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1 DIAMAGNETIC DRIFTS 2

1 Diamagnetic Drifts

This provides the solution to exercises 1 and 2 of section 1.1.2.

In a fluid representation, the momentum equation for a given species a (=elec-
trons, ions) in a magnetized plasma reads:

Oty

O[NO[
mn ot

- (Vi) | = =Vpa+ @ala (E+iax B), (1)
where m,, is the mass and ¢, the charge of the considered species. The fields
No (7 t), pa(T,t), and @, (7, t) are respectively the density, pressure, and aver-

age velocity. [E(7,t), B(T,t)] are possible electric and magnetic fields acting
on the plasma.

Let us consider a slab-like magnetic equilibrium similar to the one depicted in
Figures 1.3 and 1.4 of the notes. For this purpose one introduces an orthonor-
mal coordinate system (€, €, €;), such that B= Beé,, and such that all spatial
gradients are along €,. Thus, in Eq. (1) one has 0, /0t = 0, U, - (Vi) =0,
as well as E = 0, and obtains:

0= —Vpa + Nyt X B. (2)

Taking the vector product of Eq. (2) with B, one derives the transverse
velocity
—VDa B
X 3
No  quB? )
which is indeed equivalent to the diamagnetic drift ; obtained in Eq. (1.4) of
the notes, in the frame of a kinetic description.

Uq, 1 =

Note the scaling of diamagnetic drifts compared to the thermal velocity vy,:

N s N e Y U

YN 4B T LgB L

where L is the characteristic scale length of pressure gradients, v = T/m
the squared thermal velocity, A\, = vy, /2 the thermal Larmor radius, and
) = ¢B/m the cyclotron frequency. Thus assuming € = Ay /L < 1, one has
Vd / U, K 1.

The diamagnetic drifts can naturally carry a charge current:

—

szEQ:anNaﬁa:—vaax;:—vpx% (4)
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having made use of Eq. (3), and defined P =) p, the total plasma pressure.

Let us now address the self-consistency of the magnetostatic field B with
respect to these currents. This is achieved by injecting (4) into Ampere’s law:

—

B
V x B = pj = —poVP x — ek

Taking again the vector product of this last relation with B provides:

1 - - 1 = . 1 L B2
—(VxB)xB=—B-(VB)——(VB)-B=-V |— | =VP,
[o Ho Ho 2410
where the curvature term (1/410)B-(V B) (the so-called magnetic tension force)
is zero in the here considered slab geometry. From this last relation one thus
obtains: B2 B2
V(P—i——):O, = P+ — = const. (5)
240 240
Relation (5) states that the thermal pressure P and magnetic pressure B2 /2
compensate each other. Thus, if a plasma is submitted to an external magnetic
field Bext it generates, through its diamagnetic currents, an internal magnetic
field By, which opposes B..: in such a way that (5) is verified:

[Bext + Bint ()] ngt
240 20

One says that the plasma generates a magnetic well. This is illustrated in
figure 1. A plasma thus clearly has a diamagnetic behavior.

P(z) +

The diamagnetic nature of a plasma naturally results from the behavior of
each individual particle. Each particle in a magnetic field E, through its
cyclotron motion, generates a small magnetic moment /i, which is always op-
posite the magnetic field as shown in Fig. 2. The amplitude p of a magnetic
moment is the product of the surface S of its current loop, times the current
I: = SI. In the case of a single charge ¢ in a magnetic field é, the surface is
given in terms of the Larmor radius Az, = v, /Q by S = 7A%, and the current
by I = ¢Q/27. The magnetic moment thus becomes:

Q  m?
ST =7\ g— = —=.
n= ™ Lq o 9B

Averaging the squared perpendicular velocity v? over a distribution with tem-
perature T, one obtains (m/2) < v> >= T, so that the average magnetic
moment per particle becomes:
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Figure 1: Magnetic well generated by a plasma as a result of its diamagnetic

behavior
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Figure 2: Magnetic moment ;i associated to the cyclotron motion of a particle
in a magnetic field B. The moment i is opposite the field B whether the
charge q is positive or negative. This is the origin of the diamagnetic behavior

of the plasma.
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For a plasma species with density /N, the magnetization field M , which mea-
sures the density of magnetic moments, is thus given by

—

— s B

M= N(@) = —pp
where again p is the pressure of the considered species. In the presence of a
pressure gradient, one can then compute the magnetization current:

—

. 5 B
J=VXM=-Vpx o,

which clearly recovers Eq. (4).
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2 Limits of Dielectric Function

This provides the solution to exercise 1 of section 1.2.3.

One considers the dielectric function of an inhomogeneous, magnetized
plasma given by Eq. (1.20) in the notes:

D=1 o k:AD { il “”iom [W (%)_1] A”@}'

spec1es n=—
(6)

In the limit of zero external forces (ﬁ = 0 = wr = 0), and no equilibrium
gradients (w/, = 0), one obtains:

{ Z —nQ{ (Tkglg)_l]j\"@}'

(7)
This is the dielectric function of an homogeneous magnetized plasma
[see for example Eq. (4.68) in S. Ichimaru, Basic Principles of Plasma Physics.
A Statistical Approach (W. A. Benjamin, Inc., Reading, Massachusetts, 1973),
or Eq. (3.54), K. Appert, Théorie des Plasmas Chauds (EPFL-Repro, EPFL,
2003)].

spec1es

One now considers the limit of vanishing magnetic field: B — 0. In this
case = ¢B/m — 0 and £ = (k,v/Q)? — +o0o0. One can thus make use of
the asymptotic limit of the scaled modified Bessel functions:

Eoqoo 1 n? B Q 1/ n0Q\?
A& "= g P 58) = o o 0 [_5 (kyvth) ] ’

The dielectric function then becomes

ehw) =1+ Y —— (k:AD) [1+1], (8)

spec1es

having defined the term I:

+00 2
Q w w — nf) ns
I = w 1] ex .
nz_:oo V 27k v W — 1) { ( |z v ) } b [ (k Uth) ]
This term thus appears in the form of a Darboux sum, which in the limit of
2 — 0 converges to a continuous integral:

—+00 “+o00
=" Qfct(nQ) =’ / dy fet(y),

—00

n=—oo
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having identified y = n{) and dy = 2. In the limit of vanishing magnetic field,
one can therefore write:

g s v ) e 5 ()
2T kyvg, w —y k.| v, P 2 \ kv, '
Making use of the definition of the dispersion function W (z):

W(z) = \/%/dxx f . exp(—x2/2),

one furthermore obtains:

/ 1 [T dy 1( Y )2 W /+°°de[ v, 1 1(112)2
21 J_o kyum P ko, W=YJ) oo Vtn V- (w—1y)/|k.]| ) P13 Veh
kzvi:-z—w

vy=y/hy /+oo dv, /+°° dv, w 1 UZ + v?
exp | —— 5 X
o Vsh, U, kyvy + kv, —w 2 vp,
/ dv, 1 ( Vs >2
V2r ) v P12 Uth,

-~

=1

1 / dvdv,dv, w 1 [v:+ v; + v?
= exp |—= | ———= | |.
(27)3/2 v ko, 4+ kv, —w P12 vE

As we have considered the wave vector k = k€, + ky€,, the resonant denomi-

nator in the above relation can be written k - & — w, so that

1 w 1 v?
I = ——— | dV 5—— ———
(2mvd, )3/2/ Uk'.U—wexp( 2Ut2h)
—Y
kT 9
k-Uv—w

dv, Uy

1
\/271'/ Vgh, Vg — W/ K| p( 2 vy,

_ W QJ’) Y (9)

having re-aligned the coordinate system so that the direction Ox becomes par-
allel to the wave vector k: k = ke,.

By inserting (9) into (8), one thus ﬁnally obtains:

- B%O w
— 1+ ,
ek, > G (mm)

spemes

which is indeed the dielectric function of an homogeneous, unmagne-
tized plasma.
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3 Electrostatic Waves in Homogeneous, Mag-
netized Plasma

This provides the solution to exercise 2 of section 1.2.3.

The dielectric function for electrostatic waves in an homogeneous magnetized

plasma is given by Eq. (7):
{ Z Sl C) ] A"@}’

(10)
with £ = (kyvy,/Q)?, and using here the notations & and k, for the parallel
and perpendicular components respectively to the magnetic field. Still consid-
ering an orthonormal coordinate system (€, €, €,), such that B = B€,, note

k

spemes

that k 1 can take any orientation in the Oxy plane as the homogeneous system
is isotropic in Ozy (see Fig. 3).

Having fixed the wave vector E, one solves the dispersion relation

for the complex frequency w = wg + iy by assuming |y/wr| < 1. In this case,
the dispersion relation can be solved in the resonant approximation, so that:

er(wr) =0, (11)
___alen) 12
1= der(wr) /0w’ (12)

where er and ¢; are the real and imaginary parts respectively of the dielectric
function € = eg+ie;. Equation (11) thus provides an equation for the real part
wr of the frequency, while Eq. (12) provides a relation for the growth /damping
rate .

In the following, one also makes use of the Taylor series expansion of the
dispersion function W (z) for |z| < 1:

4 2n 2
124 s T _Z
W) =1-2"+2— .+(-1) <2n_1>”+...+z\/;exp( 5), (13)

as well as the asymptotic series for |z| > 1:

W(z):—i—i—...—W—...—i—i\/gzexp(—%). (14)
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Figure 3: Wave vector in homogeneous, magnetized plasma

3.1 Electron Plasma Wave (EPW)

Here one wants to consider waves with frequency w ~ wp.. For such high
frequency modes, ions can be considered fixed, so that in the sum over species
appearing in (10) only electrons provide a significant contribution. Further-
more, one assumes here that the magnetic field amplitude is sufficiently strong
so that |wpe| < [€2]. Note that this is not necessarily the case under magnetic
fusion conditions (see table 1 and 2 in the notes). This scaling avoids however
possible resonances with harmonics of the cyclotron frequency, so that in the
sum y_ appearing in (10), one needs to consider only n = 0.

The dispersion relation thus reduces here to

- 1
e(k,w)=1+ m {14 [W(ze) — 1] Ag(&)} = 0,

with z. = w/|kj|vine ~ 1/(kApe). Assuming kAp. < 1, which turns out to be
necessary for the resonant approximation to be valid (as will be shown on the
final result), one thus has |z.| > 1, and makes use of the asymptotic series for
W(z). See Fig. 4 for the relative position of the parallel phase velocity w/k;
with respect to the electron distribution in the case of the EPW. One then
also has:

Eivme 2 lwpel<IQel [ kivme \>
ge:( Lt ) < ( Lt ) <)<l = Ag(&)~1.

Qe Wpe
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In the resonant approximation, one thus obtains from (11):

Eyvine

) AO(fe) = Oa (15>
WR ~——

~

1
er(wWr) ~ 1+ (CYSE 1— /N\;J(fe) - <

which gives for the real frequency:

kjvme)? ki
wh = ﬁ = k—!wf,e =  wp= j:? Wpe- (16)
This result is to be compared to the frequency wr ~ w,. in an homogeneous,
unmagnetized plasma. The factor k| /k appearing in (16) reflects the fact that
the motion of particles is mainly constrained along the magnetic field. As a
result, the plasma is very slow in responding to perturbations nearly perpen-
dicular to B for which |k /k| < 1.

One now computes the damping rate in the resonant approximation. For
this one first derives the following relations, making again use of (14) as well
as (15):

(w) \/? Ze,R o ( ZE,R) \/? 1 WR o 1 WR 2
>~y exp(——) =4/= Xp | —=
iR 2 (hpe)? PV 2 2 (khpe)? Tkyglvme T |2 \Uklome ) |

ocn 2 (lylun’
Ow VT (kApe)? Wb

So that from (12), one obtains:

er(wr) \/? wh . 1 < WR )2
=~ — = —exp|—= | —— .
T T Den(wr) /0w 8 (kylvme)® P12 \Jkyvme

One clearly has 7 < 0, which corresponds to damping. Making use of (16) one

then finally obtains:
\/? 1 1 1
My XD |~
8 dpe?® P T2 kdpe)? ]

which is essentially the same relation for the relative Landau damping as in a
non-magnetized plasma.

e
WR

Note that for kAp. < 1, this final result confirms the assumption |y/wpg| < 1
required for solving the dispersion relation under the resonant approximation.
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Figure 4: Phase velocity of EPW and TAW with respect to the electron and
ion distributions

3.2 Ion Acoustic Wave (IAW)

One now considers low frequency modes such that

w
Vini <K ’k—lll < Vspe- (17)

See figure 4, illustrating also the position of the parallel phase velocity of the
[AW with respect to both the electron and ion distributions. The scaling de-
fined by (17) will need to be checked on the final result. Furthermore, one
shall again assume that the magnetic field is sufficiently strong, such that
lw| < |$%], 2], so that all harmonic resonances |n| > 0 of the cyclotron fre-
quencies can be neglected.

The dispersion relation, with both electron and ion contributions, thus re-
duces here to

- 1 1
e(k,w)=1+ [(GYSE {1+ [W(ze) — 1] Ao(Se) } + o) {1+ [W(z) — 1] Ao(&)}
— 0,
with w w
Ze = |k|||'Uthe7 and Z; = |k|||vthi‘
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The assumed scaling (17) implies:

] <1 — W(ze)guz\/gze,

1

|zi| >1 = W(z) ~ 2 —l—’i\/gzi exp(—;).

having made use of Egs. (13) and (14) respectively.

In the resonant approximation, one thus obtains from (11):

- 1 1 k”UtM 2 o

€R(WR) ~ 1+ (k‘/\De)2 + (k?/\DZ)Q {1 Ao(&) <K) Ao(gl)} =0. (18)
The electron contribution clearly reduces to its adiabatic response. Further-
more, assuming again sufficiently long wavelengths such that kAp. < 1, one
can neglect the first term, i.e. 1, in the above relation. This corresponds
to neglecting the left hand side in Poisson’s equation, thus imposing quasi-
neutrality. In this way, one obtains the following real frequency:

Ao(&) Ao(&)

“i = (kuvthi)Q()\Di/ADe)Q +1—Ao(&) N (kHCS)Ql + (ZTe/T)[1 = Ao(&)]

where ¢2 = ZT,/m; is the sound speed squared, Z the ionization degree, and
having made use of (Ap;/Ap.)? = T;/ZT..

In the limit of & = (k1 A;)? < 1, such that Ag(&) ~ 1 — &, one then further-
more obtains:

(jes)®
L+ (kips)?
where ps = ¢5/€; is the ion Larmor radius estimated at the sound speed. The

term (k, p,)* appearing in the denominator of Eq. (19) is the so-called polar-
ization drift term.

(19)

2 _
Wp =

One thus essentially obtains
WR = :b/{?HCS, (20)

which, similar to the EPW case, differs from the corresponding dispersion re-
lation wp = Fkc, in an homogeneous, unmagnetized plasma by a factor kj/k.

To compute the damping rate in the resonant approximation, one derives the
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following relations:

- Ao(&e) ™ No(&) Zin
ilwn) = \/7(]{?/\De) +\/;(kADi)2Zi7Rexp(_ 2 )
\/7A0(€e) WR
2 (kApe)? [k |vme’
Jeg N Ao(&) (lkylveni)®
a_w(wR) — Q(k/\Dz)2 w% 5

having again made use of (18), and having neglected the ion contribution to
€7 as it is exponentially small compared to the electron contribution.

From (12), one then obtains:

__MN_ EAO(fe) Api\” wh
1T Ben(wn) /0w \/;AO(&) (AD) (1&) [ven i) (| Ky vene)

which is again negative, i.e. clearly corresponding to damping.

In the limit & ; < 1, so that Ag(&.;) =~ 1, one then finally obtains:

T 1; c T [Zme
8 ZT, vk Vi 8V m;’

which is again essentially the same relation for the relative Landau damp-
ing of TAWs as in a non-magnetized plasma. As m./m; < 1 one indeed has
|7/wgr| < 1, required for justifying the resonant approximation.

v

WR

Finally, let us check the initial assumptions |z.| < 1 and |z;] > 1:

w 20) ¢ M,
EARS ‘ RS 2«1 oK
k||vthe Uthe my
s ZT, 2 :
2] ~ ‘ YR | & >1 OK, it T,>> T,
k||'Uthi Vth i T;

The requirement T, > T; is naturally the same as for IAWs in an unmagnetized
plasma.



4 TWO-FLUID MODEL OF THE SLAB-ITG INSTABILITY 14

4 Two-Fluid Model of the Slab-ITG Instabil-
ity
This provides the solution to the exercise of section 1.5.3.

One derives here the linear dispersion relation for the slab-ITG instability
starting from a two-fluid model. The “hot” ions are represented by the conti-
nuity equation, the momentum equation including a finite pressure term, and
a heat equation representing convection in the flow o = (E x B)/B2:

ON;
(N:i,)) =
B + V- (N;1;) 0,
m;N; [% e (vm)} = N (E + @ é) ~V(N,T),
at

where N, is the average density, u; the average velocity, and T; the temperature
of the ions with mass m; and charge e. The field B is the uniform magnetostatic
field, and E = —V ¢ the electrostatic field associated to the perturbation,
deriving from the potential ¢. Electrons are assumed to respond adiabatically
(valid if |w/k| < vepe), so that :

e
Ne = Neo eXp(E)a
where NN, is the total density, N,y the initial, homogeneous density, and T, the
temperature of the electrons. Assuming that the wavelengths are sufficiently
large such that kAp. < 1, one may invoke quasineutrality for closing the above

system of equations:
N, = N;.

Let us now linearize this system of equations for small amplitude fluctuations
SN/N = e¢/T. < 1. These perturbations are of the form ¢ ~ expi(k-7—wt).
The unperturbed fields are denoted (IV; = Ny, Ne = Ny, u; = 0,T; = Typ). The
corresponding fluctuations are denoted (0N;, 0N, u;, 0T;). The unperturbed
fields are assumed all homogeneous, except for the ion temperature: VTjy # 0.
The linearized equations then become:

OO N;
NoV - u; = 21
8t + 0v Uy 07 ( )
aﬁz — o — *
0T
WL | - VT =0, (23)

ot
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having defined 67 = dT; + (0N;/No)Tyo-

Equation (22) can be re-written:

L, eE-—-VoTr | eB
Uy = ———— +U; X —; )
—iwmy —iwm;

a b

and is thus of the form @ = @ + @ x b, with solution @ = (1 4 b*)~L(@+ @ -
bb+axb) = aj+ (L+0*)"Yad, +adx b), where d and @, are respectively
the components of @ parallel and perpendicular to b. One thus obtains for the
components of « parallel and perpendicular to B:

eEy — V) o1}

W = T (24)
, 027 |eE, — V. 0T eE—VoTy -
U | = 1—— - — 5 X eB
w? —iwm; w?m;
W< eE —VoT* - . VéT* =
= e 32 X B =up— cB? X B, (25)

having neglected here the polarization drift term (w/iQ22m;))(eE, — V1 6T7)
as it is order |w|/€2; smaller than vg.

Equation (24) clearly corresponds to the linearized, parallel momentum equa-
tion:

O _ oy~ vy
i — ¢BI = V)oT7,
while from equation (25) one concludes that V - 4;; = 0, as
~V¢ x B B, B
V.G =V ZQX =V (V % 75) =7 (V X Vo) =0,
S——— -0

and in the same way V - [VOT* x B/(eB?)] = 0. The linearized continuity
equation (21) thus reduces to

00 N;;
ot
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The so-obtained set of linearized equations can thus be summarized as follows:

B5N;
8t + N()VHUI-” == 0, (26)
Ju;
i% — —eV6 — V0T, (27)
95T
-+ 0p - VT = 0, (28)
SN; = 6N, = NOGT—QS, (29)

with 7 = (=V¢ x B)/B?.

For perturbations of the form expz’(lg -7 — wt), one obtains for Eqs. (26)-
(28):

kyui
SN, = Nyt

w

k
uy = WL (e + 0T7),

%

where wy, = Oy, - k = [~V x B/(eB?)] -k is the diamagnetic drift frequency
related to the ion temperature gradient. From these last relations one then
derives:

ON;  (kycd)’ (1 B w_T> e

NO w? w Te
which can then be inserted into Eq. (29), thus providing the dispersion rela-
tion: (hy c)?
| Cs ( wTi) _
1— 1——) =0 30
L ) <o, (30)

having defined ¢ = T./m; the squared sound speed. Equation (30) indeed
agrees with Eq. (1.43) in the notes, obtained from the kinetic dispersion
relation in the appropriate limit for the slab-ITG instability.



