Plasma

In this case, the wave has both an electric and magnetic component. The
dispersion is however entirely characterized by the dielectric tensor

↔
ǫ , so that

↔
µ = 1, and the wave energy becomes:

Ū =
ǫ0
4

∂

∂ω
(ωǫR)

∣
∣
∣
∣
ω0

|~E|2 + 1

4µ0

| ~B|2, (36)

where ~E and ~B are respectively the amplitudes of the electric and magnetic
components of the wave.

Let us derive the dielectric function and dispersion relation for transverse EM
waves in a non-magnetized plasma. One starts from Faraday and Ampere’s
law:

∇× ~E = −∂
~B

∂t
, ∇× ~B = µ0

~j +
1

c2
∂ ~E

∂t
,

so that

∇×(∇× ~E) = ∇(∇ · ~E)
︸ ︷︷ ︸

=0,trans. waves

−∇2 ~E = − ∂

∂t
(∇× ~B) = −µ0

∂~j

∂t
− 1

c2
∂2 ~E

∂t2
. (37)

As the transverse waves are high frequency, ω > ωpe, ions can be considered
essentially immobile, so that the current is dominantly carried by electrons:

~j =
∑

species

q N ~v ≃ −eNe ~ve.

The equation of motion of electrons reads

me
∂~ve
∂t

= −e ~E,

so that one obtains
∂~j

∂t
= −eNe

∂~ve
∂t

= ǫ0 ω
2
pe

~E.

Inserting this last relation into Eq. (37) gives the wave equation for ~E:

∇2 ~E =
1

c2

(

ω2
pe

~E +
∂2 ~E

∂t2

)

= −ω
2

c2

(

1−
ω2
pe

ω2

)

︸ ︷︷ ︸

ǫR(ω)

~E.
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For a wave with wave vector ~k and frequency ω0, the dispersion relation thus
becomes:

ǫR(ω0) =

(
kc

ω

)2

, with ǫR(ω) = 1−
ω2
pe

ω2
,

which provides:
ω2
0 = ω2

pe + (kc)2. (38)

To compute the wave energy, one again needs to estimate:

∂

∂ω
(ωǫR)

∣
∣
∣
∣
ω0

= ǫR(ω0)
︸ ︷︷ ︸

=(kc/ω0)2

+ω0
∂ǫR
∂ω

(ω0) =

(
kc

ω0

)2

+ 2
ω2
pe

ω2
0

=
(kc)2 + 2ω2

pe

ω2
0

. (39)

Using the relation B = (k/ω0)E from Faraday’s law, one then finally obtains
by inserting (39) into (36):

Ū =
ǫ0
4

[
2(kc)2 + 2ω2

pe

ω2
0

]

E2 = 1

2
ǫ0E2,

having made use of the dispersion relation (38). In this case, the wave energy
U is thus the combination of three contributions: (1) The energy Pot in the

electric field ~E, (2) the energy Umag in the magnetic field ~B, and (3) the kinetic
energy of oscillation Kin. These contributions are given by

Pot =
ǫ0
4
E2,

Umag =
ǫ0
4

(

1−
ω2
pe

ω2

)

E2,

Kin =
ǫ0
4

(ωpe

ω

)2

E2.
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4 Trapping in Langmuir Waves

This provides the solution to exercise 1.2.3.1.

The wave-frame energy of particles in a sinusoidal wave is given by

W =
1

2
mv2 − eφ0 cos(k0x). (40)

For deeply trapped electrons, located at the potential minimas xmin =
n 2π/k0, one can make a Taylor expansion:

W =
1

2
mv2 +

1

2
eφ0 k

2
0(x− xmin)

2 − eφ0.

This corresponds to the energy of a harmonic oscillator with frequency ωb,
such that

ω2
b =

e φ0 k
2
0

m
. (41)

The frequency ωb is identified as the bounce frequency of deeply trapped
electrons at the bottom of each potential well of the Langmuir wave.

The potential field φ(x) = φ0 cos(k0x) verifies Poisson’s equation:

∂2φ

∂x2
=

1

ǫ0
(−e δN),

where δN is the electron density perturbation relative to the Langmuir wave.
One thus obtains:

k2
0φ0 =

e δN0

ǫ0
,

δN0 being the amplitude of δN , so that Eq. (41) becomes:

ω2
b =

δN0 e
2

mǫ0
,

and finally

ωb

ωp
=

√

δN0

N
. (42)

By definition, the trapping width∆vtrap is the maximum velocity ofmarginally
trapped electrons. The energy level in Eq. (40) of marginally trapped par-
ticles is W = eφ0. The velocity is maximum when the potential energy is
minimum, i.e. φ = −eφ0:

W =
1

2
m∆v2trap − eφ0 = eφ0 =⇒ ∆vtrap = 2

(
eφ0

m

)1/2

.
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Finally, using Eqs. (41) and (42) as well as the fact that the lab frequency ω0

of the Langmuir wave is such that ω0 ≃ ωp, one obtains:

∆vtrap = 2
ωb

k0
= 2

ωb

ω0

ω0

k0
︸︷︷︸

vφ

ω0≃ωp
= 2

√

δN0

N
vφ.
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5 Particle in Magnetic Well of a Tokamak

This provides the solution to exercise 1.2.2.3.

A particle in a spatially varying magnetic field has at least two constants
of motion, the kinetic energy K and the magnetic moment µ (adiabatic in-
variant):

K =
m

2
v2 =

m

2
(v2‖ + v2⊥),

µ =
mv2⊥
2B

,

where B is the amplitude of the magnetic field, and (v‖, v⊥) are respectively
the velocities parallel and perpendicular to the magnetic field (see Fig. 2).
One thus can write

K =
m

2
v2‖ + µB =

m

2
(v2ϕ + v2θ) + µB,

with (vϕ, vθ) the toroidal and poloidal components respectively of the parallel

velocity ~v‖ = v‖ ~B/B.

In a large aspect ratio tokamak with circular cross section (see Fig. 3 for
notations), one has

vϕ
vθ

=
Rϕ̇

ρ θ̇
=

R qs
ρ

,

where qs = ∆ϕ/∆θ is the so-called safety factor, which determines the pitch
of the magnetic field as it winds around the magnetic surface. One clearly has
vϕ ≫ vθ as the inverse aspect ratio ǫ = ρ/R is such that ǫ≪ 1 and the safety

factor is typically such that qs
∼
> 1.

In a large aspect ratio tokamak, one also has

B ≃ Bϕ ≃ B0
R

r
=

B0 R

R + ρ cos θ
=

B0

1 + ǫ cos θ
≃ B0 (1− ǫ cos θ). (43)

The kinetic energy can thus be approximated by:

K ≃ m

2
v2ϕ + µB =

m

2
(R qs)

2θ̇2 + µB0 (1− ǫ cos θ),

By rescaling the kinetic energy to K ′ one obtains:

K ′ =
K − µB0

(Rqs)2
=

m

2
θ̇2 − ǫ µB0

(Rqs)2
cos θ = const., (44)
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Figure 2: Parallel and perpendicular components of velocity in a magnetic
field ~B

Figure 3: Large aspect ratio tokamak with circular cross section
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which can now be compared to the energy of an electron in a sinusoidal wave,
as given by Eq. (40):

W =
m

2
ẋ2 − eφ0 cos(k0x) = const.,

=⇒ W ′ = k2
0 W =

m

2
(k0 ẋ)

2 − e k2
0 φ0 cos(k0x) = const. (45)

Comparing Eqs. (44) and (45), one can now identify:

Particle in electrostatic wave field Particle in a magnetic well
k0x ←→ θ
k2
0 W ←→ (K − µB0)/(Rqs)

2

e k2
0 φ0 ←→ ǫ µB0/(Rqs)

2

Using this identification table, one can make use of the relations in appendix
A of the notes to obtain:

Particle in electrostatic wave field Particle in a magnetic well

Frequency of
deeply trapped
particles

ωb = (e k2
0 φ0/m)1/2

ωb = [ǫ µB0/(Rqs)
2m]1/2

=
√
ǫ vth/R qs

Energy-like vari-
able κ

κ2 = 2 eφ0/(W + e φ0) κ2 = 2 ǫµB0/(K − µBmin)

Energy bounds
for passing parti-
cles

0 < κ < 1 =⇒ W > eφ0 0 < κ < 1 =⇒ K > µBmax

Transit time for
passing particles

τt = (2κ/ωb)F (κ2) τt = (2κ/ωb)F (κ2)

Energy bounds
for trapped par-
ticles

1 < κ < +∞ =⇒ −eφ0 < W < eφ0
1 < κ < +∞ =⇒
µBmin < K < µBmax

Bounce period
for trapped
particles

τb = (4/ωb)F (1/κ2) τb = (4/ωb)F (1/κ2)

In the above table, Bmin = B0(1−ǫ) and Bmax = B0(1+ ǫ) are respectively the
minimum and maximum values of B on the magnetic surface ρ = constant, as
given by Eq. (43). To derive ωb one has also made use of < µ > B0/m =<
v2⊥ > /2 ∼ v2th.
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f
0
(v)

f̄(v)

vφ

∼  v
th

v

resonant region:
∼  2 ∆ v

trap

Figure 4: Flattened distribution in resonant region of width ∼ 2∆vtrap around
the phase velocity vφ.

6 Energy Cost for Distribution Flattening

This provides the solution to exercise 1.2.3.4.

Let us estimate the variation in kinetic energy which would result from flat-
tening the initial distribution f0 in the resonant region, i.e. in an interval of
width ∼ 2∆vtrap around the phase velocity vφ:

∆Kinflat =
m

2

∫

res

[
f̄(v)− f0(v)

]
v2 dv,

where f̄(v) is the flattened distribution (see Fig. 4). Assuming ∆vtrap ≪ vth,
one can consider a Taylor expansion for evaluating f0(v) in the vicinity of vφ:

f0(v) ≃ f0(vφ) +
∂f0(vφ)

∂v
(v − vφ) +O(

∆vtrap
vth

)2.

Using this expansion, and based on particle conservation, the flattened distri-
bution f̄ in the vicinity of vφ can be estimated as:

f̄(v) =
1

2∆vtrap

∫ vφ+∆vtrap

vφ−∆vtrap

dv f0(v)

≃ 1

2∆vtrap

∫ vφ+∆vtrap

vφ−∆vtrap

dv

[

f0(vφ) +
∂f0(vφ)

∂v
(v − vφ)

]

= f0(vφ),

One thus has

f̄(v)− f0(v) ≃ −
∂f0(vφ)

∂v
(v − vφ) for |v − vφ| < ∆vtrap.
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The variation in kinetic energy can thus be estimated by

∆Kinflat ≃ −m
2

∂f0(vφ)

∂v

∫ vφ+∆vtrap

vφ−∆vtrap

dv v2 (v − vφ)

v=vφ+v′

= −m
2

∂f0(vφ)

∂v

∫ +∆vtrap

−∆vtrap

dv′ (vφ + v′)2 v′

= −m v
∂f0
∂v

∣
∣
∣
∣
vφ

∫ +∆vtrap

−∆vtrap

dv′ v′2 = −2m
3

v
∂f0
∂v

∣
∣
∣
∣
vφ

∆v3trap.(46)

Note, that apart from the multiplicative constant, this last relation provides
essentially the same result as Eq. (1.51) in the notes.

In the case of a Langmuir wave, the wave energy is given by

Ewave =
ǫ0
4

∂

∂ω
(ωǫ)

∣
∣
∣
∣
ω0

E2
0 ≃

ǫ0
2
E2

0 , (47)

having used ǫ ≃ 1− ω2
p/ω

2 and ω ≃ ωp.

Inserting Eqs. (46) and (47) into the condition ∆Kinflat > Ewave provides:

−2m
3

v
∂f0
∂v

∣
∣
∣
∣
vφ

∆v3trap >
ǫ0
2
E2

0 .

Making use of Eq. (23) for γL, the above relation then leads to

γL >
3π

8

ǫ0
mN

ω2
p

k0

E2
0

∆v3trap
=

3π

64
ωb,

having made use of ∆vtrap = 2(eE0/mk0)
1/2 and ωb = k0∆vtrap/2 (see exercise

1.2.3.1) This last relation thus confirms the equivalence of the orderings

∆Kinflat > Ewave ⇐⇒ γL > ωb,

which is the necessary condition for linear Landau damping to explain the full
evolution of the collisionless damping of a wave.
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7 Effective Non-Linear Landau Damping

This provides the solution to exercise 1.2.4.1.

The goal here is to show that one can recover relation (1.52) in the notes
for the time integrated damping rate

∫∞

0
dt γ(t) from relation (1.39) for γ(t)

obtained by O’Neil [T. O’Neil, Physics of Fluids 8, 2255 (1965)].

Equation (1.39) provided

γ(t) = γL

∞∑

n=1

64

π

∫ 1

0

dκ { 2nπ2 sin
[
nπ ωbt
κF

]

κ5F 2(1 + q2n)(1 + q−2n)
︸ ︷︷ ︸

passing

+
(2n− 1)π2κ sin

[
(2n−1)π ωbt

2F

]

F 2(1 + q2n−1)(1 + q−2n+1)
︸ ︷︷ ︸

trapped

} .

Notice that the harmonic n = 0 does not contribute to the first term related
to passing particles, and that one has made the change of variable n+ 1→ n
for the second term related to trapped particles.

One then carries out the time integral:

∫ t

0

dt′γ(t′) = γL

∞∑

n=1

64

π

∫ 1

0

dκ

{
2π κF
ωb

(
1− cos

[
nπ ωbt
κF

])

κ5F 2(1 + q2n)(1 + q−2n)

+

2π κF
ωb

(

1− cos
[
(2n−1)π ωbt

2F

])

F 2(1 + q2n−1)(1 + q−2n+1)







=
γL
ωb

∞∑

n=1

64

π

∫ 1

0

dκ

{

2π

κ4F

1− cos
[
nπ ωbt
κF

]

(1 + q2n)(1 + q−2n)

+
2π κ

F

1− cos
[
(2n−1)π ωbt

2F

]

(1 + q2n−1)(1 + q−2n+1)






.

For large values of ωbt, the integral over the energy variable κ of the phase terms
cos[nπ ωbt/κF (κ)] and cos[(2n − 1)π ωbt/2F (κ)] phase-mix to zero. These
phase terms are in fact harmonics of the transit period τt = (2κ/ωb)F (κ2)
and bounce period τb = (4/ωb)F (κ2): sin[n(2π/τt)t] and sin[(2n− 1)(2π/τb)t].
The phase-mixing is thus clearly the result of the difference in transit/bounce
periods between orbits with neighboring energy levels. One thus obtains:

∫ t

0

dt′γ(t′) =
γL
ωb

∞∑

n=1

64

π

∫ 1

0

dκ

{
1

κ4

2π

F

1

(1 + q2n)(1 + q−2n)
+

κ3

π

2π2

κ2F

1

(1 + q2n−1)(1 + q−2n+1)

}

.
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Now making use of the relations

2π

F (κ2)

∞∑

n=1

1

(1 + q2n)(1 + q−2n)
=

E(κ2)

π
− π

4F (κ2)
,

2π2

κ2 F (κ2)

∞∑

n=1

1

(1 + q2n−1)(1 + q−2n+1)
=

(

1− 1

κ2

)

F (κ2) +
1

κ2
E(κ2),

one finally obtains

∫ ∞

0

dt γ(t) =
γL
ωb

64

π

∫ 1

0

dκ







1

κ4

[
E(κ2)

π
− π

4F (κ2)

]

︸ ︷︷ ︸

passing

+
κ

π

[
E(κ2) + (κ2 − 1)F (κ2)

]

︸ ︷︷ ︸

trapped







,

which indeed agrees with Eq. (1.52) from the notes.
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8 Analyzing Simulations of Non-Linear Lan-

dau Damping

This provides the solution to exercise 1.2.4.2.

When interpreting the plots of Fig. 1.1, one must be aware that they cor-
respond to the results for a standing wave. The study of non-linear Landau
damping presented in the notes is however for a single propagating Fourier
mode.

In a linear system, a standing wave can naturally be interpreted as the su-
perposition of a forward and backward propagating wave. For example for a
standing electrostatic field:

E(x, t) = Estd
0 cos(k0x) cos(ω0t) (48)

= Efwd
0 cos(k0x− ω0t) + Ebwd

0 cos(k0x+ ω0t), (49)

where the amplitudes Efwd
0 and Ebwd

0 of the forward and backward propagating
waves respectively are equal, and such that

Efwd
0 = Ebwd

0 = Estd
0 /2, (50)

where Estd
0 is the amplitude of the standing wave.

One must be careful here as one is addressing a non-linear problem, so that
a superposition principle in general does not apply. However, the non-linear
effects are localized in the resonant regions relative to each wave, i.e. out in
the positive velocity tail of the electron distribution for the forward propa-
gating Langmuir wave, and out in the negative velocity tail for the backward
propagating wave. These two resonant regions are in general clearly sepa-
rated as the characteristic width of the resonance ∆vtrap is typically such that
∆vtrap << vth (this assumption is in fact made in the analytical analysis of
non-linear Landau damping). As a result, there is no significant interference
between the non-linear dynamics of the forward and backward propagating
waves. Applying a superposition principle in this case is thus valid.

From the space-averaged potential energy 〈Pot〉x in Fig. 1.1, one can esti-
mate Efwd

0 . Indeed, the values of 〈Pot〉x in this figure have been computed as
follows:

〈Pot〉x = 〈1
2
ǫ0E(x, t)2〉x,

where 〈〉x stands for the spatial average. From Eq. (48) one thus obtains

〈Pot〉x =
1

4
ǫ0(E

std
0 )2 cos2(ω0t) = P cos2(ω0t),
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with P = ǫ0(E
std
0 )2/4 the time envelope of the potential energy trace 〈Pot〉x(t).

Together with (50), one thus obtains:

P = ǫ0(E
fwd
0 )2.

The amplitude of the normalized electrostatic potential eφfwd
0 /T for the for-

ward propagating wave can then be estimated from P/NT as

eφfwd
0

T
=

1

k0λD

eEfwd
0 λD

T
=

1

k0λD

( P
NT

)1/2

. (51)

having used k0φ
fwd
0 = Efwd

0 .

8.1 Bounce Period and Time Modulation of Amplitude

In exercise 1.2.3.1 one derived the bounce frequency of deeply trapped particles
[Eq.(41)]:

ωb =

(
e φfwd

0 k2
0

m

)1/2

,

from which one obtains the normalized relation

ωb

ωp
= k0λD

(
eφfwd

0

T

)1/2

= (k0λD)
1/2

( P
NT

)1/4

,

having used Eq. (51). This bounce frequency is computed based on a time-

averaged estimate from Fig. 1.1 of P/NT for the two scenarios:

Case δN0/N = 0.01:
P
NT
≃ 5 · 10−5 =⇒ ωb

ωp
≃
√
0.3 (5 · 10−5)1/4 = 4.6 10−2.

Case δN0/N = 0.1:
P
NT
≃ 1 · 10−2 =⇒ ωb

ωp

≃
√
0.3 (1 · 10−2)1/4 = 0.17.

From Fig. 1.4, which plots the instantaneous damping rate γ(t) of the non-
linear Langmuir wave as given by relation (1.39), one can estimate the first
extremas of the wave amplitude [⇐⇒ γ(t) = 0] as predicted by the (approxi-
mate!) theory:

First minimas: t ωb ≃ 2π [0.65, 1.88, 3.00] = [4.06, 11.79, 18.90].

First maximas: t ωb ≃ 2π [1.29, 2.44, 3.45] = [8.08, 15.31, 21.70].

These analytical results need to be compared against the simulation results in
Fig. 1.1. For the case δN0/N = 0.01 one obtains:

First minimas: t ωp ≃ [75, 250] =⇒ t ωb = t ωp
ωb

ωp

≃ t ωp · 4.6 10−2 = [3.5, 11.5].

First maximas: t ωp ≃ 155 =⇒ t ωb ≃ 7.1.
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And for the case δN0/N = 0.1 one obtains:

First minimas: t ωp ≃ [25, 72, 130] =⇒ t ωb = t ωp
ωb

ωp
≃ t ωp · 0.17 = [4.3, 12.2, 22.1].

First maximas: t ωp ≃ [45, 100, 150] =⇒ t ωb ≃ [7.6, 17.0, 25.5].

The simulation results for the modulation of the amplitude thus agree with
the theoretical ones within ∼ 15%.

8.2 Effective Asymptotic Damping

The theoretical model predicts for the time integrated damping rate: [Eq.
(1.52) in the notes]:

∫ ∞

0

dt γ(t) ≃ 1.96
γL
ωb

.

In the case of the considered simulation, involving perturbations of a Maxwellian
plasma, the linear damping rate γL is estimated from Eq. (1.26) (derived as-
suming |γL| ≪ |ω0|):

γL
ωp
≃
√

π

8

1

(k0 λD)3
ω2
0

ω2
p

exp−1
2

(
ω0

ωp

1

k0vth

)2

=

√
π

8

1 + 3 (k0 λD)
2

(k0 λD)3
exp−1

2

[
1

(k0 λD)2
+ 3

]

k0 λD=0.3≃ 2.5 10−2,

having used the Bohm-Gross relation ω2
0 = ω2

p+3(k0 λD)
2. This value for γL is

relatively near to the numerical value γL/ωp = 1.26 · 10−2 obtained by solving
the linear dispersion relation (12) for k0 λD = 0.3 with no further approxima-
tion. We shall use this more accurate numerical value here.

For the case δN0/N = 0.1 one thus obtains:

∫ ∞

0

dt γ(t) ≃ 1.96
γL
ωp

ωp

ωb
≃ 1.96

1.26 · 10−2

0.17
= 0.15.

As E0(t) ∼ exp−
∫ t

0
γ(t′)dt′, the theoretical model would predict:

P(t =∞)

P(t = 0)
=

E2
0(t =∞)

E2
0(t = 0)

= exp−2
∫ ∞

0

γ(t′)dt′ ≃ exp−(2 · 0.15) = 0.74.

From Fig. 1.1 d., the potential energy seems to settle at:

P(t =∞)

P(t = 0)
≃ 1 · 10−2

2.8 · 10−2 = 0.35.
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Thus there is a factor 2 difference between the approximate theoretical result
given by Eq. (1.52) and the effective damping observed in the simulation
results of Fig. 1.1.d. The initial evolution of the simulation contains however
certain strongly damped transients, which lead to the very sharp decrease of
the wave amplitude within the first period 2π/ωp, as clearly seen in Fig. 1.1.d.
These transients are not taken account of in the theoretical analysis. A more
appropriate estimate is thus P(t = 0)/NT ≃ 1.5 · 10−2, leading to

P(t =∞)

P(t = 0)
≃ 1 · 10−2

1.5 · 10−2 = 0.67,

clearly in better agreement with theory.

8.3 Trapping width

In exercise 1.2.3.1 one also derived the relation for the trapping width:

∆vtrap = 2

(
eφ0

m

)1/2

,

from which one obtains the normalized relation

∆vtrap
vth

= 2

(
eφ0

T

)1/2

=
2

(k0λD)1/2

( P
NT

)1/4

.

At the end of the runs, i.e. at time tωp = 250, one has

Case δN0/N = 0.01:
P
NT
≃ 3.5 · 10−5 =⇒ 2

∆vtrap
vth

≃ 4
(3.5 · 10−5)1/4√

0.3
= 0.56,

Case δN0/N = 0.1:
P
NT
≃ 1.1 · 10−2 =⇒ 2

∆vtrap
vth

≃ 4
(1.1 · 10−2)1/4√

0.3
= 2.37,

These estimates agree well with the trapping widths 2∆vtrap pointed out in
the phase space plots of Figs. 1.1. c & d.
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9 Frequency Shift for Wave Generated Adia-

batically

This provides the solution to exercise 1.2.6.1.

In the notes, one has in fact studied the situation of a plasma which is “sud-
denly” submitted to an initial sinusoidal perturbation of finite amplitude. Here
one considers the situation of a wave turned on adiabatically, typically gener-
ated through an external drive applied to the system over a finite amount of
time. The wave is then let to propagate freely, at which time one is interested
in the possible frequency shift with respect to the linear dispersion relation.
This “adiabatic” case was first considered by Dewar [Dewar, Phys. Fluids 15,
712 (1972)].

One studies again the system in the wave frame. Adiabatic growth of the
wave means that the amplitude E0(t) of the wave increases slowly with re-
spect to the bounce period: |(1/E0)(dE0/dt)| ≪ ωb. In this case, the action
integral

∫
dx v is an adiabatic invariant for each particle. If v0 is the initial ve-

locity of a particle before the presence of the wave, and W = (m/2)v2− eφ(x)
its energy in the presence of the wave so that v(x,W ) = σ[(2/m)(W + eφ(x))]
is its velocity as a function of position x, one thus has

const. =

∫ λ0/2

−λ0/2

dx v

= λ0 v0 (initially)

= σ

∫ λ0/2

−λ0/2

dxH(W + eφ)

[
2

m
(W + eφ)

]1/2

(finally),

H being the Heaviside step function. As a result

v0 =
σ

λ0

∫ λ0/2

−λ0/2

dxH(W + eφ)

[
2

m
(W + eφ)

]1/2

= σ v̄,

where v̄ is the spatial average of the velocity for the particle with energy W ,
given by relations (A.5) and (A.7) in Appendix A for untrapped and trapped
particles respectively.

Invoking the invariance of the full distribution along the non-linear trajec-
tories, one thus obtains for the final distribution seen from the wave frame:

∑

σ=±1

f ad
∞ (W,σ) =

∑

σ=±1

f0(σv̄),
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which replaces Eq. (1.62) in the notes for the “sudden” case.

To obtain the non-linear frequency shift for the here considered adiabatic sce-
nario, one follows basically the same procedure as in Sec. 1.2.6.

Working in the wave frame, the second order Taylor expansion of f0 around
v = 0 simply leads to

∑

σ=±1

f ad
∞ (W,σ) ≃ 2f0(0) +

d2f0(0)

dv2
v̄2,

as well as

∑

σ=±1

∆f ad
NL =

∑

σ

(f ad
∞ − fL) ≃ −

2

m

d2f0(0)

dv2

(

W − m

2
v̄2
)

, (52)

which are the equivalent of Eqs. (1.64) and (1.66) in the notes for the “sudden”
case. Inserting (52) into (1.67) leads to

ǫL(k0, ω) = −
4

mǫ0E
2
0

d2f0(0)

dv2

∫ +∞

min(qφ)

dW (W − m

2
v̄2)(Wv̄′ − v̄

2
). (53)

Finally, inserting (A.5) and (A.7) for v̄ provides in the “adiabatic” case

ǫL(k0, ω) = −
ω2
p

k2
0

∆vtrap
d2(f0/N)

dv2

∣
∣
∣
∣
vφ

16

π

∫ 1

0

dκ ×






1

κ4

[(
1

κ2
− 1

2

)

− 4

π2κ2
E2

]
[
2(F − E)− κ2F

]

︸ ︷︷ ︸

passing

+ κ

[

(κ2 − 1

2
)− 4

π2

(
(κ2 − 1)F + E

)2
]

(F − 2E)

︸ ︷︷ ︸

trapped







, (54)

which is the equivalent of Eq. (1.69) for the “sudden case”.

The integral αad = (16/π)
∫
dκ . . . in (54) is a constant, and is again inte-

grated numerically, providing the value αad = 0.544, which is composed of
the contribution αu = 0.0519 from untrapped particles and αt = 0.493 from
trapped particles. This value is to be compared to the value αsudden = αu+αt =
0.117 + 0.705 = 0.823 which was obtained for the “sudden” case.
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The difference in the parameter α between the “sudden” and “adiabatic” sce-
nario thus directly affects the frequency shift of the Langmuir wave as given
by

δω = −α
2

ω3
p

k2
0

∆vtrap
d2(f0/N)

dv2

∣
∣
∣
∣
vφ

.

In absolute value, the non-linear frequency shift is thus slightly weaker in the
“adiabatic” case compared to the “sudden” one. The two scenarios clearly
illustrate how for a given wave amplitude, the non-linear dispersion is not
unique, and depends on the wave’s history.
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10 System of Three Coupled Damped Oscilla-

tors

This provides the solution to exercise 1.3.1.1.

The equations of motion for three damped, coupled harmonic oscillators are
given by

ẍ1 + ω2
1x1 + γ1ẋ1 = −V x2x3, (55)

ẍ2 + ω2
2x2 + γ2ẋ2 = −V x1x3, (56)

ẍ3 + ω2
3x3 + γ3ẋ3 = −V x1x2, (57)

where γj is the damping rate of the jth oscillator. These equations generalize
Eqs. (1.71)-(1.73) in the notes for the system of undamped, coupled oscillators.

To obtain equations for the slow time scale varying, complex amplitudes Aj(t),
one again considers

xj(t) =
1

2

[
Aj(t)e

iωjt + c.c.
]
,

ẋj(t) =
1

2

[

(Ȧj + iωjAj)e
iωjt + c.c.

]

,

ẍj(t) =
1

2

[

(Äj + 2iωjȦj − ω2
jAj)e

iωjt + c.c.
]

=
1

2

[

(Äj + 2iωjȦj)e
iωjt + c.c.

]

− ω2
jxj ,

which are inserted into Eqs. (55)-(57).

For example, for oscillator #1, one obtains:

1

2

[

(Ä1 + 2iω1Ȧ1)e
iω1t + c.c.

]

+
γ1
2

[

(Ȧ1 + iω1A1)e
iω1t + c.c.

]

= −V
4

[
A2A3 e

i(ω2+ω3)t + A2A
⋆
3e

i(ω2−ω3)t + c.c.
]
.

In this last relation, one can neglect Ä1 with respect to ω1Ȧ1, as well as Ȧ1

with respect to ω1A1, under the assumed scaling |Ȧj/Aj| ≪ |ωj|. Furthermore,
after multiplying Eq. (10) by exp(−iω1t) one obtains:

2iω1Ȧ1 − 2iω1Ȧ
⋆
1e

−2iω1t + iω1γ1A1 − iω1γ1A
⋆
1e

−2iω1t

= −V
2

[
A2A3e

−i(ω1−ω2−ω3)t + A2A
⋆
3e

−i(ω1−ω2+ω3)t

+A⋆
2A3e

−i(ω1+ω2−ω3)t + A⋆
2A

⋆
3e

−i(ω1+ω2+ω3)t
]
.



10 SYSTEM OF THREE COUPLED DAMPED OSCILLATORS 33

By averaging over the fast time scale of the eigenfrequencies ωj, and assuming
that the condition of frequency matching

ω1 = ω2 + ω3 + δω, with |δω| ≪ |ωj|,

is met, one finally obtains:

2iω1Ȧ1 + iω1γ1A1 = −V
2
A2A3e

−i δω t, (58)

2iω2Ȧ2 + iω2γ2A2 = −V
2
A1A

⋆
3e

+i δω t, (59)

2iω3Ȧ3 + iω3γ3A3 = −V
2
A1A

⋆
2e

+i δω t, (60)

having at the same time written the equations for the amplitudes A2 and A3,
which have been derived in a similar way.

One now carries out a stability analysis for the state of the system where
one of the oscillators, e.g. oscillator # 1, has been initialized with a much
larger amplitude than the two other oscillators: |A1| ≫ |A2|, |A3|. For this
purpose, one considers Eqs. (58)-(60) retaining only terms linear in A2 and
A3.

For Eq. (58) one then obtains

2iω1Ȧ1 + iω1γ1A1 = 0.

For oscillator #1 we shall neglect damping, so that Ȧ1 = 0, which implies that
A1 = A1,0 = const. Equations (59) and (60) thus become linear in A2 and A3:

2iω2Ȧ2 + iω2γ2A2 = −V
2
A1,0A

⋆
3e

+i δω t,

2iω3Ȧ3 + iω3γ3A3 = −V
2
A1,0A

⋆
2e

+i δω t,

Considering the Ansatz

A2(t) = a2 exp(γ + i δω/2)t,

A3(t) = a3 exp(γ
⋆ + i δω/2)t,

where in general γ is a complex value, leads to the following linear system for
a2,3:

iω2

[

2(γ + i
δω

2
) + γ2

]

a2 +
V

2
A1,0 a

⋆
3 = 0,

iω3

[

2(γ⋆ + i
δω

2
) + γ3

]

a3 +
V

2
A1,0 a

⋆
2 = 0,
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which can finally be written

(
iω2

[
2(γ + i δω

2
) + γ2

]
V
2
A1,0

V
2
A⋆

1,0 −iω3

[
2(γ − i δω

2
) + γ3

]

)

︸ ︷︷ ︸

M

(
a2

a⋆3

)

=

(
0

0

)

To obtain a non-trivial solution {a2, a3} to this system, thus requires

det(M) = 0

⇐⇒ ω2ω3

[

2(γ + i
δω

2
) + γ2

] [

2(γ − i
δω

2
) + γ3

]

−
(
V

2

)2

|A1,0|2 = 0

⇐⇒ γ2 + γ
γ2 + γ3

2
+

(
γ2
2

+ i
δω

2

)(
γ3
2
− i

δω

2

)

−
(
V

4

)2 |A1,0|2
ω2ω3

= 0

⇐⇒ γ = −γ2 + γ3
4

±
[(

γ2 + γ3
4

)2

−
(
γ2
2

+ i
δω

2

)(
γ3
2
− i

δω

2

)

+

(
V

4

)2 |A1,0|2
ω2ω3

]1/2

⇐⇒ γ = −γ2 + γ3
4

±
[(

γ2 − γ3
4

+ i
δω

2

)2

+

(
V

4

)2 |A1,0|2
ω2ω3

]1/2

.

Considering already the case of perfect frequency matching, δω = 0, one clearly
sees that there is in addition of the condition ω2ω3 > 0 an amplitude threshold
for instability:

[(
γ2 − γ3

4

)2

+

(
V

4

)2 |A1,0|2
ω2ω3

]1/2

>
γ2 + γ3

4

⇐⇒
(
V

4

)2 |A1,0|2
ω2ω3

>

(
γ2 + γ3

4

)2

−
(
γ2 − γ3

4

)2

=
γ2γ3
4

|A1,0| > 2
(γ2γ3ω2ω3)

1/2

|V | .

The stability diagram in the (|A1,0, δω|) plane is then finally given in Fig. 5.
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|A1,0| = 2 (γ2γ3ω2ω3)
1/2

|V |

δω = ± |V |
2

|A1,0|

(ω2ω3)1/2

δω

|A
1, 0

|

Unstable
Stable

Instability threshold 
in the presence of

damping

Instability thresshold 
in the absence of damping

Figure 5: Stability diagram for three damped, coupled oscillators. |A1,0|
is the initial amplitude of oscillator #1, assumed such that
|A1,0| ≫ |A2,0|, |A3,0|, and δw is the frequency mismatch.
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11 Equation for Slow Variation of EPW Am-

plitude

This provides the solution to exercise 1.3.2.1

One starts from equation (1.98):

∂2Ex

∂t2
− 3v2th

∂2Ex

∂x2
+ ω2

pEx = −ω2
p

1

2

∂

∂x

eA2
z

m
= − e

m
ω2
pAz

∂Az

∂x
,

and inserts the Ansatz for the vector potential Az and the electrostatic field
Ex:

Az(x, t) =
1

2

[
A0(x, t) e

i(k0x−ω0t) + c.c.
]

︸ ︷︷ ︸

Incident EM

+
1

2

[
As(x, t) e

i(ksx−ωst) + c.c.
]

︸ ︷︷ ︸

Scattered EM

,

Ex(x, t) =
1

2

[
E(x, t) ei(kex−ωet) + c.c.

]

︸ ︷︷ ︸

EPW

.

So that by using relations

∂xxEx =
1

2

[
(∂xxE + 2ike ∂xE − k2

eE) ei(kex−ωet) + c.c.
]
,

∂ttEx =
1

2

[
(∂ttE − 2iωe ∂tE − ω2

eE) ei(kex−ωet) + c.c.
]
,

∂xAz =
∑

0,s

1

2

[
(∂xA+ ikA) ei(kx−ωt) + c.c.

]
,

one obtains:

1

2



(∂ttE − 2iωe ∂tE − ω2
eE
︸︷︷︸

1

) ei(kex−ωet) + c.c.





−3v2th
1

2



(∂xxE + 2ike ∂xE − k2
eE
︸︷︷︸

2

) ei(kex−ωet) + c.c.





+ω2
p

1

2

[

E
︸︷︷︸

3

ei(kex−ωet) + c.c.

]

= − e

m
ω2
p

1

2

[
A0 e

i(k0x−ω0t) + c.c. +As e
i(ksx−ωst) + c.c.

]
×

1

2

[
(∂xA0 + ik0A0) e

i(k0x−ω0t) + c.c. + (∂xAs + iksAs) e
i(ksx−ωst) + c.c.

]
. (61)
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Note how the terms 1, 2, and 3 in the above equation cancel out as (ke, ωe)
are assumed to verify the Bohm-Gross dispersion relation for EPWs:

ω2
e = ω2

p + 3(kevth)
2.

Furthermore, the term ∂ttE can be neglected with respect to ωe ∂tE , as well
as ∂xxE with respect to ke ∂xE , as well as ∂xA with respect to kA, under the
assumption of slow space and time variation of the envelopes:

| 1E
∂E
∂x
| ≪ |ke|, and | 1E

∂E
∂t
| ≪ |ωe|,

with similar scalings for A0 and As.

To obtain a slow scale variation equation for E , one multiplies Eq. (61) by
exp−i(kex− ωet) and averages over the fast space (∼ 1/k) and time (∼ 1/ω)
scales. So that at least some terms on the right hand side of Eq. (61) do
not cancel out as a result of this averaging, the wave numbers and frequencies
must verify certain matching conditions. One assumes:

k0 = ks + ke,

ω0 = ωs + ωe + δω,

having allowed for a small mismatch of order |δω| ≪ |ω0,s,e| on the frequencies.
For these matching conditions, one can easily convince oneself that the only
terms on the right hand side of Eq. (61) that survive the averaging process
are the ones ∼ A0A⋆

s. One thus obtains:

−2iωe ∂tE − 3v2th 2ike ∂xE = − e

2m
ω2
p i (k0 − ks)
︸ ︷︷ ︸

ke

A0A⋆
s e

−iδωt

= − e

2m
ω2
p ikeA0A⋆

s e
−iδωt,

having again used the matching condition on the wave numbers. Dividing this
last relation by −2iωe and identifying the group velocity vg,e = dωe/dke =
3v2thke/ωe for the EPW, one finally gets the slow scale variation equation for
the amplitude E of the electrostatic field:

∂tE + vg,e ∂xE =
e

4m

ke
ωe

ω2
pA0A⋆

s e
−iδωt.
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12 Matching Conditions for SBS and LDI

This provides the solution to exercises 1.3.3.1 and 1.3.3.2.

Let us start by considering the process of Stimulated Brillouin Scattering
(SBS), which as mentioned in the introduction to Sec. 1.3, involves the inter-
action of the following three types of modes:

1. An incident EM wave, with wave number k0 and frequency ω0

2. A scattered EM wave, with wave number ks and frequency ωs.

3. An Ion Acoustic Wave (IAW), with wave number ki and frequency ωi.

One shall again limit the study to a one-dimensional system, where all waves
propagate either forward or backward along a given direction x. As in SRS,
the first two modes are again transverse electromagnetic waves, so that their
(wave number, frequency) pairs verify the same dispersion relation:

ω2
0 = ω2

p + (k0c)
2, (62)

ω2
s = ω2

p + (ksc)
2, (63)

c being the speed of light. The IAW however verifies the essentially linear
dispersion relation

ωi = kics, (64)

where c2s = ZTe/mi is the squared sound speed. Note that for an electron
temperature of Te ≃ 1keV, one has cs ≃ 10−3c, i.e. typically cs ≪ c.

The 3 dispersion relations (62)-(64), together with the 2 matching conditions
for wavenumbers and frequencies:

k0 = ks + ki, (65)

ω0 = ωs + ωi, (66)

define a system of 5 equations, which in general determine (k0, ω0), (ks, ωs),
and (ki, ωi), once e.g. the frequency ω0 of the incident laser light is fixed.

One solves this system by inserting (65) and (66) into (63):

(ω0 − ωi)
2 = ω2

p + (k0 − ki)
2c2.

Making use of Eq. (62), one obtains:

−2ω0ωi + ω2
i = −2k0kic2 + k2

i c
2,
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Figure 6: Graphical solution to matching conditions for the SBS process. Note
that for this figure the relatively large ratio cs/c ≃ 3 · 10−2 was considered.

and finally inserting (64) provides:

ki = 2
k0c

2 − ω0cs
c2 − c2s

cs≪c≃ 2k0 −
2w0

c

cs
c
,

ks ≃ −k0 +
2w0

c

cs
c
.

This unique solution, clearly involving backward scattering, is shown graphi-
cally in Fig. 6.

Assuming with no loss of generality that ω0 > 0, the above solution is not
valid for 0 < k0 < csω0/c

2 as it gives ki < 0, which according to (64) pro-
vides a negative frequency ωi. Together with the frequency matching con-
dition (66) this would imply |ω0| < |ωs|, which prevents any decay of the
incident light. From Fig. 6 one can clearly understand this (small) limit k0,lim
on k0 as the point in the dispersion relation of transverse EM waves where
dω/dk(k0,lim) = cs. For k0 < k0,lim their is then clearly no solution to the
matching conditions. From (62) one indeed obtains dω/dk = k0c

2/ω0, so that
dω/dk = cs =⇒ k0,lim = csω0/c

2.
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The problem of addressing the matching conditions for the Langmuir Decay
Instability (LDI) is in fact analogous to the problem of matching conditions for
SBS, as it also involves two waves with quadratic dispersion, the two EPWs,
and an IAW. Indeed, recall that the dispersion relation for EPWs reads:

ω2 = ω2
p + 3(kvth)

2,

and that cs/vth = (Zme/mi)
1/2 ∼ 10−2. Identifying c2 appearing in SBS with

3v2th in LDI, the solution to the dispersion relations and matching conditions
for these two processes becomes identical.
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13 Manley Rowe Relations for Three Coupled

Oscillators

This provides the solution to exercise 1.3.4.1

One starts by deriving the appropriate relation for the action amplitude a
for each oscillator. The action amplitude aj and the energy Ej of the jth

oscillator are by definition related by

Ej = nj ωj = |aj |2 ωj , (67)

where ωj is the eigenfrequency and nj = |aj|2 the action of the oscillator.

For a free harmonic oscillator, the total energy is the sum of its kinetic and
potential energy:

Ej =
1

2
ẋ2
j +

1

2
ω2
jx

2
j . (68)

When studying the system of coupled harmonic oscillators, the position xj of
oscillator # j was written in terms of its complex amplitude Aj as

xj =
1

2

[
Aje

iωjt + c.c.
]
. (69)

Inserting Eq. (69) into Eq. (68) leads to:

Ej =
1

2

1

4

[
iωjAje

iωjt − iωjA
⋆
je

−iωjt
]2

+
ω2
j

2

1

4

[
Aje

iωjt + A⋆
je

−iωjt
]2

=
1

2

1

4

[
−ω2

jA
2
je

2iωjt + 2ω2
j |Aj|2 − ω2

jA
⋆
j
2e−2iωjt

]
+

ω2
j

2

1

4

[
A2

je
2iωjt + 2|Aj|2 + A⋆

j
2e−2iωjt

]

=
1

2
ω2
j |Aj |2. (70)

Comparing Eqs. (67) and (70) thus leads to the following relation for the
action amplitude aj of oscillator # j in terms of the complex amplitude Aj of
its position xj :

aj = −i
(ωj

2

)1/2

Aj . (71)

Notice that the relation between aj and Aj is determined through (67) only up
to a phase factor exp(iθ). Here one chose the phase factor exp(−iπ/2) = −i,
as it will provide coupled equations for the action amplitudes which are most
analogous to the system (1.125)-(1.127) derived in the notes for the action
amplitudes of the three coupled waves involved in the SRS process.
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Inserting (71) into Eqs. (1.79)-(1.81) from the notes indeed provides the fol-
lowing equations for the action amplitudes:

ȧ1 = −Γa2a3e−i δω t, (72)

ȧ2 = +Γa1a
⋆
3e

+i δω t, (73)

ȧ3 = +Γa1a
⋆
2e

+i δω t, (74)

having defined the normalized non-linear coupling parameter

Γ =
V

2
√
2

1

(ω1ω2ω3)1/2
.

Comparing Eqs. (72)-(74) with Eqs. (1.125)-(1.127), note however the change
in sign of the phases related to the frequency mismatch. This is the result of
the different choice of signs for the frequencies in the complex representation
of the oscillator positions, as defined by Eq. (69), compared to the choice of
sign of the frequencies in the complex representations of the modes involved
in the SRS process, as given by Eqs. (1.99) and (1.100).

Let us now derive the Manley-Rowe relations for the action densities nj = |aj |2:

d

dt
(n1 + n2) = 0, (75)

d

dt
(n1 + n3) = 0, (76)

which respectively state the conservation of action transfer from oscillator 1
to 2, as well as from oscillator 1 to 3. These relations result directly from
Eqs. (72)-(74). For instance Eq. (75) is obtained from Eqs. (72) and (73) as
follows:

d

dt
(n1 + n2) =

d

dt
(a1a

⋆
1 + a2a

⋆
2) = ȧ1 a

⋆
1 + a1 ȧ

⋆
1 + ȧ2 a

⋆
2 + a2 ȧ

⋆
2

= −Γa⋆1a2a3e−i δω t − Γa1a
⋆
2a

⋆
3e

+i δω t

+Γa1a
⋆
2a

⋆
3e

+i δω t + Γa⋆1a2a3e
−i δω t

= 0.

From Eqs. (72) and (74) one naturally derives (76) in a similar way.

The energy conservation relation is then obtained by multiplying Eq. (75)
by ω2 and Eq. (76) by ω3, adding these relations together, and invoking the
matching condition ω1 = ω2 + ω3:

d

dt
[(ω2 + ω3)
︸ ︷︷ ︸

ω1

n1 + ω2n2 + ω3n3] = 0
Ej=njωj
=⇒ d

dt

3∑

j=1

Ej = 0.
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Equations (72)-(74) are clearly only valid under the assumption of the fre-
quency matching condition ω1 = ω2+ω3+ δω, as they result from Eqs. (1.79)-
(1.81) which have been derived under this same assumption. In fact when
deriving (72)-(74), one made the additional assumption of ωj > 0, as the ac-
tion amplitudes were derived from the positive energies through the relations
Ej = |aj|2ωj [see Eq. (67)]. The considered matching condition together with
the constraint of positive frequencies results in |ω1| ≥ |ω2|, |ω3|, so that the
only possible process is the decay from oscillator 1 into oscillators 2 and 3 (or
the opposite, i.e. recombination of 2 and 3 into 1). This is reflected by the
Manley-Rowe relations (75) and (76) describing action transfer from oscillator
1 into 2 and 3 (or its inverse).

To be more general, and allow for any sign of the frequencies ωj, one should
be more careful in the definition of the action amplitudes and write:

Ej = nj |ωj| = |aj |2 |ωj|.

In this way the action amplitude relations are given in terms of the absolute
values of the frequencies:

aj = −i
( |ωj|

2

)1/2

Aj.

Equations (72)-(74) can then be generalized to

ȧ1 = −σ1Γa2a3e
−i δω t, (77)

ȧ2 = +σ2Γa1a
⋆
3e

+i δω t, (78)

ȧ3 = +σ3Γa1a
⋆
2e

+i δω t, (79)

where σj = sgn(ωj) and

Γ =
V

2
√
2

1

(|ω1||ω2||ω3|)1/2
.

One can then for example consider ω1 < 0, ω2 < 0 and ω3 > 0, so that from
the matching condition ω1 = ω2 + ω3 one obtains:

−ω2
︸︷︷︸

>0

= −ω1
︸︷︷︸

>0

+ ω3
︸︷︷︸

>0

=⇒ |ω2| > |ω1|, |ω3|.

The only possible decay in this case is from oscillator 2 into 1 and 3 (or its
inverse). This can be verified from the system (77)-(79), using the appropriate
signs σ1 = −1, σ2 = −1, and σ3 = +1, either by performing the corresponding
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stability analysis (linearize with respect to a1 and a3 assuming |a2| ≫ |a1,3|),
or by deriving the Manley-Rowe relations which now read:

d

dt
(n2 + n1) = 0,

d

dt
(n2 + n3) = 0.

The energy conservation naturally reads in all cases:

d

dt
(|ω1|n1 + |ω2|n2 + |ω3|n3) = 0.


