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1 Diamagnetic Drifts

This provides the solution to exercises 1 and 2 of section 1.1.2.

In a fluid representation, the momentum equation for a given species α (=elec-
trons, ions) in a magnetized plasma reads:

mαNα

[
∂~uα
∂t

+ ~uα · (∇~uα)

]
= −∇pα + qαNα

(
~E + ~uα × ~B

)
, (1)

where mα is the mass and qα the charge of the considered species. The fields
Nα(~r, t), pα(~r, t), and ~uα(~r, t) are respectively the density, pressure, and aver-

age velocity. [ ~E(~r, t), ~B(~r, t)] are possible electric and magnetic fields acting
on the plasma.

Let us consider a slab-like magnetic equilibrium similar to the one depicted in
Figures 1.3 and 1.4 of the notes. For this purpose one introduces an orthonor-
mal coordinate system (~ex, ~ey, ~ez), such that ~B = B~ez, and such that all spatial
gradients are along ~ex. Thus, in Eq. (1) one has ∂~uα/∂t = 0, ~uα · (∇~uα) = 0,

as well as ~E = 0, and obtains:

0 = −∇pα + qαNα~uα × ~B. (2)

Taking the vector product of Eq. (2) with ~B, one derives the transverse
velocity

~uα,⊥ =
−∇pα
Nα

×
~B

qαB2
, (3)

which is indeed equivalent to the diamagnetic drift ~vd obtained in Eq. (1.4) of
the notes, in the frame of a kinetic description.

Note the scaling of diamagnetic drifts compared to the thermal velocity vth:

vd ∼
|∇p|
N

1

qB
∼ 1

L

T

qB
∼ vth

λL
L
,

where L is the characteristic scale length of pressure gradients, v2
th = T/m

the squared thermal velocity, λL = vth/Ω the thermal Larmor radius, and
Ω = qB/m the cyclotron frequency. Thus assuming ε = λL/L � 1, one has
vd/vth � 1.

The diamagnetic drifts can naturally carry a charge current:

~j =
∑
α

~jα =
∑
α

qαNα~uα = −
∑
α

∇pα ×
~B

B2
= −∇P ×

~B

B2
, (4)
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having made use of Eq. (3), and defined P =
∑

α pα the total plasma pressure.

Let us now address the self-consistency of the magnetostatic field ~B with
respect to these currents. This is achieved by injecting (4) into Ampere’s law:

∇× ~B = µ0
~j = −µ0∇P ×

~B

B2
.

Taking again the vector product of this last relation with ~B provides:

1

µ0

(∇× ~B)× ~B =
1

µ0

~B · (∇ ~B)− 1

µ0

(∇ ~B) · ~B = −∇
(
B2

2µ0

)
= ∇P,

where the curvature term (1/µ0) ~B ·(∇ ~B) (the so-called magnetic tension force)
is zero in the here considered slab geometry. From this last relation one thus
obtains:

∇
(
P +

B2

2µ0

)
= 0, =⇒ P +

B2

2µ0

= const. (5)

Relation (5) states that the thermal pressure P and magnetic pressure B2/2µ0

compensate each other. Thus, if a plasma is submitted to an external magnetic
field ~Bext it generates, through its diamagnetic currents, an internal magnetic
field ~Bint which opposes ~Bext in such a way that (5) is verified:

P (x) +
[Bext +Bint(x)]2

2µ0

=
B2

ext

2µ0

.

One says that the plasma generates a magnetic well. This is illustrated in
figure 1. A plasma thus clearly has a diamagnetic behavior.

The diamagnetic nature of a plasma naturally results from the behavior of
each individual particle. Each particle in a magnetic field ~B, through its
cyclotron motion, generates a small magnetic moment ~µ, which is always op-
posite the magnetic field as shown in Fig. 2. The amplitude µ of a magnetic
moment is the product of the surface S of its current loop, times the current
I: µ = SI. In the case of a single charge q in a magnetic field ~B, the surface is
given in terms of the Larmor radius λL = v⊥/Ω by S = πλ2

L, and the current
by I = qΩ/2π. The magnetic moment thus becomes:

µ = SI = πλ2
L q

Ω

2π
=
mv2
⊥

2B
.

Averaging the squared perpendicular velocity v2
⊥ over a distribution with tem-

perature T , one obtains (m/2) < v2
⊥ >= T , so that the average magnetic

moment per particle becomes:

〈~µ〉 = −T
~B

B2
.
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Figure 1: Magnetic well generated by a plasma as a result of its diamagnetic
behavior

Figure 2: Magnetic moment ~µ associated to the cyclotron motion of a particle
in a magnetic field ~B. The moment ~µ is opposite the field ~B whether the
charge q is positive or negative. This is the origin of the diamagnetic behavior
of the plasma.
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For a plasma species with density N , the magnetization field ~M , which mea-
sures the density of magnetic moments, is thus given by

~M = N〈~µ〉 = −p
~B

B2
,

where again p is the pressure of the considered species. In the presence of a
pressure gradient, one can then compute the magnetization current:

~j = ∇× ~M = −∇p×
~B

B2
,

which clearly recovers Eq. (4).
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2 Limits of Dielectric Function

This provides the solution to exercise 1 of section 1.2.3.

One considers the dielectric function of an inhomogeneous, magnetized
plasma given by Eq. (1.20) in the notes:

ε(~k, ω) = 1+
∑

species

1

(kλD)2

{
1 + (ω − ω′d)

+∞∑
n=−∞

1

ω − ωF − nΩ

[
W

(
ω − ωF − nΩ

|kz|vth

)
− 1

]
Λn(ξ)

}
.

(6)

In the limit of zero external forces (~F = 0 =⇒ ωF = 0), and no equilibrium
gradients (ω′d = 0), one obtains:

ε(~k, ω) = 1 +
∑

species

1

(kλD)2

{
1 +

+∞∑
n=−∞

ω

ω − nΩ

[
W

(
ω − nΩ

|kz|vth

)
− 1

]
Λn(ξ)

}
.

(7)
This is the dielectric function of an homogeneous magnetized plasma
[see for example Eq. (4.68) in S. Ichimaru, Basic Principles of Plasma Physics.
A Statistical Approach (W. A. Benjamin, Inc., Reading, Massachusetts, 1973),
or Eq. (3.54), K. Appert, Théorie des Plasmas Chauds (EPFL-Repro, EPFL,
2003)].

One now considers the limit of vanishing magnetic field: B → 0. In this
case Ω = qB/m → 0 and ξ = (kyvth/Ω)2 → +∞. One can thus make use of
the asymptotic limit of the scaled modified Bessel functions:

Λn(ξ)
ξ→+∞→ 1√

2πξ
exp(−n

2

2ξ
) =

Ω√
2πkyvth

exp

[
−1

2

(
nΩ

kyvth

)2
]
.

The dielectric function then becomes

ε(~k, ω) = 1 +
∑

species

1

(kλD)2
[1 + I] , (8)

having defined the term I:

I =
+∞∑

n=−∞

Ω√
2πkyvth

ω

ω − nΩ

[
W

(
ω − nΩ

|kz|vth

)
− 1

]
exp

[
−1

2

(
nΩ

kyvth

)2
]
.

This term thus appears in the form of a Darboux sum, which in the limit of
Ω→ 0 converges to a continuous integral:

I =
+∞∑

n=−∞

Ω fct(nΩ)
Ω→0→

∫ +∞

−∞
dy fct(y),
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having identified y = nΩ and dy = Ω. In the limit of vanishing magnetic field,
one can therefore write:

I =
1√
2π

∫ +∞

−∞

dy

kyvth

ω

ω − y

[
W

(
ω − y
|kz|vth

)
− 1

]
exp

[
−1

2

(
y

kyvth

)2
]
.

Making use of the definition of the dispersion function W (z):

W (z) =
1√
2π

∫
dx

x

x− z
exp(−x2/2),

one furthermore obtains:

I =
1

2π

∫ +∞

−∞

dy

kyvth
exp

[
−1

2

(
y

kyvth

)2
]

ω

ω − y

∫ +∞

−∞

dvz
vth

[
vz

vz − (ω − y)/|kz|
− 1︸ ︷︷ ︸

ω−y
kzvz+y−ω

] exp

[
−1

2

(
vz
vth

)2
]

vy=y/ky
=

1

2π

∫ +∞

−∞

dvy
vth

∫ +∞

−∞

dvz
vth

ω

kyvy + kzvz − ω
exp

[
−1

2

(
v2
y + v2

z

v2
th

)]
×

1√
2π

∫
dvx
vth

exp

[
−1

2

(
vx
vth

)2
]

︸ ︷︷ ︸
=1

=
1

(2π)3/2

∫
dvxdvydvz

v3
th

ω

kyvy + kzvz − ω
exp

[
−1

2

(
v2
x + v2

y + v2
z

v2
th

)]
.

As we have considered the wave vector ~k = kx~ex + ky~ey, the resonant denomi-

nator in the above relation can be written ~k · ~v − ω, so that

I =
1

(2πv2
th)

3/2

∫
d~v

ω

~k · ~v − ω︸ ︷︷ ︸
~k·~v

~k·~v−ω
−1

exp(−1

2

v2

v2
th

)

= −1 +
1√
2π

∫
dvx
vth

vx
vx − ω/|k|

exp(−1

2

v2
x

v2
th

)

= W

(
ω

|k|vth

)
− 1. (9)

having re-aligned the coordinate system so that the direction Ox becomes par-
allel to the wave vector ~k: ~k = k~ex.

By inserting (9) into (8), one thus finally obtains:

ε(~k, ω)
B→0−→ 1 +

∑
species

1

(kλD)2
W

(
ω

|k|vth

)
,

which is indeed the dielectric function of an homogeneous, unmagne-
tized plasma.
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3 Electrostatic Waves in Homogeneous, Mag-

netized Plasma

This provides the solution to exercise 2 of section 1.2.3.

The dielectric function for electrostatic waves in an homogeneous magnetized
plasma is given by Eq. (7):

ε(~k, ω) = 1 +
∑

species

1

(kλD)2

{
1 +

+∞∑
n=−∞

ω

ω − nΩ

[
W

(
ω − nΩ

|k‖|vth

)
− 1

]
Λn(ξ)

}
,

(10)
with ξ = (k⊥vth/Ω)2, and using here the notations k‖ and k⊥ for the parallel
and perpendicular components respectively to the magnetic field. Still consid-
ering an orthonormal coordinate system (~ex, ~ey, ~ez), such that ~B = B~ez, note

that ~k⊥ can take any orientation in the Oxy plane as the homogeneous system
is isotropic in Oxy (see Fig. 3).

Having fixed the wave vector ~k, one solves the dispersion relation

ε(~k, ω) = 0,

for the complex frequency ω = ωR + iγ by assuming |γ/ωR| � 1. In this case,
the dispersion relation can be solved in the resonant approximation, so that:

εR(ωR) = 0, (11)

γ = − εI(ωR)

∂εR(ωR)/∂ω
, (12)

where εR and εI are the real and imaginary parts respectively of the dielectric
function ε = εR+iεI . Equation (11) thus provides an equation for the real part
ωR of the frequency, while Eq. (12) provides a relation for the growth/damping
rate γ.

In the following, one also makes use of the Taylor series expansion of the
dispersion function W (z) for |z| � 1:

W (z) = 1− z2 +
z4

3
− . . .+ (−1)n

z2n

(2n− 1)!!
+ . . .+ i

√
π

2
z exp(−z

2

2
), (13)

as well as the asymptotic series for |z| � 1:

W (z) = − 1

z2
− 3

z4
− . . .− (2n− 1)!!

z2n
− . . .+ i

√
π

2
z exp(−z

2

2
). (14)
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Figure 3: Wave vector in homogeneous, magnetized plasma

3.1 Electron Plasma Wave (EPW)

Here one wants to consider waves with frequency ω ∼ ωpe. For such high
frequency modes, ions can be considered fixed, so that in the sum over species
appearing in (10) only electrons provide a significant contribution. Further-
more, one assumes here that the magnetic field amplitude is sufficiently strong
so that |ωpe| � |Ωe|. Note that this is not necessarily the case under magnetic
fusion conditions (see table 1 and 2 in the notes). This scaling avoids however
possible resonances with harmonics of the cyclotron frequency, so that in the
sum

∑
n appearing in (10), one needs to consider only n = 0.

The dispersion relation thus reduces here to

ε(~k, ω) = 1 +
1

(kλDe)2
{1 + [W (ze)− 1] Λ0(ξe)} = 0,

with ze = ω/|k‖|vth e ∼ 1/(kλDe). Assuming kλDe � 1, which turns out to be
necessary for the resonant approximation to be valid (as will be shown on the
final result), one thus has |ze| � 1, and makes use of the asymptotic series for
W (z). See Fig. 4 for the relative position of the parallel phase velocity ω/k‖
with respect to the electron distribution in the case of the EPW. One then
also has:

ξe =

(
k⊥vth e

Ωe

)2 |ωpe|�|Ωe|
�

(
k⊥vth e
ωpe

)2

< (kλDe)
2 � 1 =⇒ Λ0(ξe) ' 1.
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In the resonant approximation, one thus obtains from (11):

εR(ωR) ' 1 +
1

(kλDe)2

1− Λ0(ξe)︸ ︷︷ ︸
'0

−
(
k‖vth e
ωR

)2

Λ0(ξe)︸ ︷︷ ︸
'1

 = 0, (15)

which gives for the real frequency:

ω2
R =

(k‖vth e)
2

(kλDe)2
=
k2
‖

k2
ω2
pe =⇒ ωR = ±

k‖
k
ωpe. (16)

This result is to be compared to the frequency ωR ' ωpe in an homogeneous,
unmagnetized plasma. The factor k‖/k appearing in (16) reflects the fact that
the motion of particles is mainly constrained along the magnetic field. As a
result, the plasma is very slow in responding to perturbations nearly perpen-
dicular to ~B for which |k‖/k| � 1.

One now computes the damping rate in the resonant approximation. For
this one first derives the following relations, making again use of (14) as well
as (15):

εI(ωR) '
√
π

2

ze,R
(kλDe)2

exp(−
z2
e,R

2
) =

√
π

2

1

(kλDe)2

ωR
|k‖|vth e

exp

[
−1

2

(
ωR
|k‖|vth e

)2
]
,

∂εR
∂ω

(ωR) ' 2

(kλDe)2

(|k‖|vth e)2

ω3
R

.

So that from (12), one obtains:

γ = − εI(ωR)

∂εR(ωR)/∂ω
' −

√
π

8

ω4
R

(|k‖|vth e)3
exp

[
−1

2

(
ωR
|k‖|vth e

)2
]
.

One clearly has γ < 0, which corresponds to damping. Making use of (16) one
then finally obtains:∣∣∣∣ γωR

∣∣∣∣ '√π

8

1

(kλDe)3
exp

[
−1

2

1

(kλDe)2

]
,

which is essentially the same relation for the relative Landau damping as in a
non-magnetized plasma.

Note that for kλDe � 1, this final result confirms the assumption |γ/ωR| � 1
required for solving the dispersion relation under the resonant approximation.
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ωR

k‖
ωR

k‖

ion distribution f
i
(v)

electron
 distribution f

e
(v)

v

EPWIAW

Figure 4: Phase velocity of EPW and IAW with respect to the electron and
ion distributions

3.2 Ion Acoustic Wave (IAW)

One now considers low frequency modes such that

vth i � |
ω

k‖
| � vth e. (17)

See figure 4, illustrating also the position of the parallel phase velocity of the
IAW with respect to both the electron and ion distributions. The scaling de-
fined by (17) will need to be checked on the final result. Furthermore, one
shall again assume that the magnetic field is sufficiently strong, such that
|ω| � |Ωi|, |Ωe|, so that all harmonic resonances |n| > 0 of the cyclotron fre-
quencies can be neglected.

The dispersion relation, with both electron and ion contributions, thus re-
duces here to

ε(~k, ω) = 1 +
1

(kλDe)2
{1 + [W (ze)− 1] Λ0(ξe)}+

1

(kλDi)2
{1 + [W (zi)− 1] Λ0(ξi)}

= 0,

with
ze =

ω

|k‖|vth e
, and zi =

ω

|k‖|vth i
.
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The assumed scaling (17) implies:

|ze| � 1 =⇒ W (ze) ' 1 + i

√
π

2
ze,

|zi| � 1 =⇒ W (zi) ' −
1

z2
i

+ i

√
π

2
zi exp(−z

2
i

2
).

having made use of Eqs. (13) and (14) respectively.

In the resonant approximation, one thus obtains from (11):

εR(ωR) ' 1 +
1

(kλDe)2
+

1

(kλDi)2

{
1− Λ0(ξi)−

(
k‖vth i
ωR

)2

Λ0(ξi)

}
= 0. (18)

The electron contribution clearly reduces to its adiabatic response. Further-
more, assuming again sufficiently long wavelengths such that kλDe � 1, one
can neglect the first term, i.e. 1, in the above relation. This corresponds
to neglecting the left hand side in Poisson’s equation, thus imposing quasi-
neutrality. In this way, one obtains the following real frequency:

ω2
R = (k‖vth i)

2 Λ0(ξi)

(λDi/λDe)2 + 1− Λ0(ξi)
= (k‖cs)

2 Λ0(ξi)

1 + (ZTe/Ti)[1− Λ0(ξi)]
,

where c2
s = ZTe/mi is the sound speed squared, Z the ionization degree, and

having made use of (λDi/λDe)
2 = Ti/ZTe.

In the limit of ξi = (k⊥λLi)
2 � 1, such that Λ0(ξi) ' 1− ξi, one then further-

more obtains:

ω2
R =

(k‖cs)
2

1 + (k⊥ρs)2
, (19)

where ρs = cs/Ωi is the ion Larmor radius estimated at the sound speed. The
term (k⊥ρs)

2 appearing in the denominator of Eq. (19) is the so-called polar-
ization drift term.

One thus essentially obtains

ωR = ±k‖cs, (20)

which, similar to the EPW case, differs from the corresponding dispersion re-
lation ωR = ±kcs in an homogeneous, unmagnetized plasma by a factor k‖/k.

To compute the damping rate in the resonant approximation, one derives the
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following relations:

εI(ωR) '
√
π

2

Λ0(ξe)

(kλDe)2
ze,R +

√
π

2

Λ0(ξi)

(kλDi)2
zi,R exp(−

z2
i,R

2
)

'
√
π

2

Λ0(ξe)

(kλDe)2

ωR
|k‖|vth e

,

∂εR
∂ω

(ωR) ' 2
Λ0(ξi)

(kλDi)2

(|k‖|vth i)2

ω3
R

,

having again made use of (18), and having neglected the ion contribution to
εI as it is exponentially small compared to the electron contribution.

From (12), one then obtains:

γ = − εI(ωR)

∂εR(ωR)/∂ω
' −

√
π

8

Λ0(ξe)

Λ0(ξi)

(
λDi
λDe

)2
ω4
R

(|k‖|vth i)2(|k‖|vth e)
,

which is again negative, i.e. clearly corresponding to damping.

In the limit ξe,i � 1, so that Λ0(ξe,i) ' 1, one then finally obtains:∣∣∣∣ γωR
∣∣∣∣ =

√
π

8

Ti
ZTe

c3
s

v2
th ivth e

=

√
π

8

√
Zme

mi

,

which is again essentially the same relation for the relative Landau damp-
ing of IAWs as in a non-magnetized plasma. As me/mi � 1 one indeed has
|γ/ωR| � 1, required for justifying the resonant approximation.

Finally, let us check the initial assumptions |ze| � 1 and |zi| � 1:

|ze| '
∣∣∣∣ ωR
k‖vth e

∣∣∣∣ (20)
' cs

vth e
=

√
Zme

mi

� 1 OK!

|zi| '
∣∣∣∣ ωR
k‖vth i

∣∣∣∣ ' cs
vth i

=

√
ZTe
Ti

?
� 1 OK, if Te � Ti.

The requirement Te � Ti is naturally the same as for IAWs in an unmagnetized
plasma.
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4 Two-Fluid Model of the Slab-ITG Instabil-

ity

This provides the solution to the exercise of section 1.5.3.

One derives here the linear dispersion relation for the slab-ITG instability
starting from a two-fluid model. The “hot” ions are represented by the conti-
nuity equation, the momentum equation including a finite pressure term, and
a heat equation representing convection in the flow ~vE = ( ~E × ~B)/B2:

∂Ni

∂t
+∇ · (Ni~ui) = 0,

miNi

[
∂~ui
∂t

+ ~ui · (∇~ui)
]

= eNi

(
~E + ~ui × ~B

)
−∇(NiTi),

∂

∂t
(NiTi) +∇ · (NiTi~vE) = 0.

where Ni is the average density, ~ui the average velocity, and Ti the temperature
of the ions with massmi and charge e. The field ~B is the uniform magnetostatic
field, and ~E = −∇φ the electrostatic field associated to the perturbation,
deriving from the potential φ. Electrons are assumed to respond adiabatically
(valid if |ω/k‖| � vth e), so that :

Ne = Ne0 exp(
eφ

Te
),

where Ne is the total density, Ne0 the initial, homogeneous density, and Te the
temperature of the electrons. Assuming that the wavelengths are sufficiently
large such that kλDe � 1, one may invoke quasineutrality for closing the above
system of equations:

Ne = Ni.

Let us now linearize this system of equations for small amplitude fluctuations
δN/N = eφ/Te � 1. These perturbations are of the form φ ∼ exp i(~k ·~r−ωt).
The unperturbed fields are denoted (Ni = N0, Ne = N0, ~ui = 0, Ti = Ti0). The
corresponding fluctuations are denoted (δNi, δNe, ~ui, δTi). The unperturbed
fields are assumed all homogeneous, except for the ion temperature: ∇Ti0 6= 0.
The linearized equations then become:

∂δNi

∂t
+N0∇ · ~ui = 0, (21)

mi
∂~ui
∂t

= e( ~E + ~ui × ~B)−∇δT ?i , (22)

∂δT ?i
∂t

+ ~vE · ∇Ti0 = 0, (23)
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having defined δT ?i = δTi + (δNi/N0)Ti0.

Equation (22) can be re-written:

~ui =
e ~E −∇δT ?

−iωmi︸ ︷︷ ︸
~a

+~ui ×
e ~B

−iωmi︸ ︷︷ ︸
~b

,

and is thus of the form ~u = ~a + ~u × ~b, with solution ~u = (1 + b2)−1(~a + ~a ·
~b~b + ~a ×~b) = ~a‖ + (1 + b2)−1(~a⊥ + ~a ×~b), where ~a‖ and ~a⊥ are respectively

the components of ~a parallel and perpendicular to ~b. One thus obtains for the
components of ~u parallel and perpendicular to ~B:

ui‖ =
eE‖ −∇‖δT ?i
−iωmi

, (24)

~ui⊥ =

[
1− Ω2

i

ω2

]−1
[
e ~E⊥ −∇⊥δT ?i
−iωmi

− e ~E −∇δT ?i
ω2m2

i

× e ~B

]
|ω|�Ωi' e ~E −∇δT ?

eB2
× ~B = ~vE −

∇δT ?

eB2
× ~B, (25)

having neglected here the polarization drift term (ω/iΩ2
imi))(e ~E⊥ − ∇⊥δT ?i )

as it is order |ω|/Ωi smaller than vE.

Equation (24) clearly corresponds to the linearized, parallel momentum equa-
tion:

mi

∂ui‖
∂t

= eE‖ −∇‖δT ?,

while from equation (25) one concludes that ∇ · ~ui⊥ = 0, as

∇ · ~vE = ∇ · −∇φ×
~B

B2
= ∇φ · (∇×

~B

B2
)︸ ︷︷ ︸

=0

−
~B

B2
· (∇×∇φ)︸ ︷︷ ︸

=0

= 0,

and in the same way ∇ · [∇δT ?i × ~B/(eB2)] = 0. The linearized continuity
equation (21) thus reduces to

∂δNi

∂t
+N0∇‖ui‖ = 0.
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The so-obtained set of linearized equations can thus be summarized as follows:

∂δNi

∂t
+N0∇‖ui‖ = 0, (26)

mi

∂ui‖
∂t

= −e∇‖φ−∇‖δT ?i , (27)

∂δT ?i
∂t

+ ~vE · ∇Ti0 = 0, (28)

δNi = δNe = N0
eφ

Te
, (29)

with ~vE = (−∇φ× ~B)/B2.

For perturbations of the form exp i(~k · ~r − ωt), one obtains for Eqs. (26)-
(28):

δNi = N0

k‖ui‖
ω

,

ui‖ =
k‖
ωmi

(eφ+ δT ?i ),

δT ?i = −ωTi
ω
eφ,

where ωTi = ~vTi ·~k = [−∇Ti0× ~B/(eB2)] ·~k is the diamagnetic drift frequency
related to the ion temperature gradient. From these last relations one then
derives:

δNi

N0

=
(k‖ cs)

2

ω2

(
1− ωTi

ω

) eφ
Te
,

which can then be inserted into Eq. (29), thus providing the dispersion rela-
tion:

1−
(k‖ cs)

2

ω2

(
1− ωTi

ω

)
= 0, (30)

having defined c2
s = Te/mi the squared sound speed. Equation (30) indeed

agrees with Eq. (1.43) in the notes, obtained from the kinetic dispersion
relation in the appropriate limit for the slab-ITG instability.


