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Inclusion of fast ion effects in MHD equations =PrL

‘We may refer to the derivation of the perpendicular MHD equation from week 1. These hold
for weakly collisional populations as well as the usual collisional ones:

—ipwduy =J x 8B +8J x B+ (P, —§P))k — V5P,
Su, — —iwg, = JEXB

B2
8B =-V x 6E
8J =V x 6B
VvV .8B =0,

The perpendicular momentum equation, derived and shown in Eq. (1.8) has exploited

quénj =0.
J

quasi-neutrality:

‘We have the following definitions

p:ijnj, c?PLzzzéP'jJJ SPH:ZJP]-”, J:qunjuj.
J J J J

Notice that we have not yet applied Ohm’s law. Ideal Ohm’s law sets b - § E = 0. We have seen
that parallel electric fields arise from dissipation (resistive MHD). But it can also come from
weakly collisional kinetic corrections, e.g. ions and electrons having different kinetic behaviour
(different orbit widths, different drift frequencies) will require parallel electric fields to
maintain quasi-neutrality.
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Notes

Diamagnetic corrections

There is a generalisation to the momentum equation written on the previous slide. It has been
rigourously shown that there are diamagnetic corrections in both collisional and collisionless
descriptions. See Lanthanler, Graves, Pfefferlé, Cooper Plasma Phys. Control. Fusion 61 (2019)
074006:

ST pi(—iw+tu, ;- V)duy =J X 8B+8J X B+ (§PL —6P))k — V6P,
J

where the diamagnetic velocity for species j is

_ BXVP,;

Uy =
! ajn; B2

and P ; is the perpendicular pressure associated with the equilibrium distribution of species
J: X
3 2
Py :'mj/d vl Fj.

Usually fast ion physics is neglected from the LHS of the momentum equation because p; < p;.
Electrons are usually neglected from the LHS since me < m; so that pe < p;, But, with
diamagnetic corrections it might be important to retain fast ion physics on the LHS if P ;, ~ Pil
since

B x VP, ;
PjUs j ~ M
quz

Clearly in a fusion plasma one can have Pj_h ~ PZ-/ even if ny < n;, because of the energy of

the fast ions, in particular since T} ~ mhvi/Q > T;.



Inclusion of fast ion effects in MHD equations =PrL

Consider the electric field .
SE = —-Véd —SA. (7.1)

‘We are free to choose a gauge b-8A = 0, so that § A is perpendicular to B, i.e.
A = 8¢ x B. (7.2)
Thus, any parallel electric field is connected to non-zero §&:
5EH =06E -b=—-b-Vid.

Consider now quasi-neutrality. We assume in this course that ions and electrons are highly
collisional, while fast ions are not. But, if the fast ion density fulfills n;, < (n;,ne) then the
fast ions may be neglected in the quasi-neutrality condition. Hence, only ions and electrons
enter quasi-neutrality, and these are independent of §® (see next slide). Hence §® does not
enter the quasi-neutrality problem, and thus we may take 6® = 0, as in ideal MHD. Hence,

8E = —-8A =686 x B

and noting that we already have
. dE X B
—iwE | = 5

then it follows that & = &€ and thus:

SE — iw€ x B =0,
8B =V x (£ X B),
8J =V X8B =V X[V x (& x B)].
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Inclusion of fast ion effects in MHD equations =PrL

‘We require equations for the moments appearing in the equation of motion, in particular the
perturbed pressure tensor. Consider first the electrons and ions. For collisional electrons and
ions the adiabatic equation of state applies:

d 1 dp; 1 dP;
— (Pij_'Y) =0, ti.e. 2P _ 7'7—71
dt 7 pj dt P; dt

where j indicates ion (j = i) or electron (j = e). From continuity equation we have,

1 dpj

= -V .déu;.
pj dt

Equating these relations, linearising and using convective derivative definition yields:

95 Pj
o + Suj +VPj =—yP;V - Suju
At this point we recall that du; = —iw& | is a common perpendicular velocity. Assume now
that the parallel velocity is also common, as in the ideal MHD model, i.e. 6u]v” = 7iw§H, so

that,
§Pj = —£-VPj —vP;V - £.

The total thermal pressure § Py = § P; + § P (thermal ion and electron) is therefore,
6Py = —€ - VP —yPV - §

where Py = P; 4+ Pe is the total thermal equilibrium pressure.
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Momentum equation =PrL

The perturbed fast ion pressure tensor depends on the three components of the electric field,
i.e. on £, and 6®. But since we have argued that §® = 0 we have that 6P, =8P, (€ )
and 6P||h = 5P|\h,(§¢)- The perpendicular momentum equation is then

—piw’€ ) = IXEB+8IXB+[6P L (€1)—0P|,(§ )]s—V 1 [6PLp(€1) — & VP — yP,V - £].

The problem is still not closed because we need an extra equation in order to resolve the
parallel displacement (note parallel displacement appears in § P¢, so it appears in perpendicular
momentum equation in form V - £).

This problem can be modelled by adopting the parallel component of the ideal MHD
momentum equation (without fast ions):

—piw€) = —b- VP =b- V[ VP + 7PV - £].

The parallel momentum equation and plasma compressibility has to do with corrections to the
inertia 1 — 1 4 2q2. As discussed, minority ions do not have significant inertia, to the parallel
momentum equation model appears reasonable. Hence, the full momentum equation is,

—piw?E =T X 6B +68J x B+ [§Py), — 6P|k — V1 6P + V£ - VP + P,V -£]. (7.3)

‘We now produce quadratic forms, as in lecture 3. We note that the force associated with fast
particles isn’t always self-adjoint (depends on the problem of interest), but alternative analysis
has shown that the variation of the associated energy nevertheless recovers a valid dispersion
relation, at least for the internal kink mode and interchange modes. The energy principle
associated with the sign of §W (indicating stability or instability) is not always correct if the
force isn’t self-adjoint. We will consider the forms of 6 P} and 5P||h later. Operating Eq.

(7.3) with —(1/2)/(1390 £*. we obtain,

2 _ _ 1
SK+6W =0, 0K = _‘% /dep 1612, SW = SWHsWy+6W),, SW(E, £%) = 5/ Baoy P (V-£)2
P
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Fast ion energy =PrL

We have that
3 * *
Wi, = —(1/2) [ e {€1 - VoPLy — €1 - k5PLy - ]}

Consider the first term, use that V - (¢pA) = ¢V - A+ A - V¢. Hence

/d%gi SVP, = /d%v S (€%5.5P1 ) 7/d316PJ_hV-51.

Moreover the first term on the right hand side vanishes upon applying the divergence theorem,
and assuming that the displacement vanishes at the plasma edge, i.e. the surface S bounding

the volume /dwsz

/ dz® Vv - (£76P, ) :/ 5P, pe% -dS =0,
\% S
then 1
3 * *
6wy, = - [ d* [PLA(Y - €1) = 6Py - SPLuEL ] (7.4)
Approximate form

We will return to Eq. (7.4) later. For now we can write an approximate form by adopting the
MHD minimisation of Eq. (3.27), and at the next order (Eq. (3.30)), i.e. we use

Vg1 +2¢] k=0,
so that we have approximately
1
W, = 5/ da (5P, + 8P R)EL - K (7.5)

‘We will verify now the conditions under which this approximation holds.
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Weakly anisotropic equilibrium =PrL

In order to rely on the properties of ideal MHD equilibria we should ensure that the
equilibrium pressure depends only weakly on 6. In particular

PL+P —P +5

~ €
P+ P

or less, where X represents a flux average. Since the thermal plasma is isotropic, this requires
that
Pip+Pip—PrLp+ Pp
~ e

2P+ Pip, + Py

This ensures that the essential expansion of the Grad-Shafranov equation obtained in Chapter
2 holds (for a strong anisotropic equilibrium expansion see e.g. [Graves, PRL 84, 1204 (2000)]
and references therein).

In practice weak poloidal dependence in the total pressure can be achieved in two ways:

1. The fast ions are distributed isotropically (e.g. alphas) or with an arbitrary excess of
passing ions (e.g. with tangential NBI). Even if all the hot particles are deeply passing
we have P, = m(l + O(ecos ©)). Under those conditions the fast ions can have
associated pressure comparable to the thermal pressure,

PHh ~ Py

2. The fast ions are distributed with a strong excess of trapped particles so that
Pip > P||h7 but the perpendicular hot ion pressure is weaker than the thermal pressure

Py ~ePy, while P> P,

Under those conditions, for all equilibrium expansions, including the definition of the
curvature, the Shafranov shift etc, we may define a total scalar pressure P which independent
of 6 at leading order in e:

P =P+ (PLp+ Pp)/2,

Leading order in € is sufficient for the equilibrium expansion. Anisotropic corrections are

important for the perturbed quantities.
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Hot adiabatic response =PrL

Assuming weak equilibrium pressure anisotropy the convenient form for §W holds for the
thermal plasma (t), which for internal modes (dropping boundary contributions) is then

1
swi = - / d’z [|6BJ_|2 +B% |V, +26, -k’ —2(6, - VP)(k-£L) — Jy(€1 x b) - 5B¢]
(7.6)

where have from week 6,

n:(é)[V—b(b»V)] (B;HD).

where total P = Py + (P, + P”h)/2 is taken to be independent of © at the required order,
and indeed B will be the isotropic equilibrium solution of the Grad-Shafranov equilibrium.

‘We will show that the fast ion perturbed distribution function can be written in the form,
§Fp = 8Fpy + 6Fpy

where §Fy, ¢ is the adiabatic, or fluid like solution, and §F}y is the kinetic solution. In the
limit of strong collisions § F}j, — 0, which gives us a reason for investigating problems where
we include only the adiabatic or fluid-like fast ion response. We will see that,

§Epy = —¢r 2 = £
Fpy = —¢ o Fp = Fp(r, &, 1) (7.7)

where F}, is written in terms of the constants of motion £ = m;Lv2/2, n= mh'ui /(2B), and r
which is a constant of motion in the thin banana limit (toroidal canonical momentum is an
exact invariant, but corresponds to constant r to leading order in Larmor radius (particles
have vanishing radial orbit width to leading order in a Larmor radius expansion)).
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Hot Adiabatic Response =PrL

‘We note the definitions of the equilibrium and perturbed pressure components:

2
v
Py = mh/d%—Fh, Py, = mh/d%vﬁFh, 5Py, :mh,/dsviézrh, 5Py, = mh/d%vﬁwh,

So that, the adiabatic perturbed pressures and associated adiabatic §W of Eq. (7.5) are,

2
. v9 OF), . OF,
SP = —mpe" /dsv—l—h, 5Py = —mpg” /d%uﬁJ,
2 Or or

1 2 dF,
Wit :—E/d?’z&i.ngT/dSvmh (v; +vﬁ> arh'

For zero and weak hot anisotropy we can take the radial derivative outside the velocity
integral. Zero anisotropy means that Fj, = F}, (7, £) (i.e. otherwise independent of p or pitch
angle p/€), the pressure moments are then independent of poloidal angle:

1 *
SWy, s (isotropic) = 75/ 3z ¢ we” I:PL}L + PHh}

This hot adiabatic contribution can be compared with the interchange/ballooning term for
thermal ions in Wy, that is,

1 . 1 . . dP,
75/d312(§<VPt)(§i~n) 275/d312§l»n§ T:

For finite anisotropy one cannot take the radial derivative outside the velocity integrals in
general. But we can combine some of the hot ion fluid physics conveniently with the thermal
contributions, as shown next.
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Hot Adiabatic Response =PrL

For the adiabatic hot ion case the total (thermal fluid plus hot fluid) §W becomes

1 4 _
oWy = [ @ [18BL17 + B2 1V €1 + 261 - kl? = 2(€L - VP)( - €1) = Iy (€1 x b) - 8BL] +5Wpa,

1 2 OF d ,—
awa:_g/dszgi%gr{/dsvmh (%+Uﬁ> h _i(PLh+P”h)} (7.8)

or dr
where
_ P n+P _ T dOTX
P=pP,+ | TR itn x = JZr 407X
2 [T, deg

The term 5WfA on the second line of Eq. (7.8) treats specifically the effect of fluid anisotropy,
and in particular the effect of the anisotropic pressure corrections becoming functions of ©. In
the isotropic limit the radial derivative acting on F}, can be taken outside the velocity integral,
the velocity integral which then defines the pressure moments (these being independent of © in
the isotropic limit) gives §Wyq =0 .

The effect of anisotropy contained in the brackets {} introduces periodic dependence in ©, as
will be seen in the example exercises, the content of the brackets vanishing in the isotropic
limit. And for the anisotropic case we have that {...... } is even in © (as it depends on

B ~ 1/R. In addition we have that {...... } = 0. Hence, we need only the leading order
component of £ £i - k, and specifically the even component of it,
. . o CcO0s©
€€ k= €T ——.
Ro

Hence, we have that,

1 3 5 cos © 3 v2 2\ OF d ,
6WfA:§/dz|5’"| TO{/dymh 7i+vu o 7;(PLh+P”h) . (7.9)

Notice that this result is not sensitive to the definition of © because different choices will cause
higher order corrections than the leading order terms which are non-zero providing the
distribution function is anisotropic. 162 /190




Physical fast ion distribution functions =PrL

As mentioned earlier, equilibrium fast ion distribution functions should depend on the
constants of motion for a single particle, which means that F}, = F}, (€, u, r). In the definition
of 5WfA the meaning of the partial derivative is
OFYy,
or

E,pn

For investigating fast ion anisotropy effects it is convenient to do so via a suitable
bi-Maxwellian distribution function, which is an extension of the Maxwellian,

m3/2n(r) I ma/zn(r) mo? mv?
h exp | — — "mn exp | — I L
2T (r)]3/2 T(r) [27T (r)]3/2 2T (r)  2T(r)

Usually the bi-Maxwellian is written in the form,

mz/2n(r) mvﬁ mvﬁ_
@321 (1 (072 TP\ T2y T 21 ()

But writing the latter in terms of £ and p we have,

mi/Qn(r) ox <7 & — uB(r, ©) _ pB(r, @))
(2m)3/2T (r)T) (r)1/? ) (r) Ty (r)

the distribution function thus being unphysical because it depends on ©.

The distribution can be adapted to be physical and experimentally relevant (e.g. for ICRH
heating) by replacing B(r, ©) with B.(r), some magnetic field strength that depends only on
r. Suitable choices can be B, = Bg, or B = By,in(r) = Bp(l — €). We also require that the
argument of the exponential is negative for all phase space, so we use,

m®/ 2 (r) o (7 |€ = nBe(r)| _ uBc(T)>
(2m)3/2T (r)T) (r)1/2 ) (r) Ti(r) )’

Fp(€,p,r) =
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Modified bi-Maxwellian

1

s (@ Modified
—, 0.8 bi-Maxwellian
> with B_c=B_0
0.6
Distribution function
0-4 implemented in
0.2 ANIMEC, LeMan,

TERPSICHORE, SCENIC

Numerical Solution
of ICRH distribution
Trapped- | function

Vv, (0)

passing
boundary| T_perp =2T_parallel

v, (0) [Graves, Ph.D. Thesis 1999]

The modified bi-Maxweillian distribution with B.(r) = By models ICRH fast ions with heating
applied on-axis. In this course we avoid the inconvenience of the modulus (and hence the sharp
corner in the above figure) by setting Be = By in (7):

3/2
- m ne(r) . 3 E — uBpin(r) B B in (r)
Fp(E,pu,7) = o321 (T (/2 7 ( T, (r) T, (r) )

which for the ICRH application above is a particularly good model for RF heating where
resonance is applied off-axis on the low field side of the device (this is often done
experimentally, effective for controlling sawteeth and impurities e.g. in JET). But, in fact,
we may apply the above for NBI and ICRH with any resonance position. The main

=PrL

physics being determined by profiles n.(r) and T (r) and T) (r). 164 /190



NBI and ICRH JET Sawtooth Control ExperimeizPi L

: :
84500 (155) |

12
T

Power(MW)
g

P(ICRH)

TkeV)
g
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=
=/ //

7
E 30
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g 10
&
F 1 s n=2
S 04 =1
< 02
34 =
_of ICRH resonance| E ;, R(g=1)
. Rres)
scan o
L L - 10 2 14 16 18 20 2
1 2 3 4 5 Ts)
Rm) [Graves, PPCF 2015]

Internal kink initially stabilised (long sawteeth) by NBI ions, via anisotropic fluid effect and
kinetic effects. ICRH can be stabilising or destabilising, depending on deposition or ICRH
relative to ¢ = 1 surface. For heating outside ¢ = 1 the ICRH ion density profile and
temperature profiles can become inverted (causing destabilisation).

We may approximately apply the below for NBI and (ICRH with any resonance position):

Fp(&,p,r) =

myfne) (_ £~ iBmin(r) uBmmr))
(2m)3/2T (r)T) (r)1/? ) (r) T, (r)

The main physics being determined by profiles n(r) and T (r) and T} (7).
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Modified bi-Maxwellian =P

The modified bi-Maxwellian can be written in terms of v and v once again. We easily

obtain using £ = mhvi/2 + mhvﬁ/Q and p = mhvi/(2B),

o mi/znc(r) mh”ﬁ mhvi 710

" em32r (T (72 TP\ e ) T 2FL(re) ) (710
_ : [Bmmwwn(” (B(r©) = Bmin()|.  (r.11)
T.(r,0) T, ("B 0) ), ()

Notice that we obtain the standard isotropic Maxwellian for T = TH (which would not have

occurred in fact if we choose e.g. B. = By for example).

The full velocity integral over all phase space is,

3 oo oo
/ dv:QTr/ dU”/ dv v,
allV —o0 0

For a distribution that is symmetric in v (such as the one above) we may use the following for
the full velocity integral (note distributions are always symmetric with respect to
perpendicular thermal velocity):

3 e oo 2
/ d’v = 27r/ dvy / dv? (7.12)
allV 0 0

Then the relevant moments are,

2

-

L

oo ES oo o, v oo S 5
np = 27r/0 dv /0 dv’ Fp, Py :27‘r/0 dv| /O d'ULmhFth P :271'/0 dv| /0 d"f'LmhFh,UH
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Modified bi-Maxwellian - dominant density gradiEP L

In this course we wish to understand the main physics properties, slightly at the expense of
more general situations. Let us consider the limit

r dn r dT r dT r dB i
- °>><7 Lo 7ﬂ)

ne dr Ty dr ' Ty dr’ Bpmin dr

In which case we have that,

OFy, Fy, dnc
or le.u = ne dr
From the definition of Eq. (7.9) and the definitions of the parallel and perpendicular pressure
we obtain
¢ 2 cos@ 3Fh d ,—
SWyra = / Pz /d vmp [ = + v H — (PJJL + P||h,)
or  dr
- € o cos © 1 dnc S—
~ / a3 S {(PM+PH,L)7(PM+PM)} (7.13)
where,

> o o (v} 2
Pip+ Py =27 dv| dv? ry + o | mpFh
0 0

5 2
= 27 /oo dv /oo dv2 i + 'u2 m‘;b/2nc(r) exp | — thH — mh'ui
o o TR T2 T @m3eT ()1 ()12 2Ty (r) 2T, (r, )

. 5 .
Ty (r, 9)) n (TL(Tv 9)) 1 ] CAG) = T, (r)
Ty (r) Ti(r) ) A(r) T (r)

=ne(r)TL(r) [(
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Modified bi-Maxwellian - large aspect ratio expansibhe L

We now adopt the large aspect ratio expansion B = Bg(1 — cos ©), B,,;n, = Bo(1 — €). Hence,

—€ecos(®))[1 —e+ A(1 +€) — 2Aecos(O)]

1
Pin+ P = nc(T)TL(T)( Al — ¢ — Ac T Accos(®)2

‘We note that for a strongly perpendicular distribution function we can have that eA ~ 1 or
larger. But, in order to make further analytic simplifications, we assume that eA < 1, this still
providing essential understanding. Hence we obtain,

Pip+ P =ncTy [(1 + %) + (1 - %) (1+2A)e(cos® —1)| . (7.14)

Hence, we obtain,

{(PJ_h + PHh) - (m)} =neT, (1 - %) (1 + 2A)ecos ©. (7.15)

As expected this expression vanishes for A = 1.

» For a deeply passing distribution we have a surplus of pressure on the HFS (due to
having diminished trapped fraction)

r dne

1 1
AK1: W zf/dgx T2 _ 2 <_
fa =3 €7 2

) nCT” cos? ©
ne dr

The pressure weighted average curvature yields improved stability §Wys 4 > 0 assuming
dnc/dr <0

» For a deeply trapped distribution we have a surplus of pressure on the LFS:

AS1: §W 1/d3 €72 = < 1d"6)( 2neT) ) cos? ©
N = — x —_— _— —an. cos
fa=35 B2\ n. dr etd

The pressure weighted average curvature in yields weakened stability §Wy4 < 0
assuming dn./dr < 0
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Pressure averaged curvature =PrL

Isotropic Plasma Perp anisotropy 7', > T Parallel anisotropy 7', < Tj
Z - . .
/ Excess of trapped particles, Excess of passing particles.
R less passing particles, Passing particles spend more time
= Ry increases pressure on low on HFS than LFS.
il field side Excess of pressure on HFS
nen R A
_
I I P
N —
T T T
T 0 FagC) 7 I pae) - 0 T O
R-Vra—Ry'cos© R-Vr~—Ry'cos® R-Vra~—Ry'cos®
T T T
i b page} - 0 T © i 0 O
W4 <0 i.e. destabilising 0Wya >0 i.e. stabilising
SWia=0 Excess pressure in the bad curvature region. Excess pressure in the good curvature region.
Pressure weighted average curvature unfavourable | Pressure weighted average curvature favourable

Ldny] [* 2 S P P -
SWia~ [—;%] / dO (K- Vr)[PL+ P;— P, + P|| Comments on stabilisation/destabilisation assume core peaking (dn/dr < 0)
h -
7
v
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Passing and trapped fractions =PrL

‘When considering kinetic corrections we will need the velocity integral over passing particles
and trapped particles. Particles are passing if v does not change sign over an orbit, or if a

zero in vﬁ does not exist. Note that,

%vﬁ =& — uB(r,0)

where we consider that p, £ and r are constant over an orbit (passing or trapped). Hence the
following should also not change sign over a passing orbit,

mp 2

Dt = H

1
—[E—pB(r,©)]=1—-AB(r,0), A= —.
& &
Passing particles explore all values of B on a given flux surface 7, from B,,;, () at © = 0 to
Bimagz(r) at © = 7. Hence, the zero in vﬁ is avoided over the passing particle orbit providing
that,
1 w3 1

i L

0<A< —— e. 0< — <+ o~
Bmax(r)’ B(vf +v})  Bmas

This can be written as a condition on vi, ie. 0 < vi < (vﬁ + 'Ui)B/Bmaz or

v
Bmag (r)/B(r,0) — 1

Hence the passing fraction of velocity space is:

0<v? <

2
oo v /(B /B—1)

/ d3v = 27r/ du) / I7mmae dv? (7.16)

pass 0 0

The trapped fraction of velocity space is therefore,
3 5 oo v/ (Bmax/B=1) oo oo s

d’v = d’v — 27 dv dvy| =27 dv dv
Il L Il 2 €L
trap allV 0 0 0 vH/(BmaI/B—l)
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Passing and trapped fractions =P

The trapped fraction of particles for a population F}, can be obtained by evaluating:

ft = / v Fy, // v Fy,
trap allV

The exercises will explore the trapped fraction for an isotropic plasma. The results can be
generalised for the modified bi-Maxwellian:

1/2
L (Bimaz — B)/B
o= n
t

1+ T” L (Bmaxz — B)/B

Using the lowest order expressions for B, By,qp and TL we thus have
1/2
T L e(1 4 cos©)
ft = —” [14 O(e)].
1 + e(l + cos ©)

This expression and the first one at the top of the slide agrees with the trapped fraction of an
isotropic species in the limit T} = TH . Letting now ETJ_/T” < 1 the trapped fraction is

fr = [T /T 2[1 + cos ©]1/2

Notice that the standard textbook definition of the trapped fraction evaluates at © = 0 for an
isotropic case, giving ft = Vv 2e. The flux averaged trapped fraction

fi = i/:{ ft = ;x/ZETL/TH

-

L
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Kinetic fast ion corrections EPFL

A more general solution to the perturbed drift kinetic equation is (see e.g. Porcelli PoP 1994,
Graves PPCF 2000):

. OF —
q5 <¢> 5#’ . (@ = nwwn) trapped ions

o9& u)—n<45> +iueff

0 passing ions.

§Fyp = —&-VFy +

in the limit where the bounce frequency of fast ions is much larger than the mode frequency w,
the average toroidal precession drift <¢>, the collision frequency veys and the diamagnetic

frequency

_10Fy OFy,
Wyh = q;  ——

J
Here <(j>> 5’41 represents the orbit averaged Lagraaxipgian vézlrglich vanishes for passing ions.
In the highly collisional limit v.fy — oo we obtain the anisotropic (adiabatic) fluid
result §Fpp = —§ - VFp, = —¢"9Fy, /or of Eq. (7.7) considered until this slide.
» In the limit w ~ n <¢> we have possible Landau wave-particle resonant energy transfer.

This effect is responsible e.g. for fishbones for the high frequency branch of n =1, m =1
internal kinks (explored if we had more time)
» A low frequency branch w = 0 which in the collisionless limit is,

.OF}, 5”% t di
SFp, = 6Fpy + 0Fpy, with §Fpp=—€"—=, 6Fp = or rappecions (7 1g)
or 0 passing ions.
0 trapped ions
= » OF, L (7.19)
& — passing ions.
or

The high and low frequency branches can co-exist. The kinetic corrections for the low

frequency branch are strongly stabilising if F} /Or < 0 (core peaked profiles). Note in absence

of 5Fhf» stabilisation would be said to be due to trapped ion physics. Taken all together it

might be said to be due passing particles (absence of trapped ions). The literature is confused

on this, both interpretations are possible. 172 /190



Kinetic fast ion corrections E P ‘m
‘We write the total energy
W =W, + 6WfA + Wy,

where from the last slide, Egs. (7.4) and Eq. (7.8)
sWe = = [ & [16B, 2 2 2 P * * xb)-d
e= [ @ [19BL° +B%1V &L +260 wl® —206L  VP)(x€1) — J (€1 x b) - 6B ]

1 3 ax r /3 2 5Fh d = =
Wipg=—- [ d . d -+ P P
fA 2/ z€) -k§ | vmp, +vH dr( 1h+ Hh)
1 . v2 OF),
W= [ateeine [ atom <?+”ﬁ> W}
P

Again for simplicity we assume gradients in F} are dominated by gradients in n.(r). Using the
lowest order definition for the curvature, and noting that only the even component of the
curvature contributes,

_ Y o5 r2c08© 3 v | o) oF
[ et 2 o (1) o
- —7/d r26080 1 dne {(Pintrap) + Py (trap)) } (1 4 0(e)) (7.20)
Rg ne dr +Lh Ih

So that including Wy 4, from Eq. (7.13), we may write the total hot response in the
convenient form,

1 [S) 1 d
SWiea +6Wia = > / Bz |e")? <—g> [ fe

RO T he
Kk-Vr

] {(PLh(PaSS) + P||h(PaSS))}

ne dr

L
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Kinetic fast ion corrections EPFL

Simple extension of the exercises show that in the isotropic limit the trapped pressure
components are

T 4B _B)[B _ Bl/2
N P,y (trap) + PHh(trap) =n.T| (“4Bmas )L mar ! .
T 72

I 2Bmax

Substituting B = Bg(1 — ecos 6) and Byaz = Bo(1l + €) and expanding in € we obtain,

T,

3
7, =1: Pyp(trap) + Pjy(trap) = gnCTLft(1+O(e)), ft = \/e(1 4 cos©)

It is possible to generalise this result for the modified bi-Maxwellian. Assuming again
eTL/T” < 1 one obtains

3
Py p(trap) + P (trap) ~ Enchft(l +0(e)), ft =/eA(l + cosO) (7.21)

where A =T, /T).
A result that is important for the calculation of §W}, is

1 ™ — 2
—/ dO cosOfr = ﬁ, ft = —V2eA (7.22)
27 J—x 3 T

Note that these kinetic corrections are larger than the hot corrections to the fluid W by a

factor (Ae)_l/g. But clearly hot fluid contributions will dominate if there are very few
trapped particles (i.e. where A < 1). We now put all the results together.
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Total hot contributions to éW =P

™ a

We now consider the sum Wy 4 + 6Wy. Use /dsz = 27rR0/ d@/ drr. From Egs.
-7 0

(7.13), (7.15), (7.20), (7.21) and (7.22) we obtain,

sW _ 2 [ "2 dne\ [— 1
fA+ oW =m drr|€" |7 (=T, fe—ell——)(1+24)
0 dr A

we may now look at three limits:

» The strongly parallel anisotropic limit where there are no fast trapped ions A = 0:

)e

dne
-

a
SWya + W), = Tr2/0 drrle”? (7TH .

» The isotropic limit where we only have kinetic corrections:

o fa 2 dne\ — i72
SWia + Wy =m /O drr|€"| (7T dr)ft» ft*;\/m

» The strongly perpendicular limit where we have A > 1:

a d 7
5wa+5wk:Tr2/ drr|em|? (7TJ_£) Fi — 2et
0 dr T”

Note though that this result is valid only for eA < 1

Fast particles are stabilising to these terms in all cases if —dn./dr > 0 (since these §W terms
are positive), otherwise destabilising for —dn./dr < 0. A separate calculation allowing for

€A ~ 1 requires numerical calculation, but the opposite conclusion is found. For €A ~ 1 the
fraction of passing particles becomes small, so fast ion stabilisation also becomes weak

(6Fy, — 0).

-

L
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Isotropic Kinetic corrections

Isotropic T = T}

OWh = 0Wsa + Wi ~ [—

€=0.05A=1

1

08
06
.

o4f—p

~—— Ppass
02

y\ )
0.0 Ppass_av

3 -2 -1 0 1 2 3

. 6

R-Vra—Ry'cos©

I I )
-7 0 T

Wi = 6Wpa +6Wy ~ [f

nn

Wy, >0

1 dn

dr

| J7. 40 - 9r) [Pra(pass) + Pia(pass)

=PrL

S ﬂ] / de (i - Vr) [PU. (pass) + Iﬂ‘,l(p(zss)]
ny dr .

For simplicity we select an isotropic case in the example on the left.

The total hot contribution involves the average curvature, weighted with the
passing pressure.

The trapped particles are dominantly on the LFS. Since the total pressure is
independent of poloidal angle, it means the passing pressure is smaller on the
LFS than it is on the HFS.

The HFS where the passing pressure is largest is the region of good curvature.
The weighted average curvature is therefore favourable providing that the hot
density is peaked in the core

Total passing pressure, and its poloidal variation, depends on anisotropy A
Effect on 6W}, is: €=0.05

0.06

« Passing Pressure weighted average curvature

0 1 2 3 4
A
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Total fast ion effects: effect of anisotropy

=PrL

0.06
Py = 3(Pij, + Pyp,) = 1 for all cases .
Py (passing) reduces as A =T /T increases
0.04 .
Changing the anisotropy changes variation of the passing pressure with 6 0os
1 d - 0.02 .
n, - N
W)y, = 6Wip + Wy ~ [_Hd_rh] / do (k- Vr) [PLII(PMS) + Py (pass)] 001
-
x anGy, 0.00

* Passing pressure weighted average curvature

[ 1

2 3 4
A

Strong par. anis. T = 0.17]

0054201

Isotropic T, = Tj

005Ax1

Weak perp. anis. T, = 27}

005422

Moderate perp. anis. 7' = 4T)

=005 Ant

08 —

0l A Ppass_av

14

12

10

08

08

04

02} — Prrap
ool A Ppass_av

Strong parallel anisotropy.

There are virtually no trapped ions.
Case is the same as the fluid
anisotropic case with A < 1

Fluid anisotropic effects are zero.
But we have the kinetic trapped
effect. Or we can understand it
as the passing ion pressure
weighted curvature.

I o T 2 3

As the Anisotropy is increased the
trapped fraction increases. This
causes strong poloidal variation

in the passing pressure.

Large passing pressure weighted
average curvature is obtained.

I o T 2 3

As the Anisotropy is increased
further, the passing fraction is
diminished. As a consequence the
weighted avergage curvature

is smaller than the isotropic

case.
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Fast ion corrections to pressure driven instabilitiaz P L

The fast ion contributions to §W considered to this point are relevant only if they can drive or
damp important tokamak instabilities. Note that the drive or damping from the fast ions
enters essentially through the fast ion pressure gradient T'| dn./dr.

» Current driven instabilities are not sensitive to these fast ion corrections. Recall that
tearing modes, external kink modes etc appear at §W ~ e“. Pressure gradient
corrections are not important at that order

» Pressure driven instabilities can be expected to be affected by fast ion populations under
empirically relevant conditions. Interchange, infernal and internal kink instabilities are
highly relevant to tokamak operations.

The last slides consistently integrates fast ion physics effects into the stability criteria of
internal kink modes and interchange modes.

The total energy is W = 6We + Wy 4 + 6Wy. These separate terms require The average
pressure,

— — — Pin+ P

P =P, +Py, P":f”

For the case where fast ion density gradients are much larger than temperature gradients, we

have that d 4 A
n
(—Ti C) ~ = (—QP;L)
dr dr 1+ A

so that

1 _
W, = 5/ d®e [|6BL1° + B* |V €, +26, k> 2L - VP)(k-€1) — J| (€1 x b) - 6B

a d _ Afe + (1 — A)(1+2A)e 2
SW 6W,:22/ d 2= (-2P,) G, Gp = , = ZV26A.
fA+ oW /s r €] dr( h) h h 21 A) ft —V2e

Recalling that the grad-Shafranov equilibrium and the definition of & includes Py, .
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Total Energy for toroidal modes =PrL

We now refer back to results in week 3. The sum of the field line bending terms of Eq. (3.33)
(with boundary terms neglected (£((a) = 0)) and the toroidal terms of Eq. (3.35) yield the
core contribution §W, in a torus:

7r2 a 2
S B e
( ) 1 1

17% +n—26WT(04).

The first term involving the ballooning parameter

2¢2Rg dP. 2¢2Ry dP},
o= — ) + ap, ap =-— B)
BO dr BO dr

is (1 — q?)éWc in Eq. (3.35) and subsequent equations. Note « includes the average fast

particle pressure. Also 5WT(a) is an additional toroidal contribution, e.g. Eq. (3.36) for the
case of m = 1 assuming the Heaviside solution for £” (r). Adding the hot ion contributions
WA + 6W) we obtain

o r 2
o= 2t o {05) o] G-

V2
+(5 2) [ae (1 — iz) + ahGh:| } + w7l (a), (7.23)
s

a5

where o
Afe + (1 — A)(1+2A)e

Gp =
201 + A)

179 /190



Modified Mercier Criterion =P-L

In chapter 6 we investigated the Mercier criterion from the infinite ballooning equation. But it
can also be obtained from Eq. (7.23). For Mercier instabilities we neglect the extra toroidal
term 6WT, which is appropriate for m # 1 and shear not too small. The corresponding
Euler-Lagrange equation is then

1d (571 1\2dg" 1 1 -
- — = = — = < |lae |1 — — | +apGyr| &
rdr qs q dr q§ q§
Mercier (interchange) instabilities are highly localised. We thus expand using a layer variable

(same one as we used for the resistive problems) x = (r — r5)/rs, where q(rs) = qs. Noting the
definition of the magnetic shear and using (1/qgs — 1/q)2 ~ r252/q§ , we thus have,

d 5 dg” ” 1 1
—|2*— |+ DpyE =0, Dpy=—F|ea| -5 —1|—apGy
dx dx 52 qg

where we note the symmetry with Eq. (6.18), obtained from the infinite n ballooning equation.
Note the hot particle modified Mercier factor D ;. As explained in chapter 6, Mercier
instabilities are unstable for 1

Dy > 1
Since G}, > 0 for all fast ion populations, we find that fast ions are stabilising to interchange
modes providing that aj > 0, i.e. centrally peaked profiles. We now see why interchange
modes are rarely observed in large hot tokamaks! Notice that the effect of hot particles also
enters into the standard Mercier term (since a = a. + ) but the contribution involving Gy,

is usually larger, especially for \l/qz -1l < 1.

Finally, it is possible to obtain an estimate of the growth rate for interchange modes (see
Graves et al PPCF 2022 for details):

v _ 16sexp{m[Dp — 1/4]71/2 —C+m/2}

wA asV'1+ 2qs

where C' = 0.577.. is the Euler-Mascheroni constant. 180 /190




Modified m = 1 internal kink stability =PrL

For this problem we simply apply the Heaviside step solution into Eq. (7.23) on setting m = 1.
Using the normalisation defined after Eq. (3.35), ie. 6W = 6W(2W2ROB§|§S\2). ‘We obtain,

- 2\ o C 1 .7 1 1 T - 1 rs drr?
Wy = (1 - qs) oW 4 oW 4 =0 ), dr —zonGy,  SWo = Sl Rl et
19s 1 S5 s

see the notes page at the end of chapter 3 for more details. Now select the most important
case, the n = m = 1 internal kink problem. Hence, setting gs = 1 the Mercier term

(1 - qg) 6Wc vanishes, and we are left with,
N 1 1 r
2 2
5w = 30— a0) ((8)° = 87) + [ ar Sanc
1 1
with gop = g(r = 0) < 1 and B; & 0.3 for a parabolic g-profile and

a = —
3 2.2
Ty Bget

1 r1 drr? 2 r1 drr? d(Pe +P7h)
el [ e T,

€1 7‘% dr

Here 3, enters the internal kink problem via the Shafranov shifted equilibrium

A =e(l;/2 + Bp). Hence we see how the fast particles influence the toroidal term, and indeed
why the fast particle distribution cannot be highly anisotropic (the toroidal equilibrium
calculation would have to take into account the extra toroidal harmonics in the pressure).

Hence we see that while the fast ions have a destabilising effect in the toroidal term (via the
correction to Bp) the dominant effect of fast particles will be the stabilising term associated
with ap Gp. It explains why sawteeth are very long in plasmas with energetic particles. The
growth rate for the internal kink is (from Eq. (4.18)):

% o Py .2 1 1 r
— =1 — [|3(1 — — - — dr —oapGp | .
g [ (1 —qo0) {Bp (Bp) } e%/o TT% ap h:|
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