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1 Energy Conservation for Vlasov-Poisson Sys-

tem

We present here the proof of the energy conservation for the Vlasov-Poisson

system:

assuming the system is periodic over the length x € [0, A].

The total kinetic energy Kin and potential energy Pot are given by

Ao
Kin:@/ dx/dvv2f
2 Jo

Ao
Pot = 6—0/ dx E2.
2 0

Let us show that the total energy FEi,, = Kin 4 Pot is a constant.

One starts by deriving the temporal variation of kinetic energy:

Ao
—Kln—m/ dx/dvv -

——/dvv / x— + - /d:cE/dvvzg—i
:/de(—e)/dvvf:/dij,

(5)

having made use of the Vlasov equation (1), the periodic boundaries in z,

integrated by parts in v, and having defined j

—e) [dvv f the charge

current. By taking the time derivative of the Poisson Eq. (2), one obtains:

CE _ e [,00
oot & ) ot
e of e? of
60 d’UU% — m—EOE d’U%
=0
) 0
oF
- eo— +7=0. (6)

ot
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This last relation is simply Ampere’s law written for zero magnetic field, and
is useful for deriving the temporal variation of the potential energy:

d 0FE 4
EPot:eo/dzEa——/d:p]E. (7)

From Eqgs. (5) and (7) one then finally obtains:

d d d
dt Etot dt m ‘l’ dt ot O
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2 Linear Landau Damping of Langmuir Waves

This provides the solution to exercise 1.2.2.1. The goal here is to derive the
dispersion relation, i.e the equation providing the relation between the wave
number k£ and the frequency w, of Langmuir waves.

The starting equations are given by the linearized Vlasov-Poisson system for
electrons:

of | of e 0f

ot v or  m Ov’ (8)
oFE e

Where fy = fo(v) is the background velocity distribution and fi(x,v,t) the
fluctuating part of the distribution. As the unperturbed system is homoge-
neous in x and ¢, one may consider fluctuations of the form:

fl ~ E ~ ei(kx—wt).

In this Fourier representation, Eqs (8) and (9) become:

: gl
i(kv —w)fi = —E 5, (10)
ikE=—— [ dvf;. (11)
€o
From Eq. (10) one obtains
(& E 8f0
. <
mi(kv —w) Ov

which can then be inserted into Eq. (11), providing:

w2 3f0/N

having defined the dielectric function e(k,w):

2 dfo/N

e(k,w)—l—ﬁ dvv—w/k‘

where wf, = N e?/meg is the squared plasma frequency.

The dispersion relation is thus given by

e(k,w) = 0. (12)
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Let us now solve the dispersion relation (12) in the resonant approximation.
For a given wave number k, one solves for the frequency w, assuming that

W= wg + 17, with |l|<<1,
WR
where wg and v are respectively the real and imaginary part of the complex

frequency. One then expands the complex dispersion function € in Eq. (12) as
follows:

e(wr +17) = ep(wrp +17) +ier(wr +17)
realvpart imag‘.r part

Oer

= er(wr) +1iv oy

(wr) +ier(wr) =7 —W(WR) = (13)
The term 7 Oe; /0w is dropped as |e;/er| ~ |v/wr| < 1.

From the real and imaginary parts of Eq. (13) one then obtains:

er(wr) =0, (14)
E[(wR)

7=  Oep(wpr) /0w’ (15)

From equation (14) one computes the real frequency wg, which then enables
to directly estimate the growth/damping rate v using (15).

To apply the resonant approximation relations (14) and (15) requires to eval-
uate egp(wg) and €;(wg) with wg the real frequency. One has

2 9fo/N

E(WR) = ER(CUR) —l—’iE[(wR) =1- k—g dev_aTvR/k. (16)

The integral path I' over v is essentially along the real axis, except at the
resonance v = wg/k. Correctly avoiding this pole is determined by imposing
causality: At time ¢ = —oo, the field E(z,t) = E expi(kz — wt) does not yet
exist, one thus considers w = w + v, with v a small positive imaginary part.
The pole wg/k is thus displaced above the real axis, indicating that in general
the path I' must avoid the pole w/k from below. Noting that

1 B v—wgr/k L v/k
v — Lnt (v —wr/k)2+ (k)2 (v—wr/k)?+ (v/k)?
= +imd(v—wrlk), (17)

v —wgr/k
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where P stands for the principal part and §(z) is the Dirac function. Inserting
(17) into (16) leads to

er(wWr )_1—ﬁ dvvf“%, (18)
w 8f N
cr(ir) = ~mop g{} , (19)
U:’U¢

where vy = wg/k is the phase velocity of the wave.

In the case of Langmuir waves, one typically has |vgs| > vy, where vy, =
(T/m)'/? is the thermal velocity. In this limit, the resonant denominator of
(18) can be expanded as follows

1 1 1 1
- - - = {1+ﬁ+(£)2+(£)3m] ’
v — vy Vel —v/vg Vg Ve Vg Vg
so that after integrating by parts
CU2 fo k k
=1-— = |—+2 3(—)30? ...
ER( ) ka‘ N |:(.UR + (wR) v (wR) v :|
w? k’2U w2
=1-—21+3—2 4. )~1- 55— 20
wlz%( + w +) w? — 3 (kvg,)?’ (20)

having assumed that fy(v) is even (e.g. Maxwellian) and used the definitions
N = [ (21)
Nk = /dvfo v?. (22)

Making use of the approximate relation (20), one can now solve Eq. (14), which
provides the well-known thermal dispersion of Langmuir waves (Bohm-Gross
relation):

w? = w + 3Kk

From (20) one also estimates

8eR w2 2
—(wpg) =2 2% ~ —,
Ow wi T wp

having neglected here the higher order thermal corrections, so that wg ~ w,,.
Together with (19) the damping rate (15) can thus finally be evaluated:

o 7TW3 8f0/N o WWI% 8f0/N

T2k v 2k ov ’

V=V¢y V=V¢

(23)
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which, accounting for the different sign convention on 7, indeed agrees with
Eq. (1.25) of the notes.

Note also that using wg ~ w,, the condition |vy| > vy, is equivalent to
|kAp| < 1. This assumption had been made for deriving Eq. (20).

Considering fo to be Maxwellian, one obtains from (23):

_\/fLe BN
TV ) TP T2 (k)2

so that the condition |kAp| < 1 also enables to justify the original assumption
|7/wr| < 1 made for the resonant approximation derivation.

e
Wp
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3 Wave Energy in a Dispersive Media

This provides the solution to exercise 1.2.2.2. The derivation given here is sim-
ilar to the one in section 61, Vol. 8, “Electrodynamics of Continuous Media”,
of the Landau & Lifshitz series.

The starting point are Maxwell’s equations in a continuous media:

9B

E= 24
. . 10D

H = g 1™+ === 25
V x Hod ™+ (25)
V-B=0, (26)

5 poxt
v.-D="_, (27)

€0

where one has defined the electric displacement field D = €E and the mag-
. =g Al = <~ . . . .

netic field B = pH, € and p standing respectively for the dielectric tensor

and the magnetic permeability tensor.

From Eqs. (24)-(27) one can derive a continuity equation for local energy
conservation. Starting as follows:

- aﬁ 25 — — -
EQE‘E (:) EOE‘C2(V><H—/,LOjOXt)
2=1/e 1 s - o
12/0/1/0 i E . (V % H) _jCXt . E
Mo  N———
—V(ExH)+H-(VxE)

24 0 oB Ex H -
(:) __.a__v. % — ™,
po Ot Ho
one finally obtains:
. 9D 1 - 0B ExH ~
E-—+—H — . = ™. F, 28
€0 5 +,u0 BT + V ( o ) J (28)

In a media without dispersion, when ¢ and ﬁ) are real constants, one has
D = eF and B = puH, so that the rate of change of energy per unit volume
becomes
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narrow

Figure 1: Electric field spectrum

where U = epe £?/2 + B?/2 jiop can be identified as the wave energy density.

In a dispersive media, one has in general

(
B(k,w)

!
I
£

w O

(k,w)
(k,w)

(
(k,w)

Ty B

Axd
€
nd
1
these relations having been written in Fourier space.

The goal here is again to be able to identify an appropriate relation for the
wave energy U.

Let us consider a wave with wave vector /ZO and dominant frequency wy.
To study the energy build-up of the wave as it grows to finite amplitude re-
quires taking account of a certain frequency spread around wy. For example,
the spectrum E(w) of the electric field takes on a form as shown in Fig. 1,
and one obtains [to lighten notation, exp(iko - ) is understood to be factored
into E(w)]:

1 = .
E(Zt) = 5 /E(w) e dw + c.c

complex conj.

ei“’ot/E(wo + Aw) et dAw + c.c

:é(t) gt | c.c} , (29)
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—

having defined the time varying complex amplitude £(t):
Et) = /é(wo + Aw) et dAw. (30)

The fact that the frequency spread in Fig. 1 is narrow compared to wy implies
the time scale separation |(1/€)dE /dt| < |wy-

In real space, the electric displacement field in turn becomes:

B@ 1) = % l / W) B(w) e dw + C.c] |

so that its time derivative can be written as

8ﬁ o o 1 B = it
D=, U i (@) B(w) 6 dus + c.c]

1 =

=3 [ei“’ot/i(wo + Aw) € (wy + Aw) E(wy + Aw) et dAw + c.c} .

In this last relation one expands

d'€ (wo)

Oow

. /
~~

(wo + Aw) € (wo + Aw) = wp € (wp) + Aw + O(Aw?),

(g(wo) + wo

<>
a5 (0 )lwg

so that
%—lt)(f, t) = % {z’wo?(wo) eiwot/ﬁ(wo + Aw) et dAw + c.c}
1 9 pig iwot . = 1Awt
+ = a—(we) e | iAwE (wo + Aw) e dAw + c.c
2| Ow o
_ 1 : = o iwot
= 3 [zwoe(wo) (t) ™" + c.c]
1[0, o 081 .
_'_5 %(WE)' 0 7 (& + c.c s (31)

having made use of Eq. (30).

One now estimates the time-average of the first term ey & - 9D /8t on the
left hand side of Eq. (28) over the fast time scale wy. For this one makes
use of the following: Let A and B be two fields with rapid time variation of



3 WAVE ENERGY IN A DISPERSIVE MEDIA 11

frequency wy:

A= (Ae“ot + c.c) ,

N~

1 ,
B = 5 (Be™" + c.c),
where A and B are the complex amplitudes of the fields A and B respectively.

The time average of the product of these two fields over the fast time variation
is then given by

1 | |
<A B>t = _(AB <€2M0t>t +AB + A B+ A*B* <6_2M0t>t)
' =0 -

1 1
=1 (AB*+ A*B) = §Re(.AB*).
Applying this relation to e E - 0D /0t using Egs. (29) and (31) then provides
oD 1

<€OE rr o= 1 —iwg €0 & - <g*(wo)g’* + g €9 £ - ?(wo)g
0, o | 0E(1) . 0, | 0@
L L 22V 132
+e € 8w(cue )wo BT +e& 8w(we) L 32)

Assuming that dissipation is small, the dielectric tensor ¢ is essentially a
Hermitian matrix. As a result, the first two terms in Eq. (32) cancel, and the
last two combine to give:

. 0D, 0 |egz 0, o
<€0E§>t—alzg a—w(w‘f)

E(t)] .

wo

A similar relation can be derived for ;—Oﬁ 0B /Ot, so that the time average of
the rate of change of energy on the left hand side of Eq. (28) can finally be

written
_ 9D 1 - OB o levs, 0 o = 1 o 0, & -
E— 4+ " H.Z2\ — | Agx. i VL

(€ + )i [45 aW(cue) 5+4M0”H aw(cu,u) . ’H],

oty ot't ot

wo

where # is the complex amplitude of field H:

—

1 -
H= 5(’H et 4+ c.c).

In the case of low dissipation, the time-averaged wave energy density can thus
be identified as
. 0 o 9

7o g 9 s Vg Dl A
U—45 8w(we)w05+4’u07{ 8w(wu)w0 H, (33)



3 WAVE ENERGY IN A DISPERSIVE MEDIA 12

where £ and H are the complex amplitudes of fields E and H respectively.

In the case of an electrostatic wave in a media with dielectric function e,
one in particular has
£ =

7_%9 90
U= 1 9 (wer) Pot, (34)

wo

MER)

8w(

wo

where Pot = ¢o|£|2/4 is the potential energy of the wave. In a non-magnetized
plasma, the dielectric function is given by

dfo/N

kw—1+2x—1—zk2/dvv_w/k (35)

specles specles

where y is the contribution to the electric susceptibility from each species.

3.1 Case of Electron Plasma Waves (EPW5s)
= Langmuir waves

In this case, one has from Eq. (20):
2

W
—1— P )
er(wr) 2~ 3(kvme)?

At the frequency wy of the EPW, verifying the dispersion relation eg(wo) = 0,
one thus has:

5 aER w2 wg (A)2
= — =2 £ =23
R (weg) er(wo) +wo Ow (wo) [ 2 3(]€0Uth,o>2]2 wy’

WO -
wo -0

so that from Eq. (34), the wave energy density for EPWs reads
2
U=2 w—g Pot.
wp

As U = Kin+Pot, where Kin is the kinetic energy of oscillation in the presence

of the wave, one has
2
Kin = [2w_g — 1]Pot ~ Pot,
Wy

having invoked wy ~ wy,.
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3.2 Case of Ion Acoustic Waves (IAWs)

Here one needs to consider the dielectric function (35) with both electron and
ion contributions in the appropriate limit.

With respect to electrons, the phase velocity of IAWSs is such that |w/k| < v, e,
which implies an essentially adiabatic response from this species, and their
contribution to the electric susceptibility derives from

o _ Y / e ol L / e
X 2 v—wik k2 v (kA pe)?’
having used 0 fo./0v = —(v/v, ) foe, assuming fo. Maxwellian.

With respect to ions, |w/k| > vy, i.e. similar to the relation between the
phase velocity of Langmuir waves and vy, ¢, so that the contribution of ions to
the dielectric function in the case of IAWs is the same as the one of electrons
to (20).
The dielectric function for IAWs thus finally reduces to

1 wfn- N 1 wfn-
(k))\De)2 W%{ -3 (kvth,i)2 o (k)\De)2 w% -3 (kvth,i)2’

having furthermore invoked the assumption kAp, < 1.

ER(MR) ~ 1+

The dispersion relation for IAWs thus reads:

1 w2,

_ . i _
ER(CU()) N (k))\De)2 w% -3 (kvth,i>2 O’
which leads to
T;
wi = (k:)\De)2w§,- + 3(kvg)? = ¢ (1 + 3Z—T6) k2,

where ¢ = ZT,/m; is the squared sound speed, Z the ionization degree of
ions, and having used the condition of global neutrality N, = ZN;.

Neglecting the ion thermal corrections, so that wy =~ kc,, one obtains:

Oe W2Z’ 2
%(MER) = er(wp) +w0—R(w0) ~ 2—’; ~

Ow Wo n (k)\De)2

W
0 -0

The wave energy density for IAWs thus finally reads

U = Kin + Pot ~ Pot.

2
(kADe)?
For |kApe| < 1, one therefore has Kin > Pot in this case.
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3.3 Transverse Electromagnetic Waves in a Non-Magnetized
Plasma

In this case, the wave has both an electric and magnetic compongnt. The
dispersion is however entirely characterized by the dielectric tensor €, so that
<

1 =1, and the wave energy becomes:

— — 1 —
_% 2 2
U= w(weR) €1 + 4M0|B| , (36)

wo

where € and B are respectively the amplitudes of the electric and magnetic
components of the wave.

Let us derive the dielectric function and dispersion relation for transverse EM
waves in a non-magnetized plasma. One starts from Faraday and Ampere’s
law:

so that

a S . ) - 0 10°E

E) = ‘E) —VE=-—— B) = —jjp————

Vx(VxE)= V(V-E) -V 5 (VXB) = —po=—— =
=o,trans. waves

. (37)

As the transverse waves are high frequency, w > wy,, ions can be considered
essentially immobile, so that the current is dominantly carried by electrons:

j= Y qN#~—eN7..

species

The equation of motion of electrons reads

ov, -
me— = —e B,
ot
so that one obtains .
dj ov, _,
— =—eN, = ¢ w?
ot © ot €0 &pe

Inserting this last relation into Eq. (37) gives the wave equation for E:

-1 L O’E w? w2\ -
20 2 _ pe
VE__Cz <wpeE+—at2)——cz (1—w2)E.

—_——
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For a wave with wave vector k and frequency wyg, the dispersion relation thus

becomes:

w2

2
), with  ep(w) =1— -

w2’

ke
w

er(wo) = (

which provides:
wp = wi, + (ke)?. (38)

To compute the wave energy, one again needs to estimate:

G, ke\?  wi o (ke)? 42w,
R A e o == 'Y
—— Ow Wo

— (weR)

Oow

wo wo w%

=(kc/wo)?
Using the relation B = (k/wg)€ from Faraday’s law, one then finally obtains
by inserting (39) into (36):

- %0 {2(kc)2 + 2%276} o2 %6052’

w
having made use of the dispersion relation (38). In this case, the wave energy
U is thus the combination of three contributions: (1) The energy Pot in the
electric field £, (2) the energy Uy, in the magnetic field B, and (3) the kinetic
energy of oscillation Kin. These contributions are given by
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4 Trapping in Langmuir Waves

This provides the solution to exercise 1.2.3.1.

The wave-frame energy of particles in a sinusoidal wave is given by

1
W = 5™ v? — egg cos(kox). (40)
For deeply trapped electrons, located at the potential minimas xn;, =
n 27 /ko, one can make a Taylor expansion:
Lo, 1 2 2
W = gmv + 56@50 kg(x — Tmin)” — €.
This corresponds to the energy of a harmonic oscillator with frequency wy,
such that oo k2
2 €%okp
- 41
=t (41)
The frequency wy is identified as the bounce frequency of deeply trapped
electrons at the bottom of each potential well of the Langmuir wave.

W,

The potential field ¢(x) = ¢g cos(koz) verifies Poisson’s equation:

O _ L _oon).

0x? ¢

where 0N is the electron density perturbation relative to the Langmuir wave.
One thus obtains: SN
€0.1Vg
ngSO = )
€0

d Ny being the amplitude of N, so that Eq. (41) becomes:
2 _ 5N0 62

Wy, ,
™m €g

and finally
“b

o \/Z]]\\;O (42)

By definition, the trapping width Auvy,,, is the maximum velocity of marginally
trapped electrons. The energy level in Eq. (40) of marginally trapped par-
ticles is W = e@g. The velocity is maximum when the potential energy is
minimum, i.e. ¢ = —e@q:

edo

1 1/2
W = 5™m Avfmp — ey = ey — AVtyap = 2 (F) .
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Finally, using Eqgs. (41) and (42) as well as the fact that the lab frequency wy
of the Langmuir wave is such that wy ~ w,, one obtains:

Wy Wp Wo wo~wp 5N0
A rap = 27— = 2— — =2 \/ 7 Vg
Vtrap ]{?0 Wo ]{70 N Yo

Yo
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5 Particle in Magnetic Well of a Tokamak

This provides the solution to exercise 1.2.2.3.

A particle in a spatially varying magnetic field has at least two constants
of motion, the kinetic energy K and the magnetic moment p (adiabatic in-
variant):

m m
K= 5@2 = E(Uﬁ"‘Uﬁ_),
uzmvi,
2B

where B is the amplitude of the magnetic field, and (v, v.) are respectively
the velocities parallel and perpendicular to the magnetic field (see Fig. 2).
One thus can write
m m
K= 51}ﬁ +pB = g(viijg) + 4B,
with (v, vp) the toroidal and poloidal components respectively of the parallel
velocity v = v B/B.

In a large aspect ratio tokamak with circular cross section (see Fig. 3 for
notations), one has

Yo _ BY _ R

Vg ,09 P

Y

where g = Ap/Af is the so-called safety factor, which determines the pitch
of the magnetic field as it winds around the magnetic surface. One clearly has
v, > vy as the inverse aspect ratio e = p/R is such that € < 1 and the safety

factor is typically such that g, > 1.

In a large aspect ratio tokamak, one also has

R By R By
B~ B,~ By— = = ~ By (1— 0). 43
v Oy T R+ pcosf 1+ecosd o (1 —ecosf) (43)

The kinetic energy can thus be approximated by:
m

5 (Rqs)%0% + 1By (1 — ecosh),

m
K:;v?p—l—,uB:

By rescaling the kinetic energy to K’ one obtains:

K K — By _ Mg € uBo

= cos f = const., 44
ReP 2 Rap e
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Figure 2: Parallel and perpendicular components of velocity in a magnetic
field B

Figure 3: Large aspect ratio tokamak with circular cross section
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which can now be compared to the energy of an electron in a sinusoidal wave,
as given by Eq. (40):

W = %iz — ey cos(kox) = const.,

= W=kW= % (ko &)? — e kg ¢o cos(kox) = const. (45)

Comparing Eqgs. (44) and (45), one can now identify:

Particle in electrostatic wave field Particle in a magnetic well
]{TQZL' — 0
ke W A (K — 1 Bo)/(Rgs)?
e kg o > e uBo/ (R gs)?

Using this identification table, one can make use of the relations in appendix
A of the notes to obtain:

Particle in electrostatic wave field | Particle in a magnetic well

7 112
Frequency  of wy = (e k2 g /m)/? wp = lepBo/(Rgs)"m]
deeply trapped = Vevn/Ra.
particles
Energy-like vari- k* = 2epo/(W + € py) k% =2euBy/(K — 11 Buin)
able k
Energy bounds O0<k<l= W >epg 0<k<1l= K > puBpnax
for passing parti-
cles
Transit time for 7 = (26/wp) F(K?) 7 = (2k/wp) F(K?)

passing particles

1 < r < 40 =

Energy bounds | 1 < kK < 400 = —epy < W < epq 1Bt < K < [1Bus

for trapped par-

ticles

Bounce period 7y = (4/wp) F(1/K?) 7 = (4/wp) F(1/K%)
for trapped

particles

In the above table, By, = Bo(1l —€) and By = Bo(1+¢€) are respectively the
minimum and maximum values of B on the magnetic surface p = constant, as
given by Eq. (43). To derive w, one has also made use of < yu > By/m =<
v > /2 ~0d
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resonant region:

O2Av
trap

<v

Figure 4: Flattened distribution in resonant region of width ~ 2Auvy,,, around
the phase velocity vy.

6 Energy Cost for Distribution Flattening

This provides the solution to exercise 1.2.3.4.

Let us estimate the variation in kinetic energy which would result from flat-
tening the initial distribution fy in the resonant region, i.e. in an interval of
width ~ 2 Avy,, around the phase velocity vy:

AKin* = %/ms [f(v) = fo(v)] v*dv,

where f(v) is the flattened distribution (see Fig. 4). Assuming Avy., < v,
one can consider a Taylor expansion for evaluating fo(v) in the vicinity of vy:
0 fo(v Avga
folw) = folwe) + ey ) 1 0Bl

Vth

Using this expansion, and based on particle conservation, the flattened distri-
bution f in the vicinity of v, can be estimated as:

Vg +Avtrap
Flo) = — / dv fo(v)

QA/Utrap ¢_A7Jtrap

Vp+AVtrap 0
som— [ o o)+ )| = o),

2A,Utrap ¢>_A'Utrap
One thus has

o) ~ ) = 200

(v—1vy) for  |v— Uy < AUyap.
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The variation in kinetic energy can thus be estimated by

a 'U¢+A7Jtrap
AKinf ~ _m 9fo(v) / dvv® (v —vg)

2 01} ¢_A7Jtrap
v=vgp+0’ m 8f0 (U¢> /+Av”ap / AV
= - dv' (vy + ") v
2 81) —Avtrap
8']00 /+Avtrap 2 m 8']00
__0f d 2 = — 29000 A (46
e 8/U U¢ _Avtrap oY 3 ! 8/U Ud—’ /Utrap( )

Note, that apart from the multiplicative constant, this last relation provides
essentially the same result as Eq. (1.51) in the notes.

In the case of a Langmuir wave, the wave energy is given by

600

Ewavo = a5
4 Ow

(weﬂ B} ~ 3B}, (47)
wo

i ~ 2 /0,2 ~
having used € ~ 1 — w?/w* and w ~ w,,.

Inserting Eqs. (46) and (47) into the condition AKin™ > E,... provides:

€
Avd > 2 B2

trap D)

_2m 0f0

3 U@v
Vg

Making use of Eq. (23) for ., the above relation then leads to

S 31 ¢ wy B2 3
- = = —W
T S Nk A, 64"

having made use of Avy.p = 2(eEy/mko)'/? and wy, = koAvyap/2 (see exercise
1.2.3.1) This last relation thus confirms the equivalence of the orderings

AKin™ > g — YL > wh,

which is the necessary condition for linear Landau damping to explain the full
evolution of the collisionless damping of a wave.
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7 Effective Non-Linear Landau Damping

This provides the solution to exercise 1.2.4.1.

The goal here is to show that one can recover relation (1.52) in the notes
for the time integrated damping rate [;* dt~(t) from relation (1.39) for y(t)
obtained by O’Neil [T. O’Neil, Physics of Fluids 8, 2255 (1965)].

Equation (1.39) provided

. 2n—1)mw,
64 2nm? sin [”Z—lﬁbt} (2n — 1)m?ksin [%}
_’YLZ / /{5F2 (14 ¢2)(1 + ¢—2n) +\F2(1_‘_q2n—1)(1_‘_q—2n+1)1}'
passing trapped

Notice that the harmonic n = 0 does not contribute to the first term related
to passing particles, and that one has made the change of variable n +1 —n
for the second term related to trapped particles.

One then carries out the time integral:

)

64
/ At %Z / {wuqznxuq—%)

2r kF (2n—1)m wpt
o (1 — cos [721; L D

F2(1 +q2n—1)(1 +q—2n+1)

_ Z 64 / 2r 1 —cos [nz—;’f’t}
W RYF (14 ¢®)(1 4 ¢g2)
1 — cos |:(2n—1)7rwbt:|

2T K 2F
F (1 _|_q2n—1)(1 _|_q—2n+1)

For large values of wyt, the integral over the energy variable s of the phase terms
cos[nmwpt/kF (k)] and cos[(2n — 1)mwyt/2F (k)] phase-mix to zero. These
phase terms are in fact harmonics of the transit period 7, = (2k/wy)F (k%)
and bounce period 7, = (4/wy) F(k?): sin[n(27/7)t] and sin[(2n — 1)(27/7)t].
The phase-mixing is thus clearly the result of the difference in transit/bounce
periods between orbits with neighboring energy levels. One thus obtains:

/ / / 7L264/ 127 1 +I€_327T2 1
0 W I€4 F 1+q2n)(1+q—2n) T K2F (1+q2n—1)(1+q—2n+1) :
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Now making use of the relations

2T 1 B B
F(x?) — (14 ¢2)(1 +q20) T 41F(k2)’
- 1 1 2 1 2
K2 F(Kk?%) Z 1+ (1 +q 2ty (1 - ﬁ) F(s7) + ?E(Fa )

n=1

one finally obtains

o v, 64 (1 1 [E(x?) 7r K 5 ) )

=L = — — “E —1)F

/0 dt (1) o7 ) dk K4[ . TR () +J[ (k*) + (k NACSIRY
pasvsing

-

W
trapped

which indeed agrees with Eq. (1.52) from the notes.
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8 Analyzing Simulations of Non-Linear Lan-
dau Damping

This provides the solution to exercise 1.2.4.2.

When interpreting the plots of Fig. 1.1, one must be aware that they cor-
respond to the results for a standing wave. The study of non-linear Landau
damping presented in the notes is however for a single propagating Fourier
mode.

In a linear system, a standing wave can naturally be interpreted as the su-
perposition of a forward and backward propagating wave. For example for a
standing electrostatic field:

E(x,t) = E5 cos(kor) cos(wot) (48)
= B cos(kox — wot) + E5¥ cos(kox + wot), (49)

where the amplitudes E5"d and EY™ of the forward and backward propagating
waves respectively are equal, and such that

B = Eg™ = Eg/2, (50)

where E5' is the amplitude of the standing wave.

One must be careful here as one is addressing a non-linear problem, so that
a superposition principle in general does not apply. However, the non-linear
effects are localized in the resonant regions relative to each wave, i.e. out in
the positive velocity tail of the electron distribution for the forward propa-
gating Langmuir wave, and out in the negative velocity tail for the backward
propagating wave. These two resonant regions are in general clearly sepa-
rated as the characteristic width of the resonance Avy,,, is typically such that
Avap << vy, (this assumption is in fact made in the analytical analysis of
non-linear Landau damping). As a result, there is no significant interference
between the non-linear dynamics of the forward and backward propagating
waves. Applying a superposition principle in this case is thus valid.

From the space-averaged potential energy (Pot), in Fig. 1.1, one can esti-

mate E"Y. Indeed, the values of (Pot), in this figure have been computed as

follows: ]
(Pot), = (§€0E(I, t)2>x,

where (), stands for the spatial average. From Eq. (48) one thus obtains

1
(Pot), = EEO(EStd)2 cos?(wot) = P cos?(wot),
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with P = €(E5)?/4 the time envelope of the potential energy trace (Pot),(t).
Together with (50), one thus obtains:

P = 60(E£Wd)2.
The amplitude of the normalized electrostatic potential e¢*d/T for the for-
ward propagating wave can then be estimated from P/NT as
et 1 eEMA, 1 PN\
T koo T  koAp \NT

(51)
having used ko4 = Eivd,

8.1 Bounce Period and Time Modulation of Amplitude

In exercise 1.2.3.1 one derived the bounce frequency of deeply trapped particles
[Eq.(41)]:
fwd k2
Wy = ( ¢ ) )
m
from which one obtains the normalized relation

Wy e¢fwd 12 P 1/4
= —k‘o)\D< T ) = (koAp) NT )

having used Eq. (51). This bounce frequency is computed based on a time-
averaged estimate from Fig. 1.1 of P/NT for the two scenarios:

Case 6Noy/N = 0.01: Poisia0 V0.3 (5-107)Y4 = 4.61072%

NT Wy
Case §Ny/N = 0.1: P oy 1072 = 2~ V03(1-1072)Y4 = 0.17.
NT Wy

From Fig. 1.4, which plots the instantaneous damping rate ~y(¢) of the non-
linear Langmuir wave as given by relation (1.39), one can estimate the first
extremas of the wave amplitude [<= 7(t) = 0] as predicted by the (approxi-
mate!) theory:

First minimas:  tw, ~ 27[0.65, 1.88, 3.00] = [4.06, 11.79, 18.90].
First maximas: tw, ~ 27 [1.29, 2.44, 3.45] = [8.08, 15.31, 21.70].

These analytical results need to be compared against the simulation results in
Fig. 1.1. For the case 6 Ny/N = 0.01 one obtains:

First minimas: tw, ~ [75, 250] = tw,=tuw, o tw, -4.61072
Wp
First maximas: tw, ~ 155 =  tw,~ 7.1

= [3.5, 11.5].
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And for the case §Ny/N = 0.1 one obtains:

First minimas:  tw, =~ [25, 72, 130] = twy = tw, L~ tw, - 0.17 = [4.3, 12.2, 22.1).
Wp

First maximas: tw, ~ [45, 100, 150] = tw, ~[7.6, 17.0, 25.5].

The simulation results for the modulation of the amplitude thus agree with
the theoretical ones within ~ 15%.

8.2 Effective Asymptotic Damping

The theoretical model predicts for the time integrated damping rate: [Eq.

(1.52) in the notes]:
/ dt y(t) ~ 1.96 oL
0 W

In the case of the considered simulation, involving perturbations of a Maxwellian
plasma, the linear damping rate -y, is estimated from Eq. (1.26) (derived as-
suming |vz| < |wo):

YL \/? 1 w2 1/w 1\
— o~y = —exp—= | —
Wy 8 (ko Ap)3 w? 2 \w, kovtn
Tl4+3 (k‘o )\D)2 1 1
f— -~ — " - |- 3
\/; ool P73 [horp)? T

AR08 9 51072,

having used the Bohm-Gross relation wg = w2 +3(ko Ap)?. This value for y, is
relatively near to the numerical value 7, /w, = 1.26 - 1072 obtained by solving
the linear dispersion relation (12) for kg Ap = 0.3 with no further approxima-
tion. We shall use this more accurate numerical value here.

For the case Ny /N = 0.1 one thus obtains:

1.26 - 1072
TL9 19622 (.15,
Wp Wy 0.17

/ dty(t) ~ 1.96
0

As Ey(t) ~ exp — fot ~(t")dt', the theoretical model would predict:

Pt
Pt

o)  Ej(t=o00
0) = E=0)

) = exp —2/ y(#dt' ~ exp —(2-0.15) = 0.74.
0

From Fig. 1.1 d., the potential energy seems to settle at:

P(t=00) ~1-107%
Pt=0) — 28-10-2

0.35.
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Thus there is a factor 2 difference between the approximate theoretical result
given by Eq. (1.52) and the effective damping observed in the simulation
results of Fig. 1.1.d. The initial evolution of the simulation contains however
certain strongly damped transients, which lead to the very sharp decrease of
the wave amplitude within the first period 27 /w,, as clearly seen in Fig. 1.1.d.
These transients are not taken account of in the theoretical analysis. A more

appropriate estimate is thus P(t = 0)/NT ~ 1.5 - 1072, leading to

P(t=o00) ~ 1-107*
P(t=0) — 15-10-2

0.67,

clearly in better agreement with theory.

8.3 Trapping width

In exercise 1.2.3.1 one also derived the relation for the trapping width:

1/2
A'Utrap =2 (e;éo) 5

m

from which one obtains the normalized relation

Avtrap — 2 6;% 1/2 _ 2 P 1/4
Uth T (k‘o)\[))l/2 NT ‘

At the end of the runs, i.e. at time tw, = 250, one has

A 5.10°% 1/4
Case 0Ny /N = 0.01: P ~35-107° = g0t 4(3 5-107)

NT VUth vV 0.3

Ay, 1.1-1072)Y/4
Case 6Ny /N = 0.1: i:l.l-lO_2 — g2l 24( 07)
NT Vth V0.3

= 0.56,

= 2.37,

These estimates agree well with the trapping widths 2Auv,, pointed out in

the phase space plots of Figs. 1.1. ¢ & d.
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9 Frequency Shift for Wave Generated Adia-
batically

This provides the solution to exercise 1.2.6.1.

In the notes, one has in fact studied the situation of a plasma which is “sud-
denly” submitted to an initial sinusoidal perturbation of finite amplitude. Here
one considers the situation of a wave turned on adiabatically, typically gener-
ated through an external drive applied to the system over a finite amount of
time. The wave is then let to propagate freely, at which time one is interested
in the possible frequency shift with respect to the linear dispersion relation.
This “adiabatic” case was first considered by Dewar [Dewar, Phys. Fluids 15,
712 (1972)].

One studies again the system in the wave frame. Adiabatic growth of the
wave means that the amplitude Ey(t) of the wave increases slowly with re-
spect to the bounce period: |(1/Ep)(dEy/dt)] < wp. In this case, the action
integral [ dzv is an adiabatic invariant for each particle. If vy is the initial ve-
locity of a particle before the presence of the wave, and W = (m/2)v? — e¢(x)
its energy in the presence of the wave so that v(z, W) = o[(2/m)(W + ed(x))]
is its velocity as a function of position x, one thus has

Ao/2
const. = / dx v

Xo/2
= Ao Vo (initially)

Xo/2 9 1/2
=0 /_/\0/2 de HW + e¢) [E(W + egb)] (finally),

H being the Heaviside step function. As a result

o Ao /2

Vo

5 1/2
=% s dx HW + e¢) {E(W + 6d))] =00,

where v is the spatial average of the velocity for the particle with energy W,
given by relations (A.5) and (A.7) in Appendix A for untrapped and trapped
particles respectively.

Invoking the invariance of the full distribution along the non-linear trajec-
tories, one thus obtains for the final distribution seen from the wave frame:

> wio) =Y folow),

o==+1 o==+1
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which replaces Eq. (1.62) in the notes for the “sudden” case.

To obtain the non-linear frequency shift for the here considered adiabatic sce-
nario, one follows basically the same procedure as in Sec. 1.2.6.

Working in the wave frame, the second order Taylor expansion of f; around
v = 0 simply leads to

a?fo(0)

dz

D AW, 0) ~ 2(0) +

o=%+1

as well as

DoARL=) (- f) = _%deO(o) (w2, (52)

dv? 2
o=%1 o

which are the equivalent of Egs. (1.64) and (1.66) in the notes for the “sudden”
case. Inserting (52) into (1.67) leads to

4 d2f0(0) oo m_o v
d _ ey = 2,
TRt /m S )6

er(ko,w) = —

Finally, inserting (A.5) and (A.7) for v provides in the “adiabatic” case

2 2 1
g PO 16 1
Vg ™ Jo

er(ko,w) = = AUtyap 703
e [(i — %) ! Eﬂ [2(F — E) — k*F]

2|\ 2 242
pas‘s,ing
o 1 4 2 2
+h | (5= 5) = 5 (W = DF + B)° | (F=2E)p. (54)
tra;);ed

which is the equivalent of Eq. (1.69) for the “sudden case”.

The integral o® = (16/7) [dr ... in (54) is a constant, and is again inte-
grated numerically, providing the value a®! = 0.544, which is composed of
the contribution a® = 0.0519 from untrapped particles and o' = 0.493 from
trapped particles. This value is to be compared to the value o4 = g4t =
0.117 + 0.705 = 0.823 which was obtained for the “sudden” case.
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The difference in the parameter a between the “sudden” and “adiabatic” sce-
nario thus directly affects the frequency shift of the Langmuir wave as given
by

Vo

In absolute value, the non-linear frequency shift is thus slightly weaker in the
“adiabatic” case compared to the “sudden” one. The two scenarios clearly
illustrate how for a given wave amplitude, the non-linear dispersion is not
unique, and depends on the wave’s history.
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10 System of Three Coupled Damped Oscilla-
tors

This provides the solution to exercise 1.3.1.1.

The equations of motion for three damped, coupled harmonic oscillators are
given by

Zi'l + wfxl + ’71!13’1 = —V[L’gl’g, (55)
S.L"g -+ CUSIQ + ’}/gi’g = —Vl’ll’g, (56)
S.L"g + ngg + ’735573 = —VLL’1£L’2, (57)

where v; is the damping rate of the j* oscillator. These equations generalize
Egs. (1.71)-(1.73) in the notes for the system of undamped, coupled oscillators.

To obtain equations for the slow time scale varying, complex amplitudes A;(?),
one again considers

5(t) = % (A, + e,

B0 = 5 [(Ay+iwgA)e + el

i) = % :(Aj + 20w A; — wiA;)et +c.c.}
= % (AJ + 2iw; Aj)e it + c.c.] — wlx;,

which are inserted into Eqs. (55)-(57).
For example, for oscillator #1, one obtains:

5 [(Al + 2iw1A1)e““1t + C.C.] + % [(Al + ’inAl)elwlt + C.C.i|

1% . .
=-7 [A>A; ellwatwalt 1 Ay Aseilwa—wa)t | ccl.

In this last relation, one can neglect Al with respect to wl/ll, as well as Al
with respect to wy A, under the assumed scaling |A;/A;| < |w;|. Furthermore,
after multiplying Eq. (10) by exp(—iwst) one obtains:

inlAl — inlA"l(e—%wn + iwl’YlAl . Z-wlfylAal(e—%wlt
V . '
— —5 [A2A36—2(w1—w2—w3)t + A2A§e—z(w1—w2+w3)t

+A§A3e—i(w1+w2—w3)t + A;Age—i(w1+w2+w3)t:| )
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By averaging over the fast time scale of the eigenfrequencies w;, and assuming
that the condition of frequency matching

w; = ws +ws + 0w, with |dw| < |w;l,

is met, one finally obtains:

. Vv .

inlAl + iwllel = _§A2A36_Z6Wt> (58)
. Vv .

2iwe Ag + itwoyp Ay = —§A1A§€+25wta (59)
. vV .

2iws Az + iwsyg Az = —§A1A§€+Z6m> (60)

having at the same time written the equations for the amplitudes A, and Aj,
which have been derived in a similar way.

One now carries out a stability analysis for the state of the system where
one of the oscillators, e.g. oscillator # 1, has been initialized with a much
larger amplitude than the two other oscillators: |A;| > |As|,|As|. For this

purpose, one considers Egs. (58)-(60) retaining only terms linear in Ay and
As.

For Eq. (58) one then obtains
inlAl + z'wwlAl = 0.

For oscillator #1 we shall neglect damping, so that A, = 0, which implies that
Ay = Ay = const. Equations (59) and (60) thus become linear in Ay and Aj:

V

2iWQA2 +iwgy Ay = _§A1,0A§€+th,
w3 A ' 4 * Aidwt
2iwzAs + iwsy3As = _§A170A26 ’

Considering the Ansatz

Ay(t) = agexp(y + i dw/2)t,
As(t) = azexp(y* +idw/2)t,

where in general 7 is a complex value, leads to the following linear system for
a273:

. Ow Vv )
Wo |:2(’7 + 27) + '72:| as + EAL() as = 0,

_ L 0w Vv .
w3 {2(7 + 27) + 73} as + EALO ay; = 0,
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which can finally be written

(w [2(y + %) + ] YA ) <a2> (0)
A AT —iws [2(y —i%) + 3] ) \a3 0

-

M

To obtain a non-trivial solution {as, ag} to this system, thus requires

det(M) =0
Ow ow V\?
< Wols |:2(’)/ —+ 17) —+ ’72} |:2(’y — 17) + ’Yg:| — <§) |A170‘2 =0
2 2
2 Yo + 3 E 5_W E_(S_W _ K |A170| .
= T +<2+22><2 Z2) <4 sy U
Y2+ v\ (e 0w\ (1w V\? | Ay )2 V2
2 3 2 3 2 . 3 1,0
- _ + (24 A _ _ )
— 7 1 < A ) <2+12><2 Z2)+<4) o
N ) 12
Y2 + 73 Yo— 3 0w VT Al
— 2t By o A :
— i 4 ( 4 +Z2) +<4) Wows

Considering already the case of perfect frequency matching, éw = 0, one clearly
sees that there is in addition of the condition wows > 0 an amplitude threshold
Y2+ V3

for instability:
Y28 ? X K ? \141,0|2
4 4 Wals 4

V\ 2 | A2 ? 7\
— v |As ] S Y2t (12— _ 273
4 Waolls 4 4 4
1/2

(yswae)'?
14

1/2

>

|A170‘ > 2

The stability diagram in the (|41, dw|) plane is then finally given in Fig. 5.



10 SYSTEM OF THREE COUPLED DAMPED OSCILLATORS

A

oW
Instability thresshold
in the absence of damping

_ VI 1Al
dw = E5 o)z

Stable
Unstable

— (72W3w2w3)1/2
|A1,0| =2 V]

Instability threshold
in the presence of
damping

Figure 5: Stability diagram for three damped, coupled oscillators. |A; o

is the initial amplitude of oscillator #1, assumed such that
| Ay 0] > |Aspl, |Asl, and dw is the frequency mismatch.

35
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11 Equation for Slow Variation of EPW Am-
plitude

This provides the solution to exercise 1.3.2.1

One starts from equation (1.98):

2p 2 10 eA? A
88t thhaa = +wE, = — 104, _ —wa,AZ&

<y 20 m m o’
and inserts the Ansatz for the vector potential A, and the electrostatic field
E.:

Az(l’ t) [A()(l’ t) i(kox—wot) + C.C.} + [As(l’, t) ei(ksx—wst) + C.C.},

(o | —

-~ -

In01dent EM Scatte;red EM
[E(z,t) € i(kew—wet) +c.c.].

-~

1

EPW

So that by using relations
Ops By = = [(002E + 2ike 0,€ — K2E) el cc ]

attEwac -

[
I

N~ DN -

@tg — 2'&0)5 @5 w25) kez—wet) + C.C.} s

AZ:Z§ (0pA + ik A) ekl tce],

0,s

one obtains:

(@tg — 22.(4()5 @5 — wgé') €i(kex_wet) + c.c.
—~—

1

N | —

1 .
—30h5 | (Onef + 2ike 0,€ — kZE ) ™ 4 coc.
N~~~

2

1 i(kex—wet)
+w§ 8 + c.c.
€ 1 (kox—wot) (ksz—wst)
:——wE[Ae or—wol) 4 oo 4 A, elFaTws +cc]><

(00 A + ikoAg) €Fom =00 4 c.c. 4 (0pAs + ik Ag) P20 cel] . (61)

|~
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Note how the terms 1, 2, and 3 in the above equation cancel out as (ke,w.)
are assumed to verify the Bohm-Gross dispersion relation for EPWs:

wi = w2 4 3(kevw)?.

Furthermore, the term 0;& can be neglected with respect to w, 9;&, as well
as 0,,€ with respect to k. 0,&, as well as J,.A4 with respect to kA, under the
assumption of slow space and time variation of the envelopes:

1 0€ 1 0€
|§%\ < kel and Eﬁ' < |wel,

with similar scalings for Ay and A,.

To obtain a slow scale variation equation for £, one multiplies Eq. (61) by
exp —i(k.xr — wet) and averages over the fast space (~ 1/k) and time (~ 1/w)
scales. So that at least some terms on the right hand side of Eq. (61) do
not cancel out as a result of this averaging, the wave numbers and frequencies
must verify certain matching conditions. One assumes:

kO = ks_l'kea

Wy = Ws+ wWe+ 0w,

having allowed for a small mismatch of order |dw| < |wp 5| on the frequencies.
For these matching conditions, one can easily convince oneself that the only
terms on the right hand side of Eq. (61) that survive the averaging process
are the ones ~ AyA%. One thus obtains:

i, E — 302 2k, € = ———w2i (ko — k) Ag AT e~
2m P e —

ke
_ € o x —idwt
= —%wp Zl{?e A(]As (& y
having again used the matching condition on the wave numbers. Dividing this
last relation by —2iw. and identifying the group velocity vy, = dw./dk. =
3v3 ke/we for the EPW, one finally gets the slow scale variation equation for
the amplitude & of the electrostatic field:

ke .
06 + Vo 0pE = — 02 Ag A o711,
’ dmw, P
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12 Matching Conditions for SBS and LDI

This provides the solution to exercises 1.3.3.1 and 1.3.3.2.

Let us start by considering the process of Stimulated Brillouin Scattering
(SBS), which as mentioned in the introduction to Sec. 1.3, involves the inter-
action of the following three types of modes:

1. An incident EM wave, with wave number kq and frequency wq
2. A scattered EM wave, with wave number k, and frequency w;.
3. An Ion Acoustic Wave (IAW), with wave number k; and frequency w;.

One shall again limit the study to a one-dimensional system, where all waves
propagate either forward or backward along a given direction x. As in SRS,
the first two modes are again transverse electromagnetic waves, so that their
(wave number, frequency) pairs verify the same dispersion relation:

wy = wi+ (koc)?, (62)
wr = w+ (k) (63)

s

¢ being the speed of light. The IAW however verifies the essentially linear
dispersion relation

W; = k‘ics, (64)

where ¢? = ZT,/m; is the squared sound speed. Note that for an electron
temperature of 7, ~ 1keV, one has ¢, ~ 10 3¢, i.e. typically ¢, < c.

The 3 dispersion relations (62)-(64), together with the 2 matching conditions
for wavenumbers and frequencies:

ko = ks+k;, (65)
Wy = w5+wi, (66)

define a system of 5 equations, which in general determine (kg,wo), (ks,ws),
and (k;,w;), once e.g. the frequency wy of the incident laser light is fixed.

One solves this system by inserting (65) and (66) into (63):
(wo — wy)® = wi + (ko — k;)?c.
Making use of Eq. (62), one obtains:

—2(4)0&)2‘ + wi2 = —2]{50]{52'02 + ]{72-202,



12 MATCHING CONDITIONS FOR SBS AND LDI

SBS

¥ 4

4+ Dispersion rel.
for EM waves

3+ Laser Li
(k, w
s’ s

Incident
Laser Light

‘\ (ko’ (00)

AW
Dispersion rel. \
for IAW (ki’ wl)%
O L —

39

Figure 6: Graphical solution to matching conditions for the SBS process. Note

that for this figure the relatively large ratio cs/c ~ 3 - 1072 was considered.

and finally inserting (64) provides:

ki =2

2 — 2

]{Z002 — WpCs cskce
- ~Y

S

2w ¢,
ok — 20 G
cC C

This unique solution, clearly involving backward scattering, is shown graphi-

cally in Fig. 6.

Assuming with no loss of generality that wy > 0, the above solution is not
valid for 0 < ko < cywp/c? as it gives k; < 0, which according to (64) pro-
vides a negative frequency w;. Together with the frequency matching con-
dition (66) this would imply |wg| < |ws|, which prevents any decay of the
incident light. From Fig. 6 one can clearly understand this (small) limit kg jim
on kg as the point in the dispersion relation of transverse EM waves where
dw/dk(ko1im) = ¢s. For kg < koym their is then clearly no solution to the
matching conditions. From (62) one indeed obtains dw/dk = koc? /wy, so that
dw/dk = ¢; = ko 1im = cswo/c?.
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The problem of addressing the matching conditions for the Langmuir Decay
Instability (LDI) is in fact analogous to the problem of matching conditions for
SBS, as it also involves two waves with quadratic dispersion, the two EPWs,
and an IAW. Indeed, recall that the dispersion relation for EPWs reads:

w? = wﬁ + 3(kvy)?,
and that ¢, /vy = (Zme/m;)"/? ~ 1072, Identifying ¢? appearing in SBS with

3v3, in LDI, the solution to the dispersion relations and matching conditions
for these two processes becomes identical.
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13 Manley Rowe Relations for Three Coupled
Oscillators

This provides the solution to exercise 1.3.4.1

One starts by deriving the appropriate relation for the action amplitude a
for each oscillator. The action amplitude a; and the energy E; of the j™
oscillator are by definition related by

2
Ej =mnjw; = a7 w;, (67)
where w; is the eigenfrequency and n; = |a;|? the action of the oscillator.

For a free harmonic oscillator, the total energy is the sum of its kinetic and

potential energy:
1 1
E; = 2x] + 5w 2a (68)
When studying the system of coupled harmonic oscillators, the position z; of
oscillator # j was written in terms of its complex amplitude A; as

r; = % [Aje™" +cc]. (69)

Inserting Eq. (69) into Eq. (68) leads to:

11 . W, . * —iWj w2 1 W *x —iwt]2
Ej = 51 [ZWJ'AJB it — ZCU]'AJB J } + ?Z |:A e it +A J }
11 2 A2, 2iw; 2 2 2 Ax2 —2iw;t 2 2 2iw,t 2 *2 —2zw
=351 [—wi ATt 4 2w AP — wiAS et 4 71 [A it 2| A57 + A ']
1
= SWllAl (70)

Comparing Egs. (67) and (70) thus leads to the following relation for the
action amplitude a; of oscillator # j in terms of the complex amplitude A; of
1ts position z;:

a; = —i ( ;)Uz A, (71)

Notice that the relation between a; and A; is determined through (67) only up
to a phase factor exp(if). Here one chose the phase factor exp(—im/2) = —i,
as it will provide coupled equations for the action amplitudes which are most
analogous to the system (1.125)-(1.127) derived in the notes for the action
amplitudes of the three coupled waves involved in the SRS process.
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Inserting (71) into Egs. (1.79)-(1.81) from the notes indeed provides the fol-
lowing equations for the action amplitudes:

0:1 = —Fa2a36_i &Jt, (72)
Cig = —|—Fa1a§e+i5‘“t, (73)
ds = +lajazet™™? (74)

having defined the normalized non-linear coupling parameter

r— \% 1
2v/2 (wlewg)l/T

Comparing Eqs. (72)-(74) with Egs. (1.125)-(1.127), note however the change
in sign of the phases related to the frequency mismatch. This is the result of
the different choice of signs for the frequencies in the complex representation
of the oscillator positions, as defined by Eq. (69), compared to the choice of
sign of the frequencies in the complex representations of the modes involved
in the SRS process, as given by Egs. (1.99) and (1.100).

Let us now derive the Manley-Rowe relations for the action densities n; = |a;|?:

d
E(nl + ng) = 0, (75)
d
E(nl + ng) = 0, (76)

which respectively state the conservation of action transfer from oscillator 1
to 2, as well as from oscillator 1 to 3. These relations result directly from
Eqgs. (72)-(74). For instance Eq. (75) is obtained from Eqs. (72) and (73) as
follows:

d * * . * . . * ;
E(nl +ny) = E(alal + asay) = ay aj + ay ay + dy aly + as aj
* % _+idwt

* —10wt
= —Tlajasage — T'aya3aze
+Tarasaie™ ! + Tatazaze™ o
= 0.

From Egs. (72) and (74) one naturally derives (76) in a similar way.

The energy conservation relation is then obtained by multiplying Eq. (75)
by wy and Eq. (76) by ws, adding these relations together, and invoking the
matching condition w; = ws + ws:

d Ej=n;w; d
E[(u& + Ws) ni + wono + w3n3] =0 — ZEj =0.

w1
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Equations (72)-(74) are clearly only valid under the assumption of the fre-
quency matching condition w; = ws 4+ w3+ dw, as they result from Eqs. (1.79)-
(1.81) which have been derived under this same assumption. In fact when
deriving (72)-(74), one made the additional assumption of w; > 0, as the ac-
tion amplitudes were derived from the positive energies through the relations
E; = |a;]*w; [see Eq. (67)]. The considered matching condition together with
the constraint of positive frequencies results in |wi| > |wsl, |ws|, so that the
only possible process is the decay from oscillator 1 into oscillators 2 and 3 (or
the opposite, i.e. recombination of 2 and 3 into 1). This is reflected by the
Manley-Rowe relations (75) and (76) describing action transfer from oscillator
1 into 2 and 3 (or its inverse).

To be more general, and allow for any sign of the frequencies w;, one should
be more careful in the definition of the action amplitudes and write:

E; = nj|w;| = |a;|*|w;].

In this way the action amplitude relations are given in terms of the absolute

values of the frequencies:
1N 1/2
Clj = —Z (%) Aj.

Equations (72)-(74) can then be generalized to

dl = —Ulf‘agage_“g“’t, (77)
Cig = +02Fa1a§e+i5m, (78)
d3 = +oslajaie™ ™! (79)
where 0; = sgn(w;) and
1% 1

r= .
2v/2 (|wr [[walJws])'/2

One can then for example consider w; < 0, ws < 0 and w3 > 0, so that from
the matching condition w; = wy + w3 one obtains:

—Wy = —W1 + Ws — |(.U2| > |w1|, |C<J3|.
~~ =~ =~
>0 >0 >0
The only possible decay in this case is from oscillator 2 into 1 and 3 (or its

inverse). This can be verified from the system (77)-(79), using the appropriate
signs 01 = —1, 0o = —1, and o3 = +1, either by performing the corresponding
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stability analysis (linearize with respect to a; and az assuming |as| > |a 3|),
or by deriving the Manley-Rowe relations which now read:

d
E(TLQ + nl) = 0,
d
E(ng +n3) =0.

The energy conservation naturally reads in all cases:

d
E(\wl\nl + ‘(A)Q‘TLQ + |w3|n3) =0.



