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0.1 Introduction

A plasma in thermodynamic equilibrium is characterised by homogeneous Maxwellian
particle distributions at rest with each other. Deviations of the plasma from such a
thermodynamic equilibrium state can be the source of free energy, leading, under certain
conditions, to instabilities. Such deviations can arise both in an homogeneous or an
inhomogeneous system.

In an homogeneous system, deviations from thermodynamic equilibrium are found
in velocity space. The ion-acoustic instability is an example of an instability arising
from such a velocity deviation, in this particular case in the form of electrons streaming
with respect to ions. The Weibel instability is another example, which results from an
anisotropic electron velocity distribution. These two illustrations are described in the
lecture notes by K. Appert[1].

The present notes address the instabilities arising in inhomogeneous plasmas. Inho-
mogeneities can only be maintained for a certain length of time by trapping the plasma
in some way. Magnetic fields are an obvious choice for achieving this purpose, and the
following discussion is thus limited to the analysis of magnetised plasmas.

Despite the constraints imposed on the plasma by the magnetic fields, the confine-
ment of inhomogeneities in any case deteriorates ultimately through ordinary transport
processes involving collisions: Collisions of each species (electrons, ions) with itself, as
well as collisions of different species with each other, lead to homogeneous Maxwellian
distributions with zero relative average velocities. In time, a uniform state of thermody-
namic equilibrium is reached in this way. However, the instabilities that may arise in such
inhomogeneous systems often provide a more efficient channel through which the particle
and energy confinement deteriorates. Instabilities arising in inhomogeneous plasmas can
indeed be the origin of a turbulent state characterised by a certain level of fluctuations.
The electromagnetic fields associated with these fluctuations can cause stochastic motion
of the constituent plasma particles. This motion leads to so-called anomalous transport,
and results in the escape of particles and energy from the system. The heat and particle
loss observed in most magnetic confinement experiments are mainly attributed to this
mechanism of plasma turbulence.

These notes concentrate on the instabilities at the origin of this turbulent transport,
i.e. the class of so-called microinstabilities, which are the set of low-frequency modes,
subsisting even when the large-scale magnetohydrodynamic modes have been suppressed.

Critical to the mechanism of these microinstabilities is the dissimilar dynamics of
the different particle species in an inhomogeneous magnetised plasmas. A single fluid
description of the plasma, such as used in magnetohydrodynamics, is thus not suited in
this context, and at least a two fluid representation is required. In fact, many important
features of these microinstabilities, such as wave-particle resonances and finite Larmor
radius effects require a kinetic-type description.

Furthermore, the study of the instabilities is limited here to their onset (underlying
mechanisms, critical conditions), and the following discussion is thus reduced to a linear
analysis. Also, the perturbations considered here are essentially electrostatic. This ap-
proximation is valid assuming a low β (= kinetic pressure / magnetic pressure) plasma.
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Electron mass me 9.11 · 10−31 kg
Ion mass (∼ proton) mi 1.67 · 10−27 kg
Degree of ionisation Z 1
Magnetic field B 5 Tesla
Electron density Ne 1021 m−3

Electron temperature Te 104 eV
Ion temperature Ti 104 eV
Characteristic gradient length L 1 m

Table 1: Typical physical parameters of magnetic fusion-type plasmas

Electron plasma frequency ωpe 1.78 · 1012 s−1

Electron cyclotron frequency Ωce 8.78 · 1011 s−1

Ion cyclotron frequency Ωci 4.79 · 108 s−1

Electron thermal velocity vth e 4.19 · 107 m/s
Ion thermal velocity vth i 9.79 · 105 m/s
Electron Debye Length λDe 2.35 · 10−5 m
Ion Debye Length λDi 2.35 · 10−5 m
Electron Larmor radii λLe 4.77 · 10−5 m
Ion Larmor radii λL i 2.04 · 10−3 m
Electron-ion collision freq. νei ∼ 1 · 105 s−1

Drift frequency ω? ∼ vth i/L ∼ 1 · 106 s−1

Table 2: Corresponding time and length scales

Finally, the limit of an ideal plasma will be assumed so that the effect of collisions on the
instabilities is neglected.

The emphasis here is on instabilities in magnetic fusion-type plasmas. For simplifi-
cation purposes one assumes a plasma formed by a single ion species which are singly
ionised (Z = 1), it being understood that the main interest is for the case of a hydrogen
(deuterium, tritium) plasma. Typical magnetic fusion-type parameters are given in Table
1. As a reference, the different corresponding characteristic time and length scales are
given in Table 2. These tables also define notations for the various physical quantities.
Note in particular the scalings λLe � λL i � L, λDe,i � λL i, and ω? � Ωce,i, which will
be extensively applied in the following derivations.

Chapter 1, dealing with instabilities in slab magnetic geometry is mainly inspired by
references [2, 3, 4].

These notes are available online in pdf format through EPFL’s Moodle website un-
der course PHYS-736, “Plasma Instabilities”, given in the frame of the Physics Doctoral
School (EDPY). The Matlab code for numerically solving the dispersion relations dis-
cussed in these notes is also available through the course’s Moodle webpage.
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Chapter 1

Microinstabilities in Slab Geometry

1.1 Drifts in Magnetic Fields

As will appear clearly further on, an important feature underlying the instabilities in
inhomogeneous plasmas are the various drifts perpendicular to the magnetic field that
can arise in a magnetised plasma. These drifts can be at the microscopic level, i.e. of the
magnetised particles themselves submitted to some external force ~F . These particle drifts
can naturally lead to macroscopic drifts as well, defined as the average velocity over the
whole particle distribution.

In inhomogeneous plasmas, such macroscopic drifts may in fact arise even for sta-
tionary gyro-centres (= centre of the cyclotron rotation) of the particles. These are the
so-called diamagnetic drifts.

1.1.1 Drift of Particles Submitted to an External Force

The equation of motion for a particle in a magnetic field ~B, submitted to an additional
force ~F , assumed perpendicular to ~B, is given by

m
d~v

dt
= q ~v × ~B + ~F ,

where m and q are respectively the mass and charge of the particle, and ~v its velocity in
the lab frame. Making the change of variables ~w = ~v − ~vF , where ~vF is defined by

~vF =
~F × ~B

qB2
, (1.1)

one obtains, assuming ~B and ~F constant:

m
d~w

dt
= m

d

dt
(~v − ~vF ) = q(~vF + ~w)× ~B + ~F

= q ~w × ~B, (1.2)

having used: q ~vF × ~B = (~F × ~B/B2)× ~B = −~F .
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Figure 1.1: Drifts of particles in a magnetic field ~B, submitted to an additional external force
~F . If, as shown here, the direction of ~F is independent of the sign of the electric charge, electrons
and ions drift in opposite directions. In all cases the drift is given by ~vF = (~F × ~B)/(qB2).
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Figure 1.2: Particular case of a force ~F whose direction depends on the sign of the electric
charge: Particles submitted to an electric force ~F = q ~E. Here, all particles drift with the same
velocity ~vE = ( ~E × ~B)/B2.

The equation (1.2) for ~w is the equation of motion of the particle in the magnetic

field ~B alone. The motion of the particle in the lab frame is thus the superposition of a
gyro-motion with cyclotron frequency Ω = qB/m, and of a drift motion with velocity ~vF .
Illustrations of such particle drifts are given in Figures 1.1 and 1.2.

1.1.2 Diamagnetic Drifts

A particular feature of a magnetised plasma is the presence of average drifts resulting from
the interplay between spatial inhomogeneities and the finiteness of the Larmor radius.
One must emphasise, that these so-called diamagnetic drifts do not arise from individual
particle drifts as the ones discussed in the previous section.

These diamagnetic drifts can be described by considering a plasma in a uniform mag-
netic field ~B, with no additional external force ~F . In such a system there are indeed no
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Figure 1.3: Slab geometry of a magnetised inhomogeneous plasma.

particle drifts. One starts by setting the orthonormal right handed system (~ex, ~ey, ~ez),

such that the magnetic field ~B is aligned along ~ez (see Fig. 1.3). For the distribution
function f0(~r,~v) of a given species to represent a stationary state, i.e. to be a stationary
solution to the Vlasov equation (assuming here no collisions), it must be function of the
constants of motion. Hence, besides the dependence in the kinetic energy ε = mv2/2 , f0

is chosen function of the position X = x + vy/Ω along ~ex of the Larmor rotation centre
as well. This enables to define a quasi-Maxwellian distribution with both density and
temperature inhomogeneities:

f0(X,ε) =
N(X)

[2πT (X)/m]3/2
exp− ε

T (X)
. (1.3)

Indeed, to zero order in the Larmor radius λL = v⊥/Ω, this form is a Maxwellian distri-
bution with density N(x) and temperature T (x). Assuming that the characteristic length
L ∼ |d lnN/dx|−1, |d lnT/dx|−1 of the inhomogeneities is large compared to the average
Larmor radius λL of the particles (∼ weak gradients), one can expand to first order in
the Larmor radius:

f0(X,ε) = f0(x,ε) +
vy
Ω

(
d lnN

dx
+
dT

dx

∂

∂T

)
f0(x,ε) +O(ε2),

having defined the small parameter ε = λL/L� 1.
Integrating to obtain the average velocity gives:

→
Vd =

∫
d~v ~vf0(X,ε)/

∫
d~v f0(X,ε) ' 1

N

(
d lnN

dx
+
dT

dx

∂

∂T

)∫
d~v ~vf0(x,ε)

vy
Ω

=
1

qB

1

N

(
d lnN

dx
+
dT

dx

∂

∂T

)
NT~ey =

1

qB

1

N

d(NT )

dx
~ey =

1

qB2
(−∇p

N
× ~B). (1.4)
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Figure 1.4: Diamagnetic drift resulting from temperature and density gradients

Note that (1.4) is again of the form (1.1) but here ~F = −∇p/N is the macroscopic force
related to pressure gradients ∇p, with p = NT . For similar density and temperature
profiles for electrons and ions, this force is essentially charge independent, so that the
corresponding diamagnetic drifts are in opposite directions.

In the following section, a similar derivation will be carried out in somewhat more
detail for a system containing both particle and diamagnetic drifts.

Exercise:

1. Derive diamagnetic drifts from a fluid-like representation.

2. Why are these drifts called “diamagnetic”.

1.2 Dispersion Relation in Slab Geometry

As a basis for studying the instabilities that may arise in an inhomogeneous slab plasma, a
general, local dispersion relation is now derived. One starts here by considering a plasma
in a slab geometry, and applies the same methods used for computing the dispersion
relation in an homogeneous magnetised plasma: Solving the linearized Vlasov equation
by integrating along the unperturbed trajectories of the particles.

One considers the same slab system as represented in Fig.1.3, however assuming that
the particles may also be submitted to an additional uniform, external force field ~F = F~ex
perpendicular to ~B. This force field will naturally induce a drift motion along Oy on the
magnetised particles of the system (see Fig. 1.5).

1.2.1 Equilibrium State

Assuming a collisionless plasma, the evolution of each species distribution f(~r,~v, t) in the

magnetic field ~B and external force field ~F is given by the following Vlasov equation:[
∂

∂t
+ ~v · ∂

∂~r
+

1

m

(
q~v × ~B + ~F

)
· ∂
∂~v

]
f = 0.
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To represent the equilibrium plasma, one must find a stationary solution f = f0 6= f0(t)
to this Vlasov equation. A necessary and sufficient condition is that f0 is a function of
the constants of motion.

The constants of motion of the considered system can systematically be identified by
deriving the corresponding Lagrangian L. As ~B = ∇× ~A with e.g. ~A = xB~ey as a gauge
choice, the Lagrangian is given by:

L(~r,~v) =
1

2
mv2 + Fx+ q~v · ~A =

1

2
mv2 + Fx+ qvyxB.

As L is independent of the coordinate y, the conjugate momentum py is an invariant:

py =
∂L
∂vy

= mvy + qxB = const =⇒ X = x+
vy
Ω

= const,

where Ω = qB/m is the gyro-frequency, and X is simply the position along Ox of the
gyro-centre (or guiding centre) of the particle (note that −vy/Ω is the projection of the
Larmor radius λL ∼ (~ez × ~v)/Ω along Ox).

As the fields ~B and ~F are time invariant, the Hamiltonian H, i.e. the energy, of the
system is also a constant of motion:

H = ~v · ∂L
∂~v
− L = ~v · (m~v + q ~A)− 1

2
mv2 − Fx− q~v · ~A =

1

2
mv2 − Fx.

The equilibrium distribution for each species can thus in general be written:

f0 = f0(X,H).

The fact that f0 can be function of X enables a stationary state with inhomogeneities
in the Ox direction. The dependence in x of H through the potential term −Fx naturally
leads to inhomogeneities along Ox as well.

Assuming the system is near thermodynamic equilibrium, one considers the quasi-
Maxwellian:

f0(X,H) =
N (X)

[2πT (X)/m]3/2
exp

(
− H

T (X)

)
, (1.5)

where T (x) defines the local temperature, and N (x), as shown below, is related to the
local density.

One assumes in the following that the inhomogeneities related to N (x), T (x), and ~F
are weak compared to the Larmor radii λL = vth/Ω (the thermal velocity is defined here
by v2

th = T/m). In other words, one assumes that the characteristic length L of variations
of the equilibrium profiles are such that ε = λL/L � 1. This enables to expand f0 to
lowest order in this small parameter:

f0(X,H) = f0(x,H) +
∂f0(x,H)

∂x

vy
Ω

+O(ε2), (1.6)

∂f0

∂x
=

[
d lnN
dx

+
dT

dx

∂

∂T

]
f0 =

[
d lnN
dx

+
d lnT

dx

(
H

T
− 3

2

)]
f0. (1.7)
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Note, that on the right hand side of Eq.(1.6) f0 can now be considered as a function of x
instead of X = x+ vy/Ω.

Using Eq.(1.6) to compute the density N :

N(x) =

∫
d~v f0(X,H) '

∫
d~v f0(x,H) +

∫
d~v

∂f0

∂x

vy
Ω︸ ︷︷ ︸

=0

= N (x) exp

(
Fx

T (x)

)
,

which clearly shows the relation between the density N and the function N (one naturally

has N ≡ N if ~F = 0). From this last relation one obtains:

d lnN

dx

∣∣∣∣
x=0

=
d lnN
dx

∣∣∣∣
x=0

+
F

T (x = 0)
. (1.8)

The condition λL/L� 1 of weak inhomogeneities thus in particular implies:∣∣∣∣λLFT
∣∣∣∣ =

∣∣∣∣ FqB 1

vth

∣∣∣∣ =
|~vF |
vth
� 1, (1.9)

where ~vF = (~F × ~B)/(qB2) is the particle drift related to ~F .

Using again Eq.(1.6) to compute the average velocity ~Vd:

~Vd(x) =
1

N

∫
d~v ~vf0(X,H) ' 1

N

∫
d~v ~vf0(x,H)︸ ︷︷ ︸

=0

+
1

N

∫
d~v ~v

∂f0(x,H)

∂x

vy
Ω

=
1

N

[
d lnN
dx

+
dT

dx

∂

∂T

] ∫
d~v ~vf0(x,H)

vy
Ω

=
1

N

[
d lnN
dx

+
dT

dx

∂

∂T

]
N (x) exp

(
Fx

T (x)

)
︸ ︷︷ ︸

N(x)

v2
th

Ω
~ey,

so that at x = 0:

~Vd(x = 0) =
T

qB

[
d lnN
dx

∣∣∣∣
x=0

+
d lnT

dx

∣∣∣∣
x=0

]
~ey =

T

qB

[
d lnN

dx

∣∣∣∣
x=0

+
d lnT

dx

∣∣∣∣
x=0

− F

T

]
~ey

=
1

qB2

(
−∇p
N

+ ~F

)
× ~B,

having used Eq.(1.8). The average velocity is thus the superposition of the diamagnetic
drift due to the pressure gradient ∇p, with p = NT , and the particle drift ~vF = vF ~ey
related to the force ~F , with vF = −F/qB.

1.2.2 Solving the Linearised Vlasov Equation

One now assumes that the system is perturbed by an electrostatic fluctuation φ. As the
unperturbed system is homogeneous in the Oy and Oz directions, as well as in time, and
assuming small perturbations, one may consider linear perturbations of the form:

φ(~r, t) = φ̂(x) exp i(kyy + kzz − ωt).
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Due to the constraints on the particle motion in the Ox direction, enabling only excursions
of the order of the Larmor radius λL, the coupling along Ox is weak. One can thus
consider perturbations local to the surface x = 0, and in the following one will omit the
x dependence of φ̂. Also, for the following derivation, the quantities N , N and T , as well
as their gradients are understood to be evaluated at x = 0.

The perturbation δf of each particle distribution f = f0+δf has a similar dependence:

δf(~r,~v, t) = δ̂f(x,~v) exp i(kyy + kzz − ωt).

The fluctuation δf is solution of the linearised Vlasov equation:

D

Dt

∣∣∣∣
u.t.p.

δf =

[
∂

∂t
+ ~v · ∂

∂~r
+

1

m

(
q~v × ~B + ~F

)
· ∂
∂~v

]
δf =

q

m
∇φ · ∂f0

∂~v
. (1.10)

where D
Dt

∣∣
u.t.p.

stands for the total time derivative along the unperturbed trajectories.

Equation (1.10) can thus be solved for δf by integrating along these unperturbed
trajectories of the particles:

δf(~r,~v, t) =
q

m

∫ t

−∞
dt′ ∇φ · ∂f0

∂~v

∣∣∣∣
~r ′(t′),~v ′(t′),t′

, (1.11)

having assumed Im(ω) > 0 to impose causality, so that δf(t = −∞) = 0. At the end of
this derivation, one may analytically prolong the relations into the half-plane Im(ω) < 0
to consider possible damped modes.

In Eq.(1.11), the unperturbed particle trajectories [~r ′(t′), ~v ′(t′)] are thus defined by:

d~r ′

dt′
= ~v ′,

d~v ′

dt′
=

1

m

(
q~v ′ × ~B + ~F

)
,

with the initial conditions:

~r ′(t′ = t) = ~r, ~v ′(t′ = t) = ~v.

These trajectories can easily be integrated, providing:

~r ′(t′) = ~r +
1

Ω
Q(t′ − t) (~v − ~vF ) + ~vF (t′ − t), (1.12)

~v ′(t′) = R(t′ − t) (~v − ~vF ) + ~vF , (1.13)

with the matrices Q and R defined by:

Q(τ) =

 sin(Ωτ) − [cos(Ωτ)− 1] 0
cos(Ωτ)− 1 sin(Ωτ) 0

0 0 Ωτ

 ,

R(τ) =
1

Ω

d

dτ
Q =

 cos(Ωτ) sin(Ωτ) 0
− sin(Ωτ) cos(Ωτ) 0

0 0 1

 .

11



q > 0

BB

vv
FF
  

zz

yy

xx

FF

r’(t’), v’(t’), t’

r (t), v (t), t

Figure 1.5: To solve the linearised Vlasov equation and obtain the value of the perturba-
tion δf(~r,~v, t) at the point (~r,~v) in phase space at time t, one integrates along the trajectory
[~r ′(t′), ~v ′(t′), t′] of the magnetised particle submitted to an external force ~F . The trajectory is
such that ~r ′(t′ = t) = ~r and ~v ′(t′ = t) = ~v.

Equations (1.12)-(1.13) clearly show that the particle trajectory is the superposition of

a gyro-motion around ~B and a drift ~vF perpendicular to ~B (see Fig. 1.5). Starting to
explicit the integrand of (1.11), one has

∂f0

∂~v
=

[
~ey
Ω

(
d lnN
dx

+
dT

dx

∂

∂T

)
− ~v

v2
th

]
f0,

having again expanded to lowest order in Larmor. Noting that ∇φ = i~kφ, with ~k =
ky~ey + ~kz~ez, one obtains

∇φ· ∂f0

∂~v
= i

[
ky
Ω

(
d lnN
dx

+
dT

dx

∂

∂T

)
−
~k · ~v
v2
th

]
f0φ =

1

v2
th

[
iω′d − i~k · ~v

]
f0 φ̂ exp i(~k ·~r−ωt),

having defined the drift frequency operator (contains partial derivative with respect to
T ):

ω′d =
kyT

qB

(
d lnN
dx

+
dT

dx

∂

∂T

)
=
kyT

qB

(
d lnN

dx
+
dT

dx

∂

∂T
− F

T

)
= ωN + ω′T + ωF

∼ ~k · ~Vd,

with

ωN =
kyT

qB

d lnN

dx
= ~k · ~VN , ~VN = −T∇N

N
×

~B

qB2
,

ω′T = ωT T
∂

∂T
, ωT =

ky
qB

dT

dx
= ~k · ~VT , ~VT = −∇T ×

~B

qB2
,

ωF = −kyF
qB

= ~k · ~vF , ~vF =
~F × ~B

qB2
.
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Here the prime superscript has been used for pointing out that ω′d and ω′T are operators.
Further noting that df0(~r ′, ~v ′, t′)/dt′ = 0, as f0 is a stationary state, so that

d

dt′

[
f0φ̂ exp i(~k · ~r ′ − ωt′)

]
= i(~k · ~v ′ − ω)f0 φ̂ exp i(~k · ~r ′ − ωt′),

the integrand of Eq.(1.11) can now be written:

∇φ · ∂f0

∂~v

∣∣∣∣
~r ′(t′),~v ′(t′),t′

=
1

v2
th

[
i(ω′d − ω)− d

dt′

]
f0 φ̂ exp i(~k · ~r ′ − ωt′).

Using this last equation, and integrating by parts, the relation (1.11) for δf now becomes

δ̂f = δf exp−i(~k·~r−ωt) = −qφ̂
T

{
1− i(ω′d − ω)

∫ t

−∞
dt′ exp i

[
~k · (~r ′ − ~r)− ω(t′ − t)

]}
f0,

the integration by parts having revealed the adiabatic contribution −qφ̂f0/T .
The time integration of the phase factor is carried out as follows:∫ t

−∞
dt′ ei[

~k·(~r ′−~r)−ω(t′−t)] =

∫ 0

−∞
dτ e

i
{

ky
Ω

[vx(cos Ωτ−1)+(vy−vF ) sin Ωτ+vF Ωτ ]+kzvzτ−ωτ
}

=

∫ 0

−∞
dτ ei

kyv⊥
Ω

sin(Ωτ+θ)e−i
kyv⊥

Ω
sin θei(kzvz+ωF−ω)τ

=
+∞∑

n,n′=−∞

Jn(
kyv⊥

Ω
)Jn′(

kyv⊥
Ω

) ei(n−n
′)θ

∫ 0

−∞
dτ ei(kzvz+nΩ+ωF−ω)τ

=
+∞∑

n,n′=−∞

Jn

(
kyv⊥

Ω

)
Jn′

(
kyv⊥

Ω

)
ei(n−n

′)θ

i(kzvz + nΩ + ωF − ω)
,

having used Eq.(1.12) for ~r ′, τ = t−t′, as well as the Fourier decomposition of exp(i z sin θ)
in terms of Bessel functions of the first kind Jn(z):

ei z sin θ =
+∞∑

n=−∞

Jn(z)einθ,

and having defined the variables v⊥ and θ such that

vx = v⊥ sin θ, vy − vF = v⊥ cos θ. (1.14)

The amplitude of the distribution fluctuation can thus finally be written:

δ̂f = −qφ̂
T

1− (ω′d − ω)
+∞∑

n,n′=−∞

Jn

(
kyv⊥

Ω

)
Jn′

(
kyv⊥

Ω

)
ei(n−n

′)θ

kzvz + nΩ + ωF − ω

 f0, (1.15)
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1.2.3 Deriving the Dielectric Function

The dispersion relation is obtained from the Poisson equation written in Fourier rep-
resentation:

−4 φ = k2φ =
1

ε0

∑
species

qδN

=⇒ ε(~k, ω)
.
= 1−

∑
species

q

ε0 k2

ˆδN

φ̂
= 0, (1.16)

where ˆδN is the amplitude of the density fluctuation for a given species, and ε(~k, ω) is
the dielectric function.

To obtain the dielectric function at the surface x = 0, one must therefore integrate
δ̂f , given by Eq.(1.15), over velocities to obtain the density fluctuation amplitude:

ˆδN =

∫
d~v δ̂f

= −N qφ̂

T

1− (ω′d − ω)
+∞∑

n,n′=−∞

∫
d~v

f0

N

Jn

(
kyv⊥

Ω

)
Jn′

(
kyv⊥

Ω

)
ei(n−n

′)θ

kzvz + nΩ + ωF − ω

 .(1.17)

In this last relation, one can consider

f0 = f0(x = 0, ~v) =
N

(2πv2
th)

3/2
exp−1

2

v2

v2
th

' N

(2πv2
th)

3/2
exp−1

2
(
v2
⊥
v2
th

+
v2
z

v2
th

),

having used Eq.(1.5), Eq.(1.14) as well as (1.9). The integral
∫
d~v in Eq.(1.17) can thus

be separated into the integrals
∫
dθ,

∫
v⊥dv⊥, and

∫
dvz as follows:

ˆδN = −N qφ̂

T

1− (ω′d − ω)
+∞∑

n=−∞

1√
2π

∫
dvz
vth

e
− 1

2

v2
z

v2
th

kzvz − (ω − ωF − nΩ)

∫
v⊥dv⊥
v2
th

J2
n

(
kyv⊥

Ω

)
e
− 1

2

v2
⊥

v2
th


= −N qφ̂

T

{
1− (ω′d − ω)

+∞∑
n=−∞

1

ω − ωF − nΩ

[
W

(
ω − ωF − nΩ

|kz|vth

)
− 1

]
Λn(ξ)

}
, (1.18)

with ξ = (kyvth/Ω)2 = (kyλL)2. The integral over vz has thus been expressed in terms of
the dispersion function W (z):

W (z) =
1√
2π

∫
Γ

dx
x

x− z
exp(−x2/2), (1.19)

which in particular accounts here for the wave-particle resonances. In Eq.(1.19) the inte-
gral path Γ is taken from x = −∞ to x = ∞ and, consistent with causality, avoids the
pole x = z from below. The integral over v⊥ has been expressed in terms of the scaled,
modified Bessel function Λn(x) = exp(−x)In(x), having used the relation:[5]∫ +∞

0

x dx exp(−ρ2x2)Jp(αx)Jp(βx) =
1

2ρ2
exp(−α

2 + β2

4ρ2
)Ip(

αβ

2ρ2
).
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Figure 1.6: Scaled modified Bessel functions Λn(ξ) = exp(−ξ)In(ξ), for n = 0, 1, as well as
linear approximation Λ0(ξ) ' 1 − ξ for ξ � 1 and asymptotic relation Λ0(ξ) ' 1/

√
2πξ for

ξ →∞.

These scaled, modified Bessel functions represent the finite Larmor radius effects of the
particle. These functions are plotted for n = 0 and n = 1 in Fig.1.6.

Finally, inserting Eq.(1.18) into Eq.(1.16), one obtains for the dielectric function:

ε(~k, ω) = 1+
∑

species

1

(kλD)2

{
1 + (ω − ω′d)

+∞∑
n=−∞

1

ω − ωF − nΩ

[
W

(
ω − ωF − nΩ

|kz|vth

)
− 1

]
Λn(ξ)

}
,

(1.20)
where the Debye length is defined by λ2

D = v2
th/ω

2
p = ε0T/(Nq

2).
In the following, one essentially considers low frequency modes such that |ω| � |Ωe,i|,

as they are the most relevant with respect to turbulent transport. Thus, only the zeroth
order (n = 0) cyclotron harmonic needs to be retained in Eq.(1.20). In this case, the

dispersion relation ε(~k, ω) = 0 reduces to:

ε(~k, ω) = 1 +
∑

species

1

(kλD)2

{
1 +

ω − ω′d
ω − ωF

[
W

(
ω − ωF
|kz|vth

)
− 1

]
Λ0(ξ)

}
= 0. (1.21)

Exercise:

1. Consider various limits of the dielectric function ε(~k, ω) given by Eq.(1.20). In

particular, consider the limit of zero gradients and ~F = 0, as well as the limit of
zero magnetic field ~B.

2. Derive and solve the dispersion relation for Electron Plasma Waves (EPWs), as well
as sound (= Ion Acoustic Waves, IAW) in the case of an homogeneous magnetised
plasma.
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1.3 The Interchange Instability

The interchange (or flute) instability results from a charge sign independent force ~F , such
as a gravitational force, acting against the density gradient of a plasma supported by a
magnetic field. This instability is similar to the Rayleigh-Taylor instability arising when
a high density liquid is supported by a low density liquid against a gravitational field.
The basic mechanism of the interchange instability is illustrated in Fig. 1.7.

To analyse this scenario, one solves the dispersion relation (1.21), in the particular

case where the perturbation is transverse to the magnetic field, i.e. ~k = ky~ey.
The fact that kz = 0 implies that the particles cannot interact resonantly with the per-

turbation mode through their motion along the magnetic field lines. Mathematically, this
is reflected by the dispersion function term W (z) going to zero for all species in Eq(1.21).
Physically, the instability that arises from such a situation can thus be considered of
hydrodynamic type.

Furthermore, one shall assume here that the system presents only a density gradient,
but no temperature gradient. The drift frequency thus only contains the terms ω′d =
ωN + ωF .

Finally, one considers wavelengths such that one can have ξi = (kyλL i)
2 ' 1, but as a

result of the low mass ratio me/mi � 1 one has ξe = (kyλLe)
2 � 1, so that Λ0(ξe) ' 1.

The dispersion relation with the contributions from electrons and ions can thus be
written:

1 +
1

(kλDe)2

[
1− ω − ωde

ω − ωFe

]
+

1

(kλDi)2

[
1− ω − ωdi

ω − ωFi
Λ0(ξi)

]
= 0. (1.22)

This defines a second order polynomial equation for ω, which (after some algebra) can be
expressed as:

(ω − ωFe)2 −
[
ωNi

1− Λ0

(kλDi)2 + 1− Λ0

− ωFe + ωFi

]
(ω − ωFe) + ωNi

ωFi − ωFe
(kλDi)2 + 1− Λ0

= 0,

(1.23)
having made use of the relation ωNi = −(Ti/Te)ωNe (reminding that one always assumes
Z = 1) and the notation Λ0 = Λ0(ξi). Using the definitions

µ = 1− ωFe
ωFi

,

ν =
ωNi
ωFi

1

(kλDi)2 + 1− Λ0

,

equation (1.23) can be cast into the more compact form:(
ω − ωFe
ωFi

)2

− [µ+ ν(1− Λ0)]
ω − ωFe
ωFi

+ µν = 0,

whose two solutions are given by

ω − ωFe
ωFi

=
1

2

{
µ+ ν(1− Λ0)±

(
[µ+ ν(1− Λ0)]2 − 4µν

)1/2
}
. (1.24)
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Figure 1.7: Basic mechanism of the interchange instability: One considers a magnetised plasma
with density gradient∇N , and submitted to a charge independent force ~F perpendicular to ~B. In
the presence of an initial density perturbation perpendicular to ~B, the drifts ~vF = (~F× ~B)/(qB2)
lead to a charge separation. The corresponding electric field ~E induces charge independent drifts
~vE = ( ~E × ~B)/B2, which amplify the perturbation, thus leading to an instability.
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The condition for instability thus reads:

4µν > [µ+ ν(1− Λ0)]2 , (1.25)

in which case one has a growth rate:

γ =
|ωFi|

2

(
4µν − [µ+ ν(1− Λ0)]2

)1/2
.

Note, that as the right hand side of Eq.(1.25) is positive, a necessary (but insufficient)
condition for an instability to arise is to have µν > 0. Furthermore, assuming that the
forces ~Fe and ~Fi are oriented in the same direction, i.e. the orientation of the forces ~F is
independent of the sign of the particle charge (as in the case of a gravitational force e.g.),
the drift frequencies ωFe and ωFi have opposite sign, and thus µ > 0. The necessary (but
insufficient) condition thus becomes:

ν > 0 =⇒ ωNi
ωFi

> 0 =⇒ Fi
dN

dx
< 0, (1.26)

having used the fact that the denominator [(kλDi)
2 +1−Λ0] in ν is strictly positive. This

last relation clearly points out that the forces ~F must oppose the density gradient for the
instability to arise.

1.3.1 Case of Gravitational Field

Here one considers Fe = −meg, and Fi = −mig. The orientation for the gravitational
field ~g has been chosen such that the forces ~F = m~g oppose the density gradient, assumed
such that d lnN/dx > 0.

In this case one obtains:

µ = 1 +
me

mi

' 1,

ν =
Ti
mig

d lnN

dx

1

(kλDi)2 + 1− Λ0

' v2
th i

g

d lnN

dx

1

ξi

ν(1− Λ0) ' v2
th i

g

d lnN

dx
,

having assumed sufficiently long wavelengths such that ξi = (kλL i)
2 � 1, as well as

physical parameters such that λL i � λDi. The instability condition (1.25) can then be
written:

4
v2
th i

g

d lnN

dx

1

ξi
>

[
1 +

v2
th i

g

d lnN

dx

]2

=⇒ (kλL i)
2 < 4

v2
th i

g
d lnN
dx[

1 +
v2
th i

g
d lnN
dx

]2 .

This instability condition requires g(d lnN/dx) > 0, which is naturally a particular case
of Eq.(1.26). This last relation also clearly illustrates that the instability can only arise at
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sufficiently long wavelengths compared to the ion Larmor radii. This reflects the so-called
Larmor radius stabilisation effect.

In the limit of long wavelength (⇒ 4µν � [µ + ν(1 − Λ0)]2), one obtains from Eq.
(1.24) the following frequency and growth rate:

ω =
gk

2Ωi

(
1 +

v2
th i

g

d lnN

dx

)
+ i

(
g
d lnN

dx

)1/2

.

1.3.2 Case of Gradient and Curvature of Magnetic Field

Although the dielectric function Eq.(1.20) has been derived assuming a uniform magnetic

field ~B, it can nonetheless be applied for studying, at least in a qualitative way, the
behaviour of a magnetised plasma for which the field ~B presents gradients and curvature.

For the purpose of the present illustration, let us therefore give here a brief description
of the forces acting on the particles in such a situation. In the presence of gradients ∇B
of the magnetic field, the magnetic moment µ = mv2

⊥/(2B), related to the gyro-motion of

the charged particle, is submitted to a force ~Fµ = −µ∇⊥B. In the presence of curvature of

the magnetic field, the particle is submitted to the centrifugal force ~Fc = −mv2
‖~e‖ · (∇~e‖).

Here v⊥ and v‖ are respectively the components of the velocity perpendicular and parallel

to ~B, and ~e‖ = ~B/B. Note that the forces ~Fµ and ~Fc are both charge sign independent
and can thus give rise to an interchange instability. One can show, that in the case of
a low pressure plasma, one has ~e‖ · (∇~e‖) = ∇⊥ lnB, and these two forces can thus be
combined as follows:

~F = ~Fµ + ~Fc = −m
(
v2
⊥
2

+ v2
‖

)
∇⊥ lnB.

This force is dependent on the velocity of the particle. However, for the purpose of our
simple slab model of the interchange instability, one considers an average of this force,
the average being taken over the particle distribution, so that one takes:

~F ←< ~F >=

∫
d~vf0

~F/

∫
dvf0 = −2T∇⊥ lnB. (1.27)

Defining R = |∇⊥ lnB|−1 the gradient length (∼ curvature radius) of the magnetic field,
one has

F = −2T

R
,

where the sign has again been chosen such that ~F opposes the density gradient, which is
the necessary condition for the interchange instability. Considering Eq.(1.27), this requires
the magnetic and density gradient to have the same orientation. In terms of the curvature,
this corresponds to a convex geometry of the magnetic field confining the plasma. Note
that this average force is now independent of the particle mass, by opposition to the
gravitational force.
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For the interchange instability analysis, one obtains in this case:

µ = 1 +
Te
Ti
,

ν =
R

2

d lnN

dx

1

(kλDi)2 + 1− Λ0

' R

2

d lnN

dx

1

ξi

ν(1− Λ0) ' R

2

d lnN

dx
,

having again assumed ξi = (kλL i)
2 � 1 (long wavelengths), as well as λL i � λDi. The

instability condition (1.25) then becomes:

4

(
1 +

Te
Ti

)
R

2

d lnN

dx

1

ξi
>

[
1 +

Te
Ti

+
R

2

d lnN

dx

]2

=⇒ (kλL i)
2 < 4

R
2
d lnN
dx

(
1 + Te

Ti

)
[
1 + Te

Ti
+ R

2
d lnN
dx

]2 .

As for the gravitational case, note the lower limit on the wavelengths, as well as the effect
of the Larmor radius stabilisation.

Finally, in the long wavelength limit, the growth rate becomes in this case:

γ = ωFi(µν)1/2 =

[
Te + Ti
mi

2

R

d lnN

dx

]1/2

.

1.4 The Drift Wave Instability

The presence of an “external” force ~F , such as for the interchange instability, is in fact
not required for an instability to arise in an inhomogeneous plasma. One shows here, that
the presence of a density gradient alone is sufficient for the onset of an instability.

Let us first show how a density gradient enables a wave to propagate essentially per-
pendicular to the magnetic field ~B, at a phase velocity of the order of the diamagnetic drift
velocity of the electrons associated to the density gradient, ~VNe = (Te/eB

2)∇ lnN × ~B.
This is the so-called drift wave. The basic mechanism of propagation of the drift wave is
illustrated in Fig. 1.8.

Despite the fact that the propagation is considered mainly perpendicular to the mag-
netic field ~B in this case (i.e. |kz/ky| � 1), one assumes that the phase velocity along
the magnetic field is nonetheless sufficiently low so that the electrons can respond adia-
batically, which is the case if |ω/(kzvth e)| � 1. For the ions however one still assumes
|ω/(kzvth i)| � 1. These are similar conditions for the existence of the sound wave (= Ion
Acoustic Wave, IAW) in an homogeneous magnetised plasma. Actually, as shown below,
the drift wave appears as the low frequency “deformation” of the sound wave.

1.4.1 Two-fluid model of the Drift Wave

A first model for the drift wave can thus be given by the following two-fluid description:
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Figure 1.8: Basic Mechanism of the drift wave: One considers a magnetised plasma with
just a density gradient ∇N in its equilibrium state, and submitted to a perturbation which is
quasi-perpendicular to ~B. Assuming that the electrons may respond adiabatically and ensure
quasineutrality, the density fluctuation δN = δNi = δNe and associated potential field φ are
in phase. From the viewpoint considered in this illustration ( ~B pointing upward) the resulting
convection ~vE = ( ~E× ~B)/B2 of the plasma is clockwise (resp. counter-clockwise) oriented around
a maximum δN> (resp. minimum δN<) in the density fluctuation. Given the orientation of the
density gradient in the figure, this leads to a density increase (resp. decrease) to the left of
a maximum (resp. minimum) in the density fluctuation. The perturbation thus propagates
to the left here, i.e. in the same direction as the electron diamagnetic drift velocity ~VNe =
(Te/eB

2)∇ lnN × ~B.

Figure 1.9: Same situation as in figure 1.8 but showing how the magnetised particles, travelling
essentially along the magnetic field ~B, can interact resonantly if their parallel velocity vz is near
the parallel phase velocity ω/kz of the wave. These resonant particles can not only lead to
Landau damping of the wave as in an homogeneous plasma, but can be destabilising as well.
This destabilising effect results from the fact that these particles undergo an essentially constant
~vE drift, contrary to the bulk particles undergoing an oscillatory ~vE drift. This net flow can
lead to a reinforcement of the density perturbation and thus to instability.

21



• Cold ions, represented by the continuity and momentum equation:

∂Ni

∂t
+∇ · (Ni~ui) = 0,

mi

[
∂~ui
∂t

+ ~ui · (∇~ui)
]

= e
(
~E + ~ui × ~B

)
.

• Adiabatic electrons, assuming these particles to be highly mobile (|ω/kz| � vth e):

Ne = Ne0 exp(
eφ

Te
).

• Assuming furthermore sufficiently long wavelengths, kλDe � 1, quasi-neutrality can
be considered for closure:

Ne = Ni.

Linearising these equations for low amplitude electrostatic fluctuations ~E = −∇φ ∼
exp(−iωt) in the case of a plasma with gradients ∇N0 of the equilibrium density N0 ≡
Ne0 = Ni0:

−iω δNi =
∂ δNi

∂t
= −N0∇ · ~ui − ~ui · ∇N0, (1.28)

−iω mi~ui = mi
∂~ui
∂t

= e
(
−∇φ+ ~ui × ~B

)
, (1.29)

δNe = N0
eφ

Te
, (1.30)

δNe = δNi. (1.31)

The ion momentum equation (1.29) can readily be solved for ~ui:

~ui =
1

1− (Ωi/ω)2

Ωi

iωB

[
∇φ− Ωi

iω
∇φ×

~B

B
−
(

Ωi

ω

)2

∇‖φ

]
' − 1

B2
∇φ× ~B +

1

iω

e

mi

∇‖φ+
iω

Ωi

1

B
∇⊥φ, (1.32)

having made use of the fact that the solution to ~u = ~a+~u×~b is given by ~u = (~a+~a×~b+

~a ·~b~b)/(1 + b2), as well as of the low frequency assumption |ω/Ωi| � 1. The first term of

the solution (1.32) to ~ui is the ~vE = ( ~E× ~B)/B2 drift, the second term corresponds to the

oscillatory motion parallel to ~B. The third term is the so-called polarisation drift, which
is charge dependant and corresponds to a small oscillatory motion in the same direction
as ∇⊥φ (thus, polarisation drift and the ~vE term are orthogonal).

Inserting Eq. (1.32) into the continuity Eq. (1.28), leads to:

δNi

N0

=
1

iω
(∇ · ~ui + ~ui · ∇ lnN0)

=
1

ΩiB
4⊥ φ−

1

ω2

e

mi

∇2
‖φ+

1

iω

1

B2
(∇ lnN0 × ~B) · ∇φ, (1.33)
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Figure 1.10: Sound branches deformed by the presence of a density gradient ∇N . For low kz,
one of the branches transforms into the drift mode with frequency ωNe. Polarisation drift effects
neglected in this plot.

having made use of the fact that the wave propagation is such that ∇φ ·∇N0 = 0. Finally,
inserting Eqs.(1.30) and (1.33) into (1.31) leads to the equation for φ:(

1− ρ2
s 4⊥ −

1

iω
~VNe · ∇+

c2
s

ω2
∇2
‖

)
φ = 0,

which for a wave φ ∼ exp(i~k · ~r), and ~k = ky~ey + kz~ez, gives the following dispersion
relation: [

1 + (kyρs)
2
]
ω2 − ωNeω − (kzcs)

2 = 0.

Here, ωNe = ~VNe ·~k, and ρs = cs/Ωi is the ion Larmor radius evaluated at the sound speed
cs =

√
Te/mi.

In the absence of the density gradient, i.e. ωNe = 0, this dispersion relation is clearly
the one for sound waves in a homogeneous, magnetised plasma (propagation at phase

velocity cs along ~B). In the presence of the density gradient, the two sound wave branches
are significantly “deformed” for |kzcs| � |ωNe|:

ω =
ωNe ±

√
ω2
Ne + 4(kzcs)2[1 + (kyρs)2]

2[1 + (kyρs)2]
' ωNe

1 + (kyρs)2
×


1 + (kzcs/ωNe)

2[1 + (kyρs)
2],

−(kzcs/ωNe)
2[1 + (kyρs)

2].
(1.34)

Thus, for |kzcs| � |ωNe|, one of the two sound branches has frequency ω ' ωNe, and thus
propagates quasi-perpendicularly to the magnetic field at the electron diamagnetic drift
velocity: ω/ky ' VNe. This is the so-called drift wave. The two sound branches deformed
by the presence of the density gradient are shown in Fig.1.10.

Recall however that these results can not be taken for kz exactly zero, as otherwise
the assumption of adiabatic electron response breaks down. This condition is verified for
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|ωNe/kz| � vth e, which imposes a lower limit on the ratio |kz/ky|, while the condition
|kzcs| � |ωNe| provides an upper limit:√

me

mi

�
√
Ti
Te

1

λL i|∇ lnN |
|kz/ky| � 1,

which determines a clear interval thanks to the small mass ratio me/mi.
The assumption of cold ions, which requires |ωNe/kz| � vth i, leads to the condition:√

Ti
Te

1

λL i|∇ lnN |
|kz/ky| �

√
Te
Ti
,

which is obviously similar to the one resulting from |kzcs| � |ωNe| if Te ' Ti.

1.4.2 Kinetic Analysis of the Drift Mode Instability

Let us now analyse how the resonant particles, in fact the electrons, can lead to a destabil-
isation of the drift wave. For this purpose, the mode is reconsidered in the framework of
the kinetic description by solving the dispersion relation Eq.(1.21) in the appropriate limit.

More exactly, one considers Eq.(1.21) for ~Fe,i = 0, dTe,i/dx = 0, and ξe = (kyλLe)
2 � 1,

so that the kinetic dispersion relation becomes:

0 = ε(~k, ω) = 1 +
1

(kλDe)2

{
1 + (1− ωNe

ω
)

[
W

(
ω

|kz|vth e

)
− 1

]}
+

1

(kλDi)2

{
1 + (1− ωNi

ω
)

[
W

(
ω

|kz|vth i

)
− 1

]
Λ0(ξi)

}
.

The dispersion function W (z) can be expanded in the appropriate limits for electrons and
ions:

|ze| = |ω/kzvth e| � 1 =⇒ W (ze) ' 1 + i

√
π

2
ze, (1.35)

|zi| = |ω/kzvth i| � 1 =⇒ W (zi) ' −
1

z2
i

+ i

√
π

2
zi exp(−1

2
z2
i ). (1.36)

The real frequency ωR
.
= Re(ω) of the drift mode can be recovered in the resonant

approximation by solving:

0 = Re[ε(~k, ωR)] ' 1 +
1

(kλDe)2
+

1

(kλDi)2

{
1− (1− ωNi

ωR
) [1+(

kzvth i
ωR

)
2
]

Λ0(ξi)

}
.

By fully dropping the term in kzvth i/ωR (quasi-perpendicular propagation), one indeed
obtains:

ωR = ωNe
Λ0(ξi)

1 + (Te/Ti)[1− Λ0(ξi)] + (kλDe)2
. (1.37)
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Note the finite ion Larmor radius effects – term Λ0 in numerator, and (Te/Ti)(1− Λ0) in
denominator – as well as the term (kλDe)

2 in the denominator related to the deviation
from quasineutrality.

In the limit ξi = (kyλL i)
2 � 1 so that Λ0(ξi) ' 1−ξi, and λL i � λD e,i Eq.(1.37) leads

to:
ωR '

ωNe
1 + (kyρs)2

.

One thus has indeed recovered the solution (1.34) from the fluid model. One also no-
tices that the so-called polarisation drift term, which already appeared in the two-fluid
model, derives in the kinetic description from the lowest order ion Larmor radius effects
represented by Λ0(ξi).

In the resonant approximation, the growth rate γ is given by:

γ = − Im(ε)

∂Re(ε)/∂ω

∣∣∣∣
ωR

. (1.38)

In this case, one has

Im[ε(ωR)] =
1

(kλDe)2
(1− ωNe

ωR
)

√
π

2
ze +

Λ0(ξi)

(kλDi)2
(1− ωNi

ωR
)

√
π

2
zi exp(−z

2
i

2
),(1.39)

∂Re[ε(ωR)]

∂ω
= − Λ0(ξi)

(kλDi)2

ωNi
ω2
R

. (1.40)

Inserting (1.39) and (1.40) into Eq.(1.38) then leads to:

γ =

√
π

2

ω2
R

Λ0(ξi)

{(
1− ωR

ωNe

)
1

|kz|vth e
−
(

1 +
Te
Ti

ωR
ωNe

)
Λ0(ξi)

|kz|vth i
exp−1

2

(
ωR
kzvth i

)2
}
.

Noticing from Eq.(1.37) that in fact 0 < ωR/ωNe < 1, one can conclude that the ion contri-
bution to γ has a damping effect, while the effective electron contribution is destabilising.
The stabilising ion contribution being exponentially small, can usually be neglected, so
that after insertion of Eq.(1.37) for ωR the growth rate becomes:

γ =

√
π

2

ω2
Ne

|kz|vth e
Λ0 [(1 + Te/Ti)(1− Λ0) + (kλDe)

2]

[1 + (Te/Ti)(1− Λ0) + (kλDe)2]3
. (1.41)

In the limit ξi = (kyλL i)
2 � 1, as well as λL i � λDi, one obtains:

γ =

√
π

2

ω2
Ne

|kz|vth e
(1 + Ti/Te)(kyρs)

2

[1 + (kyρs)2]3
.

From the above derivation, the drift instability is clearly the result of a resonant
interaction between the wave and the particles. Note how in Eq.(1.39) the contribution
to Im[ε(ωR)] –representing the resonant effects– from each species is multiplied by a factor
(1−ωN/ωR). The term 1 in this factor is related to the Landau damping effect, as already
present in an homogeneous plasma. The term −ωN/ωR in this factor is obviously specific
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Figure 1.11: Numerical and analytical solutions over a scan in kz for the real frequency and
growth rate of the drift wave instability. Considered parameters are mi/me = 1836 (protons),
Te/Ti = 10, kyλL i = 1, LN/λL i = 10, λL i/λDi = 102.
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to the inhomogeneous plasma. This term can be negative and thus have a destabilising
effect. It represents the resonant convection in the ~vE = ( ~E × ~B)/B2 drift, along or
against the density gradient ∇N , of resonant particles, i.e. whose velocity vz along the
magnetic field ~B matches the phase velocity ω/kz of the mode in this same direction (see
Fig. 1.9).

In somewhat more detail, the bulk particles, which do not keep in phase with the
mode, slosh back and forth in the passing wave, both in the direction parallel to ~B,
due to the drive by the parallel component E‖ of the perturbation field ~E, as well as in
the perpendicular direction, due to the drift ~vE. Resonant particles however, which by
definition keep in phase with the mode (at least in the linear stage of evolution), undergo

a drive by the perturbation field ~E whose orientation does not change. The drive along ~B
by E‖ of these resonant particles leads to Landau damping and to the related flattening,

at vz = ωR/kz, of the velocity distribution f(vz). The convection ~vE perpendicular to ~B
of the resonant particles results in a reinforcement of the density perturbation and, if this
mechanism is sufficiently strong compared to Landau damping, leads in this way to the
destabilisation of the wave.

1.5 The Slab Ion Temperature Gradient (Slab-ITG)

Instability

It was shown in the previous section how the presence of a density gradient alone can lead
to an instability. One shows here how an instability of a different nature can also arise
from the presence of a temperature gradient.

1.5.1 Basic Study of the Slab-ITG

One assumes again that one is in the regime |ω/(kzvth e)| � 1 such that the electrons
respond adiabatically, and kλDe � 1 so that quasi-neutrality can be invoked.

One starts by considering a plasma with just an ion temperature gradient ∇Ti 6= 0 (no
density gradient, ∇N = 0). From Eq.(1.21), the dispersion relation can then be written:

ε(~k, ω) =
1

(kλDe)2
+

1

(kλDi)2

{
1 +

(
1−

ω′Ti
ω

)[
W

(
ω

|kz|vth i

)
− 1

]
Λ0(ξi)

}
= 0. (1.42)

Furthermore, assuming that the mode is such that |ω/(kzvth i)| � 1, enabling again to
expand the dispersion function according to Eq.(1.36), and neglecting at first the finite
ion Larmor radius effects, one obtains:

1

(kλDe)2
+

1

(kλDi)2

{
1−

(
1−

ω′Ti
ω

)[
1 +

(
kzvth i
ω

)2
]}

= 0.

Note that the resonant term i
√
π/2 zi exp(−z2

i /2) has already been neglected here, as the
instability is dominantly of hydrodynamic type. This will appear clearly in the following.
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Carrying out the partial derivative with respect to the ion temperature of the operator
ω′Ti = (Tiky/eB)(dTi/dx)∂/∂Ti then leads to:

1−
(
kzcs
ω

)2 (
1− ωTi

ω

)
= 0, (1.43)

where now ωTi without the prime superscript stands for ωTi = (Tiky/eB)(d lnTi/dx).
Note first, that in the absence of the temperature gradient, one obtains ω = ±kzcs,

so that the considered mode is again the deformation of one of the sound wave branches.
For ∇Ti 6= 0 , Eq(1.43) provides a cubic equation for ω, which can have two complex
conjugate solutions, i.e. represent an instability. Indeed, assuming |ω| � |ωTi | Eq.(1.43)
becomes:

1 +
ωTi(kzcs)

2

ω3
= 0,

which has a solution with positive imaginary part, i.e. an unstable mode:

ω = (
σ

2
+ i

√
3

2
)|ωTi(kzcs)2|1/3, with σ = sgn(ωTi). (1.44)

The above assumption |ω| � |ωTi | is thus verified if

|kzcs| � |ωTi |, (1.45)

which in turn imposes an upper limit on the ratio |kz/ky|:

1

λL i|∇ lnTi|
|kz/ky| �

√
Ti
Te
. (1.46)

The initial assumptions vth i � |ω/kz| � vth e naturally impose further constraints on
|kz/ky|: √

Ti
Te

(
me

mi

)3/2

� 1

λL i|∇ lnTi|
|kz/ky| �

Te
Ti
,

having made use of |ω| ' |ωTi(kzcs)2|1/3 according to Eq.(1.44). For Ti ' Te the condition
arising from |ω/kz| � vth i is obviously equivalent to Eq.(1.46).

At the limit of applicability of the result (1.44) with respect to the wavelengths along
~B, i.e. taking kzcs ' ωTi , one obtains:

γ ' ωR ' kzcs ' ωTi ,

so that |ω/kz| ' vth i for Ti ' Te. Furthermore, in the limit of applicability of the result
with respect to the finite ion Larmor radius effects, i.e. taking ξi ' 1, one obtains:

γ ' vth i |∇ lnTi| ,
kz ' |∇ lnTi| , for Te ' Ti.
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Figure 1.12: Numerical and analytical solutions over a scan in kz for the real frequency and
growth rate of the slab-ITG instability. Considered parameters are mi/me = 1836 (protons),
Te/Ti = 10, kyλL i = 0.1, LTi/λL i = 10, LN/λL i = 105 λL i/λDi = 102.
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1.5.2 Instability Boundary for the Slab-ITG

As already shown by the estimate (1.45), the wave vector component kz must be below
a critical value kz lim for the slab-ITG instability to develop. Here this limit is estimated
more accurately for arbitrary finite ion Larmor radius effects (ξi values).

Furthermore, the slab-ITG instability can also arise under certain conditions where
the plasma does not only have an ion temperature gradient, but also a density gradient.
The relative importance of the characteristic length LTi of the ion temperature gradient
with respect to the characteristic length LN of density is measured by the ratio

ηi
.
=
d lnTi/dx

d lnN/dx
=
LN
LTi

.

The critical values ηi lim for the slab-ITG instability to develop is derived in the following
as well. The dispersion relation (1.42) is thus generalised here to also account for density
gradients:

ε(~k, ω) =
1

(kλDe)2
+

1

(kλDi)2

{
1 +

(
1−

ωNi + ω′Ti
ω

)[
W

(
ω

|kz|vth i

)
− 1

]
Λ0(ξi)

}
= 0.

(1.47)
The limits of instability are obtained by finding the conditions under which the solu-

tions ω to the dispersion relation (1.47) are exactly real valued: ω = ωR
.
= Re(ω). Indeed,

this defines the limit between damped and unstable modes.
One starts by developing Eq.(1.47) by carrying out the derivative with respect to the

ion temperature of the operator ω′Ti , making no approximation this time on the dispersion
function W (z). Note that ω′Ti operates both on W (zi) through the vth i dependence of
its argument zi = ω/|kz|vth i, as well as on Λ0(ξi), as ξi = (kyvth i/Ωi)

2. In this way one
obtains for the dispersion relation:

0 = ε(~k, ω) =
1

(kλDe)2
+

1

(kλDi)2
× (1.48){

1 +

(
1−

ωNi−
ωTi

2

ω

)
(W−1) Λ0 −

ωTi
ω

[
z2
i

2
WΛ0 + (W−1) ξi (Λ1 − Λ0)

]}
,

having used the shorter notations W = W (zi) and Λn = Λn(ξi), as well as the relations:

dW

dz
=

(
1

z
− z
)
W − 1

z
,

dΛ0

dξ
= Λ1(ξ)− Λ0(ξ).

To identify the instability boundary, one must thus solve Re[ε(kz, ωR)] = 0 and Im[ε(kz, ωR)] =
0 using Eq.(1.48). Using the following expression for W (z) in terms of the complex error
function:

W (z) = 1 + i

√
π

2
z e−z

2/2

(
1 + i

√
2

π

∫ z

0

dz′ez
′2/2

)
,
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one obtains, after some minor algebra, the following set of equations for ωR and kz as a
function of the parameters ηi and ξi:

Ti
Te

+ 1−
[
1− ωNi(1− ηi/2)

ωR

]
Λ0 +

ωTi
ωR

ξi (Λ1 − Λ0) = 0, (1.49)

z2
i =

2(1 + Ti/Te)

Λ0

ωR
ωTi

, (1.50)

noting that ωTi/ωNi = ηi. Equation (1.49) provides ωR at the instability boundary:

ωR
ωTi

=
1

2

Λ0

Ti/Te + 1− Λ0

[
1− 2

ηi
− 2ξi

Λ1 − Λ0

Λ0

]
. (1.51)

According to Eq.(1.50) one must have ωR/ωTi > 0. From Eq.(1.51), this in turn imposes
a condition for instability on ηi:

Either ηi < 0,

or ηi > 2

(
1− 2ξi

Λ1 − Λ0

Λ0

)−1

.

These critical values of ηi as a function of ξi are plotted in Fig.1.13.
Inserting Eq.(1.51) in Eq.(1.50) for z2

i = ω2
R/(kzvth i)

2 finally provides the limiting
condition on kz:

|kzvth i| < |kz lim vth i| =
ωTi
2

Λ0

(1 + Ti/Te)1/2(Ti/Te + 1− Λ0)1/2

[
1− 2

ηi
− 2ξi

Λ1 − Λ0

Λ0

]1/2

.

(1.52)

1.5.3 Two-Fluid Model of the slab-ITG Instability

The underlying mechanism of the slab-ITG instability results from heat convection in the
presence of an ion temperature gradient. This is illustrated by the following two-fluid
model:

• “Hot” ions, represented by the continuity equation, the momentum equation (in-
cluding the pressure term), and a heat equation representing convection in the flow

~vE = ( ~E × ~B)/B2:

∂Ni

∂t
+∇ · (Ni~ui) = 0,

miNi

[
∂~ui
∂t

+ ~ui · (∇~ui)
]

= eNi

(
~E + ~ui × ~B

)
−∇(NiTi),

∂

∂t
(NiTi) +∇ · (NiTi~vE) = 0.

• Adiabatic electrons:

Ne = Ne0 exp(
eφ

Te
).
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• Quasi-neutrality for closure:
Ne = Ni.

One considers a plasma such that ∇N0 = 0, and ∇Ti 6= 0. Linearising for small amplitude
perturbations ~E = −∇φ ∼ exp(i~k ·~r−ωt), and assuming |ω/Ωi| � 1 , this set of equations
can be reduced to the following:

∂ δNi

∂t
+N0∇‖ui ‖ = 0,

mi

∂ui ‖
∂t

= −e∇‖φ−∇‖δT ?i ,

∂δT ?i
∂t

+ ~vE · ∇Ti = 0,

δNi = δNe = N0
eφ

Te
,

with ~vE = (−∇φ× ~B)/B2 and δT ?i = δTi + (δNi/N0)Ti0.
Exercise: Show that this last set of equations leads to the same dispersion relation

as given by Eq.(1.43).

1.6 Electron Temperature Gradient (ETG) Instabil-

ity

At sufficiently short perpendicular wavelengths ky, such that ξi = (kyλL i)
2 � 1, the

perpendicular perturbation field felt by the ions is averaged out over their gyro-motion.
As a result, the response of these particles becomes adiabatic-like. Indeed, for ξ →∞ one
has Λn(ξ) → exp[−n2/(2ξ)]/

√
2πξ → 0, and thus from Eq.(1.20) one sees that the ion

contribution to the dielectric function reduces to 1/(kλDi)
2, i.e. the adiabatic term. One

considers here such a short wavelength regime, however still assuming being in the limit
such that kλDe � 1 so that quasineutrality can be invoked. The simultaneous conditions
ξi � 1 and kλDe � 1 is possible if λDe � λL i, which is the case at least for magnetic
fusion-type plasmas (see table 2).

Considering the dispersion relation (1.21) in this limit, and allowing for finite electron
Larmor radius effects (ξe ∼ 1), one obtains:

ε(~k, ω) =
1

(kλDi)2
+

1

(kλDe)2

{
1 +

(
1−

ωNe + ω′Te
ω

)[
W

(
ω

|kz|vth e

)
− 1

]
Λ0(ξe)

}
= 0,

(1.53)
which is exactly the same relation as Eq.(1.47) for the slab-ITG, but simply with the
electron and ion subscripts interchanged. The results obtained in Sec. 1.5.1 for the
slab-ITG can thus be directly translated here to the ETG instability.

In particular, considering at first the limit ξe � 1, and ηe →∞ (∇N = 0), as well as
assuming |ω/(kzvth e)| � 1 one obtains the simple dispersion relation:

1−
(
kz
ω

)2
Ti
me

(
1− ωTe

ω

)
= 0, (1.54)
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which is the equivalent to Eq.(1.43). For sufficiently long parallel wavelengths such that
|kz
√
Ti/me| � |ωTe|, Eq. (1.54) again provides an unstable mode with growth rate:

γ =

√
3

2
|ωTek2

zTi/me|1/3. (1.55)

At the limit of applicability of this result with respect to the limit on kz, i.e. taking
|kz
√
Ti/me| ' |ωTe|, one obtains:

γ ' kz
√
Ti/me ' ωTe,

and at the limit of applicability with respect to short perpendicular wavelengths, i.e.
taking ξe ' 1:

γ ' vth e |∇ lnTe| ,
kz ' |∇ lnTe| , for Te ' Ti.

This last limit may only be considered if λLe > λDe (⇔ ωpe > |Ωe|). Otherwise the limit
kλDe ' 1 is met before ξe ' 1, in which case quasi-neutrality is not preserved, and the
validity of the dispersion relation Eq.(1.54) breaks down. Thus, in the case ωpe < |Ωe|, at
the limit of applicability of Eq.(1.55) for kλDe ' 1:

γ ' ωpe
|Ωe|

vth e |∇ lnTe| ,

kz '
ωpe
|Ωe|
|∇ lnTe| , for Te ' Ti.

1.7 The Toroidal Ion Temperature Gradient (Toroidal-

ITG) Instability

If in addition to an ion temperature gradient the plasma is submitted to “external”
forces ~F related to gradients and/or curvature of the confining magnetic field ~B, the
slab-ITG instability presented in Sec. 1.5 can acquire an interchange-like character. One
distinguishes this new form of the instability as the so-called toroidal-ITG.

1.7.1 Dispersion Relation

To obtain a relevant local dispersion relation for the toroidal-ITG instability, which cor-
rectly accounts for the effects of the effective forces ~F related to the curvature and gra-
dient of the magnetic field ~B, one must reconsider the actual validity in this case of the
dispersion relation defined by Eq.(1.21). Indeed, in deriving Eq.(1.21), one assumed a

plasma confined by a uniform magnetic field ~B, in which the particles of each species was
submitted to a constant external force ~F .

First, let us note again that the forces ~Fc and ~Fµ related to the curvature and gradient
respectively of the magnetic field are velocity dependent, as already discussed in Sec. 1.3.2.

34



Thus, these forces vary from one particle to another from a given species distribution.
Correctly taking account of this velocity dependence is actually essential near marginal
stability of the mode, where resonant particle effects are important. We shall again
consider here a low pressure plasma (i.e. low β = plasma pressure / magnetic pressure),

so that the considered effective force ~F is of the form:

~F = ~Fµ + ~Fc = −m
(
v2
⊥
2

+ v2
‖

)
∇⊥ lnB. (1.56)

Notice as well, that these forces do not in fact contribute to the energy H of the
system as considered in Sec. 1.2.1 by the contribution −Fx to H for a truly external
force ~F = F~ex. Indeed, in a system where particles are only submitted to a magnetic
field, the energy reduces to the kinetic energy H = mv2/2.

In view of the above comments, we shall attempt to accordingly correct the derivation
of the dispersion relation in Sec.1.2 for the purpose of studying the toroidal-ITG insta-
bility. We shall “salvage” the derivation at the level of Eq.(1.15), i.e. the relation for δ̂f ,
solution to the linearised Vlasov equation. What needs to be done is to reconsider the
various terms related to the force ~F .

The force ~F appears in Eq.(1.15) for δ̂f through the drift frequency ωF , both in the
total drift frequency term ω′d = ωN + ω′T + ωF , as well as in the resonant denominator in

the form of a Doppler shift. The ωF contribution to ω′d can easily be traced back to the ~F
dependence of H, and consequently shall be dropped here. However, the Doppler shift in
the resonant denominator is directly related to the ~vF drifts of the particle trajectories.
Such trajectory drifts definitely also result from forces of the form (1.56), as is system-
atically shown in the framework of Guiding Centre theory.[6] This term is thus retained
here, and the relation for the amplitude δ̂f becomes:

δ̂f = −qφ̂
T

1− (ωN + ω′T − ω)
+∞∑

n,n′=−∞

Jn

(
kyv⊥

Ω

)
Jn′

(
kyv⊥

Ω

)
ei(n−n

′)θ

kzvz + nΩ + ωF − ω

 f0, (1.57)

with

ωF = ~k · ~vF = −kyF
qB

=
ky
qB

m

R

(
v2
⊥
2

+ v2
‖

)
,

and R = |∇⊥ lnB|−1. One can easily convince oneself, by reconsidering the derivation
of Eq.(1.15) in Sec.1.2, that the existence and form of the Doppler shift in the resonant
denominator is indeed independent of the fact that the forces are velocity dependent.

To re-derive the dielectric function ε(~k, ω) defined as

ε(~k, ω) = 1−
∑

species

1

(kλD)2

ˆδN

N

T

qφ̂
,

requires to recompute the amplitude of density fluctuations ˆδN from Eq.(1.57) for δ̂f .
This leads to the relevant dispersion relation for studying the toroidal-ITG:

ε(~k, ω) = 1 +
∑

species

1

(kλD)2

1 + (ω − ωN − ω′T )

∫
d~v

f0

N

J2
0

(
kyv⊥

Ω

)
kzvz + ωF − ω

 = 0, (1.58)
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with
f0

N
=

1

(2πv2
th)

3/2
exp−1

2

(
v

vth

)2

,

and d~v = v⊥dv⊥dvz, and having again only retained the lowest order cyclotron harmonic
n = 0 under the assumption |ω/Ω| � 1.

Furthermore, again assuming an adiabatic response of electrons, and sufficiently long
wavelengths such that kλD � 1 so that quasi-neutrality can be invoked, the dispersion
relation (1.58) actually reduces to

ε(~k, ω) =
1

(kλDe)2
+

1

(kλDi)2

1 + (ω − ωNi − ω′T i)
∫
d~v

f0i

N

J2
0

(
kyv⊥

Ω

)
kzvz + ωFi(v⊥, vz)− ω

 = 0.

(1.59)
By the notation ωFi(v⊥, vz), one has highlighted in this last relation the velocity depen-
dence of the Doppler shift ωF .

1.7.2 Fluid-Like Limit

Without further approximations, the velocity integral in Eq.(1.59) cannot be expressed
in terms of well-known special functions as was the case in Sec.1.2 when considering a
constant force ~F .

To nonetheless get a first analytical understanding of the toroidal-ITG instability,
one considers again a fluid-like limit for the ions by assuming |ω/(kzvth i)| � 1, and
|ω/ωF | � 1, as well as lowest order finite Larmor radius effects by assuming kyλL i � 1.
In this limit, the integrand of the Maxwellian-weighted velocity integral in Eq.(1.59) can
be expanded as follows:

J2
0

(
kyv⊥

Ω

)
kzvz + ωFi(v⊥, vz)− ω

= − 1

ω

[
1 +

kzvz
ω

+

(
kzvz
ω

)2

+
ωFi
ω

+ . . .

]
×

[
1− 1

4

(
kyv⊥

Ω

)2

+ . . .

]2

' − 1

ω

[
1 +

kzvz
ω

+

(
kzvz
ω

)2

+
ωFi
ω
− 1

2

(
kyv⊥

Ω

)2
]
, (1.60)

having kept the lower order terms of the Taylor expansions (1 + x)−1 = 1− x + x2 + . . .
and J0(x) = 1 − x2/4 + . . .. The velocity integration in Eq.(1.59) for this approximate
integrand is now straightforward to carry out, noticing that the average < vi > over
the Maxwellian distribution f0/N of any velocity coordinate vi is zero, while the average
< v2

i > of the square of any velocity component provides v2
th:

1

(kλDe)2
+

1

(kλDi)2

{
1−

(
1− ωNi + ω′T i

ω

)[
1 +

(
kzvth i
ω

)2

+
< ωFi >

ω
− (kyλL i)

2

]}
= 0,

(1.61)
with

< ωFi >=
2Ti
eB

ky
R
.
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Finally, carrying out the temperature derivative of ω′T i = ωT iTi∂/∂Ti gives:

Ti
Te

+
ωNi
ω
−
(

1− ωNi + ωT i
ω

)[(
kzvth i
ω

)2

+
< ωFi >

ω
− (kyλL i)

2

]
= 0. (1.62)

One now takes various limits of the dispersion relation defined by Eq.(1.62). One
starts by considering the case of an homogeneous plasma (⇒ ωN , ωT i = 0) confined by a
uniform magnetic field (⇒< ωFi >= 0), so that Eq.(1.62) becomes:

ω2 =
(kzcs)

2

1 + (kyρs)2
,

which, as expected, are the two sound branches in a magnetised plasma, including the
effect of polarisation drift.

Then, considering the case of a finite ion temperature gradient (⇒ ωT i 6= 0), however
still no density gradient (⇒ ωN = 0), and neglecting all finite Larmor radius effects, leads
to:

1−
(

1− ωT i
ω

)[(kzcs
ω

)2

+
Te
Ti

< ωFi >

ω

]
= 0. (1.63)

Equation (1.63) obviously represents the deformation by the curvature and gradient of
the magnetic field (< ωFi >6= 0) of the fluid-like dispersion relation for the slab-ITG given
by Eq.(1.43). In fact, contrary to Eq.(1.43), equation (1.63) provides an instability with
finite growth rate even in the limit kz → 0. Indeed, assuming again |ω| � |ωT i|, Eq.(1.63)
for kz = 0 becomes:

1 +
Te
Ti

ωT i < ωFi >

ω2
= 0,

which has solutions:

ω = ±
(
−Te
Ti
ωT i < ωFi >

)1/2

. (1.64)

Noticing that

−ωT i < ωFi >=
k2
y

(eB)2
∇Ti· < ~Fi >= −2

(kyTi)
2

(eB)2
∇ lnTi · ∇ lnB,

having used < ~Fi >= −2Ti∇ lnB, the necessary condition for solution (1.64) to pro-
vide an unstable mode is for the gradient of the magnetic field ∇B to be in the same
direction as the ion temperature gradient ∇Ti (→ convex magnetised plasma geometry).
If ∇B is opposite to ∇Ti (→ concave magnetised plasma geometry), the mode is sta-
ble. This clearly illustrates the interchange-like character of the toroidal-ITG mode. In
a low β tokamak plasma, the so-called favourable curvature, i.e. stable with respect to
the toroidal-ITG, is thus the inner, high magnetic field region of the torus (→ concave
plasma geometry), while the unfavourable curvature region is the outer, low field region
of the torus (→ convex plasma geometry). The toroidal-ITG thus tends to “balloon” in
this outer region.
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The relative importance of the slab-like or toroidal-like character of the instability is
directly related to the relative importance of the terms (kzcs/ω)2 and (Te/Ti)(< ωFi > /ω)
respectively in Eq.(1.63). Obviously, the true toroidal-like mode appears in the limit
kz → 0 and the instability is thus said to align with the magnetic field lines.

1.7.3 Stability Conditions

Finally, considering Eq.(1.62) for kz = 0 and allowing for possible density gradients (ωNi 6=
0), but still neglecting finite larmor radius effects (i.e. polarisation drift), leads to:

1

τ
+
ωNi
ω
−
(

1− ωNi + ωT i
ω

)
< ωFi >

ω
= 0,

which reduces to
1

τ

(
ω

ωNi

)2

+ (1− 2εN)
ω

ωNi
+ 2εN(1 + ηi) = 0,

whose solutions are given by

ω

ωNi
=
τ

2

{
2εN − 1±

[
(2εN − 1)2 − 8

τ
εN(1 + ηi)

]1/2
}
, (1.65)

having used the notations τ = Te/Ti and εN =< ωF > /(2ωN) = LN/R.
Equation (1.65) provides the following condition for instability for the toroidal-ITG:

8εN(1 + ηi) > τ(2εN − 1)2, (1.66)

which is equivalent to

ηi >
τ

8

(2εN − 1)2

εN
− 1, for εN > 0, (1.67)

ηi <
τ

8

(2εN − 1)2

εN
− 1, for εN < 0. (1.68)

The fluid-like results obtained above for the toroidal-ITG are naturally only of qualita-
tive value, especially near marginal stability where drift resonances appearing in Eq.(1.59)
become important, and thus in particular for characterising the stability conditions. This
is shown in Fig.1.14, where condition (1.67) is compared to the marginal stability ob-
tained by solving numerically the kinetic dispersion relation (1.59) for τ = 1, kz = 0 and
kyλL i = 0.3.

As can be seen from Eq.(1.66), in the limit of flat density where ηi, εN →∞, the condi-
tion for instability becomes a constraint on εTi =< ωFi > /(2ωT i) = LT i/R. Numerically
solving the full kinetic dispersion relation Eq.(1.59) for τ = 1, one obtains the instability

condition εTi
∼
< 0.3 instead of εTi < 2 coming from the fluid condition Eq.(1.66).

Fig.1.15 illustrates finite Larmor radius effects and shows how the toroidal-ITG has
maximum growth rate for kyλL i ∼ 0.5.
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Figure 1.14: Stability curve for toroidal-ITG mode in plane (εn, ηi). Full line is obtained by
numerical resolution of the kinetic dispersion relation Eq.(1.59) for τ = 1, kz = 0, kyλL i = 0.3.
Dashed line is the fluid result Eq.(1.67).
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Figure 1.15: Real frequency (full line) and growth rate (dashed line) of toroidal-ITG instability
as a function of k⊥λL i, obtained by numerically solving Eq.(1.59). Maximum value of growth
rate is near k⊥λL i = 0.5. Here τ = 1, εN = 0.3, ηi = 4 and kz = 0. Note that for ωr/ωNe < 0
the mode propagates in the ion diamagnetic direction.
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