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Inclusion of fast ion effects in MHD equations
We may refer to the derivation of the perpendicular MHD equation from week 1. These hold
for weakly collisional populations as well as the usual collisional ones:

− iρωδu⊥ = J × δB + δJ ×B + (δP⊥ − δP‖)κ−∇⊥δP⊥

δu⊥ = −iωξ⊥ =
δE ×B
B2

˙δB = −∇× δE
δJ = ∇× δB
∇ · δB = 0,

dρj

dt
+ ρj∇ · δuj = 0.

The perpendicular momentum equation, derived and shown in Eq. (1.8) has exploited
quasi-neutrality: ∑

j

qjδnj = 0.

We have the following definitions

ρ =
∑
j

mjnj , δP⊥ =
∑
j

δPj⊥, δP‖ =
∑
j

δPj‖, J =
∑
j

qjnjuj .

Notice that we have not yet applied Ohm’s law. Ideal Ohm’s law sets b · δE = 0. We have seen
that parallel electric fields arise from dissipation (resistive MHD). But it can also come from
weakly collisional kinetic corrections, e.g. ions and electrons having different kinetic behaviour
(different orbit widths, different drift frequencies) will require parallel electric fields to
maintain quasi-neutrality.
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Notes

Diamagnetic corrections

There is a generalisation to the momentum equation written on the previous slide. It has been
rigourously shown that there are diamagnetic corrections in both collisional and collisionless
descriptions. See Lanthanler, Graves, Pfefferlé, Cooper Plasma Phys. Control. Fusion 61 (2019)
074006: ∑

j

ρj(−iω + u∗,j ·∇)δu⊥ = J × δB + δJ ×B + (δP⊥ − δP‖)κ−∇⊥δP⊥

where the diamagnetic velocity for species j is

u∗,j =
B ×∇P⊥,j

qjnjB2
,

and P⊥,j is the perpendicular pressure associated with the equilibrium distribution of species
j:

P⊥,j = mj

∫
d
3
v v

2
⊥Fj .

Usually fast ion physics is neglected from the LHS of the momentum equation because ρh � ρi.
Electrons are usually neglected from the LHS since me � mi so that ρe � ρi, But, with
diamagnetic corrections it might be important to retain fast ion physics on the LHS if P

′
⊥h ∼ P

′
i

since

ρju∗,j ∼ mj
B ×∇P⊥,j

qjB2
.

Clearly in a fusion plasma one can have P
′
⊥h ∼ P

′
i even if nh � ni, because of the energy of

the fast ions, in particular since T⊥h ∼ mhv
2
⊥/2� Ti.



Inclusion of fast ion effects in MHD equations
Consider the electric field

δE = −∇δΦ− ˙δA. (7.1)

We are free to choose a gauge b · δA = 0, so that δA is perpendicular to B, i.e.

δA = δξ ×B. (7.2)

Thus, any parallel electric field is connected to non-zero δΦ:

δE‖ ≡ δE · b = −b ·∇δΦ.

Consider now quasi-neutrality. We assume in this course that ions and electrons are highly
collisional, while fast ions are not. But, if the fast ion density fulfills nh � (ni, ne) then the
fast ions may be neglected in the quasi-neutrality condition. Hence, only ions and electrons
enter quasi-neutrality, and these are independent of δΦ (see next slide). Hence δΦ does not
enter the quasi-neutrality problem, and thus we may take δΦ = 0, as in ideal MHD. Hence,

δE = − ˙δA = δ̇ξ ×B

and noting that we already have

−iωξ⊥ =
δE ×B
B2

then it follows that δξ = ξ and thus:

δE − iωξ ×B = 0,

δB = ∇× (ξ ×B),

δJ = ∇× δB = ∇× [∇× (ξ ×B)] .
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Inclusion of fast ion effects in MHD equations
We require equations for the moments appearing in the equation of motion, in particular the
perturbed pressure tensor. Consider first the electrons and ions. For collisional electrons and
ions the adiabatic equation of state applies:

d

dt

(
Pjρ
−γ
j

)
= 0, i.e.

1

ρj

dρj

dt
= −γ

1

Pj

dPj

dt

where j indicates ion (j = i) or electron (j = e). From continuity equation we have,

1

ρj

dρj

dt
= −∇ · δuj .

Equating these relations, linearising and using convective derivative definition yields:

∂δPj

∂t
+ δuj ·∇Pj = −γPj∇ · δuj .

At this point we recall that δuj = −iωξ⊥ is a common perpendicular velocity. Assume now
that the parallel velocity is also common, as in the ideal MHD model, i.e. δuj‖ = −iωξ‖, so
that,

δPj = −ξ ·∇Pj − γPj∇ · ξ.

The total thermal pressure δPt = δPi + δPe (thermal ion and electron) is therefore,

δPt = −ξ ·∇Pt − γPt∇ · ξ

where Pt = Pi + Pe is the total thermal equilibrium pressure.
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Momentum equation
The perturbed fast ion pressure tensor depends on the three components of the electric field,
i.e. on ξ⊥ and δΦ. But since we have argued that δΦ = 0 we have that δP⊥h = δP⊥h(ξ⊥)
and δP‖h = δP‖h(ξ⊥). The perpendicular momentum equation is then

−ρiω
2
ξ⊥ = J×δB+δJ×B+[δP⊥h(ξ⊥)−δP‖h(ξ⊥)]κ−∇⊥ [δP⊥h(ξ⊥)− ξ ·∇Pt − γPt∇ · ξ] .

The problem is still not closed because we need an extra equation in order to resolve the
parallel displacement (note parallel displacement appears in δPt, so it appears in perpendicular
momentum equation in form ∇ · ξ).

This problem can be modelled by adopting the parallel component of the ideal MHD
momentum equation (without fast ions):

−ρiω
2
ξ‖ = −b ·∇δPt = b ·∇ [ξ ·∇Pt + γPt∇ · ξ] .

The parallel momentum equation and plasma compressibility has to do with corrections to the

inertia 1→ 1 + 2q
2
. As discussed, minority ions do not have significant inertia, to the parallel

momentum equation model appears reasonable. Hence, the full momentum equation is,

− ρiω
2
ξ = J × δB + δJ ×B + [δP⊥h − δP‖h]κ−∇⊥δP⊥h + ∇ [ξ ·∇Pt + γPt∇ · ξ] . (7.3)

We now produce quadratic forms, as in lecture 3. We note that the force associated with fast
particles isn’t always self-adjoint (depends on the problem of interest), but alternative analysis
has shown that the variation of the associated energy nevertheless recovers a valid dispersion
relation, at least for the internal kink mode and interchange modes. The energy principle
associated with the sign of δW (indicating stability or instability) is not always correct if the
force isn’t self-adjoint. We will consider the forms of δP⊥h and δP‖h later. Operating Eq.

(7.3) with −(1/2)

∫
d
3
x ξ
∗· we obtain,

δK+δW = 0, δK = −
ω2

2

∫
d
3
x ρ |ξ|2 , δW = δW+δWt+δWh, δW (ξ, ξ

∗
) =

1

2

∫
P
d
3
x γPt(∇·ξ)2
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Fast ion energy
We have that

δWh = −(1/2)

∫
d
3
x
{
ξ
∗
⊥ ·∇δP⊥h − ξ

∗
⊥ · κ[δP⊥h − δP‖h]

}
Consider the first term, use that ∇ · (φA) = φ∇ ·A +A ·∇φ. Hence∫

d
3
x ξ
∗
⊥ ·∇δP⊥h =

∫
d
3
x∇ ·

(
ξ
∗
⊥δP⊥h

)
−
∫
d
3
x δP⊥h∇ · ξ

∗
⊥.

Moreover the first term on the right hand side vanishes upon applying the divergence theorem,
and assuming that the displacement vanishes at the plasma edge, i.e. the surface S bounding

the volume

∫
dx

3
: ∫

V
dx

3 ∇ ·
(
ξ
∗
⊥δP⊥h

)
=

∫
S
δP⊥hξ

∗
⊥ · dS = 0,

then

δWh = −
1

2

∫
d
3
x
[
δP⊥h(∇ · ξ∗⊥)− (δP‖h − δP⊥h)ξ

∗
⊥ · κ

]
. (7.4)

Approximate form

We will return to Eq. (7.4) later. For now we can write an approximate form by adopting the
MHD minimisation of Eq. (3.27), and at the next order (Eq. (3.30)), i.e. we use

∇ · ξ∗⊥ + 2ξ
∗
⊥ · κ = 0,

so that we have approximately

δWh =
1

2

∫
d
3
x (δP‖h + δP⊥h)ξ

∗
⊥ · κ. (7.5)

We will verify now the conditions under which this approximation holds.
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Weakly anisotropic equilibrium
In order to rely on the properties of ideal MHD equilibria we should ensure that the
equilibrium pressure depends only weakly on θ. In particular

P⊥ + P‖ − P⊥ + P‖

P⊥ + P‖
∼ ε

or less, where X represents a flux average. Since the thermal plasma is isotropic, this requires
that

P⊥h + P‖h − P⊥h + P‖h

2Pt + P⊥h + P‖h
∼ ε

This ensures that the essential expansion of the Grad-Shafranov equation obtained in Chapter
2 holds (for a strong anisotropic equilibrium expansion see e.g. [Graves, PRL 84, 1204 (2000)]
and references therein).

In practice weak poloidal dependence in the total pressure can be achieved in two ways:

1. The fast ions are distributed isotropically (e.g. alphas) or with an arbitrary excess of
passing ions (e.g. with tangential NBI). Even if all the hot particles are deeply passing
we have P‖h = P‖h(1 + O(ε cos Θ)). Under those conditions the fast ions can have
associated pressure comparable to the thermal pressure,

P‖h ∼ Pt

2. The fast ions are distributed with a strong excess of trapped particles so that
P⊥h � P‖h, but the perpendicular hot ion pressure is weaker than the thermal pressure

P⊥h ∼ εPt, while P⊥h � P‖h

Under those conditions, for all equilibrium expansions, including the definition of the
curvature, the Shafranov shift etc, we may define a total scalar pressure P which independent
of θ at leading order in ε:

P = Pt + (P⊥h + P‖h)/2,

Leading order in ε is sufficient for the equilibrium expansion. Anisotropic corrections are
important for the perturbed quantities.
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Hot adiabatic response
Assuming weak equilibrium pressure anisotropy the convenient form for δW holds for the
thermal plasma (t), which for internal modes (dropping boundary contributions) is then

δWt =
1

2

∫
d
3
x
[
|δB⊥|

2
+ B

2 |∇ · ξ⊥ + 2ξ⊥ · κ|
2 − 2(ξ⊥ ·∇Pt)(κ · ξ∗⊥)− J‖(ξ

∗
⊥ × b) · δB⊥

]
(7.6)

where have from week 6,

κ =

(
1

B2

)
[∇− b(b ·∇)]

(
B2

2
+ P

)
.

where total P = Pt + (P⊥h + P‖h)/2 is taken to be independent of Θ at the required order,
and indeed B will be the isotropic equilibrium solution of the Grad-Shafranov equilibrium.

We will show that the fast ion perturbed distribution function can be written in the form,

δFh = δFhf + δFhk

where δFhf is the adiabatic, or fluid like solution, and δFhk is the kinetic solution. In the
limit of strong collisions δFhk → 0, which gives us a reason for investigating problems where
we include only the adiabatic or fluid-like fast ion response. We will see that,

δFhf = −ξr
∂Fh

∂r
, Fh = Fh(r, E, µ) (7.7)

where Fh is written in terms of the constants of motion E = mhv
2
/2, µ = mhv

2
⊥/(2B), and r

which is a constant of motion in the thin banana limit (toroidal canonical momentum is an
exact invariant, but corresponds to constant r to leading order in Larmor radius (particles
have vanishing radial orbit width to leading order in a Larmor radius expansion)).
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Hot Adiabatic Response
We note the definitions of the equilibrium and perturbed pressure components:

P⊥h = mh

∫
d
3
v
v2
⊥
2
Fh, P‖h = mh

∫
d
3
v v

2
‖Fh, δP⊥h = mh

∫
d
3
v
v2
⊥
2
δFh, δP‖h = mh

∫
d
3
v v

2
‖δFh.

So that, the adiabatic perturbed pressures and associated adiabatic δW of Eq. (7.5) are,

δP⊥h = −mhξ
r
∫
d
3
v
v2
⊥
2

∂Fh

∂r
, δP‖h = −mhξ

r
∫
d
3
v v

2
‖
∂Fh

∂r
,

δWhf = −
1

2

∫
d
3
x ξ
∗
⊥ · κξ

r
∫
d
3
vmh

(
v2
⊥
2

+ v
2
‖

)
∂Fh

∂r
.

For zero and weak hot anisotropy we can take the radial derivative outside the velocity
integral. Zero anisotropy means that Fh = Fh(r, E) (i.e. otherwise independent of µ or pitch
angle µ/E), the pressure moments are then independent of poloidal angle:

δWhf (isotropic) = −
1

2

∫
d
3
x ξ
∗
⊥ · κ ξ

r d

dr

[
P⊥h + P‖h

]
This hot adiabatic contribution can be compared with the interchange/ballooning term for
thermal ions in δWt, that is,

−
1

2

∫
d
3
x 2 (ξ ·∇Pt)

(
ξ
∗
⊥ · κ

)
≡ −

1

2

∫
d
3
x 2ξ
∗
⊥ · κ ξ

r dPt

dr

For finite anisotropy one cannot take the radial derivative outside the velocity integrals in
general. But we can combine some of the hot ion fluid physics conveniently with the thermal
contributions, as shown next.
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Hot Adiabatic Response
For the adiabatic hot ion case the total (thermal fluid plus hot fluid) δW becomes

δWf =
1

2

∫
d
3
x
[
|δB⊥|

2
+ B

2 |∇ · ξ⊥ + 2ξ⊥ · κ|
2 − 2(ξ⊥ ·∇P )(κ · ξ∗⊥)− J‖(ξ

∗
⊥ × b) · δB⊥

]
+ δWfA,

δWfA = −
1

2

∫
d
3
x ξ
∗
⊥ · κ ξ

r

{∫
d
3
vmh

(
v2
⊥
2

+ v
2
‖

)
∂Fh

∂r
−

d

dr

(
P⊥h + P‖h

)}
(7.8)

where

P = Pc +

(
P⊥h + P‖h

2

)
, with X =

∫ π
−π dΘJX∫ π
−π dΘJ

.

The term δWfA on the second line of Eq. (7.8) treats specifically the effect of fluid anisotropy,
and in particular the effect of the anisotropic pressure corrections becoming functions of Θ. In
the isotropic limit the radial derivative acting on Fh can be taken outside the velocity integral,
the velocity integral which then defines the pressure moments (these being independent of Θ in
the isotropic limit) gives δWfA = 0 .

The effect of anisotropy contained in the brackets {} introduces periodic dependence in Θ, as
will be seen in the example exercises, the content of the brackets vanishing in the isotropic
limit. And for the anisotropic case we have that {......} is even in Θ (as it depends on

B ∼ 1/R. In addition we have that {......} = 0. Hence, we need only the leading order
component of ξ

r
ξ
∗
⊥ · κ, and specifically the even component of it,

ξ
r
ξ
∗
⊥ · κ→ |ξ

r|2
cos Θ

R0

.

Hence, we have that,

δWfA =
1

2

∫
d
3
x |ξr|2

cos Θ

R0

{∫
d
3
vmh

(
v2
⊥
2

+ v
2
‖

)
∂Fh

∂r
−

d

dr

(
P⊥h + P‖h

)}
. (7.9)

Notice that this result is not sensitive to the definition of Θ because different choices will cause
higher order corrections than the leading order terms which are non-zero providing the
distribution function is anisotropic. 162 / 190



Physical fast ion distribution functions
As mentioned earlier, equilibrium fast ion distribution functions should depend on the
constants of motion for a single particle, which means that Fh = Fh(E, µ, r). In the definition
of δWfA the meaning of the partial derivative is

∂Fh

∂r

∣∣∣∣
E,µ

For investigating fast ion anisotropy effects it is convenient to do so via a suitable
bi-Maxwellian distribution function, which is an extension of the Maxwellian,

m
3/2
h

n(r)

[2πT (r)]3/2
exp

(
−
E

T (r)

)
=

m
3/2
h

n(r)

[2πT (r)]3/2
exp

− mv2
‖

2T (r)
−
mv2
⊥

2T (r)

 .
Usually the bi-Maxwellian is written in the form,

m
3/2
h

n(r)

(2π)3/2T⊥(r)T‖(r)
1/2

exp

− mv2
‖

2T‖(r)
−

mv2
⊥

2T⊥(r)

 .
But writing the latter in terms of E and µ we have,

m
3/2
h

n(r)

(2π)3/2T⊥(r)T‖(r)
1/2

exp

(
−
E − µB(r,Θ)

T‖(r)
−
µB(r,Θ)

T⊥(r)

)
,

the distribution function thus being unphysical because it depends on Θ.

The distribution can be adapted to be physical and experimentally relevant (e.g. for ICRH
heating) by replacing B(r,Θ) with Bc(r), some magnetic field strength that depends only on
r. Suitable choices can be Bc = B0, or Bc = Bmin(r) ≈ B0(1− ε). We also require that the
argument of the exponential is negative for all phase space, so we use,

Fh(E, µ, r) =
m

3/2
h

nc(r)

(2π)3/2T⊥(r)T‖(r)
1/2

exp

(
−
|E − µBc(r)|

T‖(r)
−
µBc(r)

T⊥(r)

)
,
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Modified bi-Maxwellian

The modified bi-Maxweillian distribution with Bc(r) = B0 models ICRH fast ions with heating
applied on-axis. In this course we avoid the inconvenience of the modulus (and hence the sharp
corner in the above figure) by setting Bc = Bmin(r):

Fh(E, µ, r) =
m

3/2
h

nc(r)

(2π)3/2T⊥(r)T‖(r)
1/2

exp

(
−
E − µBmin(r)

T‖(r)
−
µBmin(r)

T⊥(r)

)
,

which for the ICRH application above is a particularly good model for RF heating where
resonance is applied off-axis on the low field side of the device (this is often done
experimentally, effective for controlling sawteeth and impurities e.g. in JET). But, in fact,
we may apply the above for NBI and ICRH with any resonance position. The main
physics being determined by profiles nc(r) and T⊥(r) and T‖(r). 164 / 190



NBI and ICRH JET Sawtooth Control Experiments

84500 (15s)

R(m)

Z(
m

)
q=1

ICRH resonance
scan

[Graves, PPCF 2015]

Internal kink initially stabilised (long sawteeth) by NBI ions, via anisotropic fluid effect and
kinetic effects. ICRH can be stabilising or destabilising, depending on deposition or ICRH
relative to q = 1 surface. For heating outside q = 1 the ICRH ion density profile and
temperature profiles can become inverted (causing destabilisation).

We may approximately apply the below for NBI and (ICRH with any resonance position):

Fh(E, µ, r) =
m

3/2
h

nc(r)

(2π)3/2T⊥(r)T‖(r)
1/2

exp

(
−
E − µBmin(r)

T‖(r)
−
µBmin(r)

T⊥(r)

)
.

The main physics being determined by profiles n(r) and T⊥(r) and T‖(r).
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Modified bi-Maxwellian
The modified bi-Maxwellian can be written in terms of v‖ and v⊥ once again. We easily

obtain using E = mhv
2
⊥/2 +mhv

2
‖/2 and µ = mhv

2
⊥/(2B),

Fh =
m

3/2
h

nc(r)

(2π)3/2T⊥(r)T‖(r)
1/2

exp

− mhv
2
‖

2T‖(r)
−

mhv
2
⊥

2T̂⊥(r,Θ)

 , (7.10)

1

T̂⊥(r,Θ)
=

1

T⊥(r)B(r,Θ)

[
Bmin(r) +

T⊥(r)

T‖(r)
(B(r,Θ)− Bmin(r))

]
. (7.11)

Notice that we obtain the standard isotropic Maxwellian for T⊥ = T‖ (which would not have

occurred in fact if we choose e.g. Bc = B0 for example).

The full velocity integral over all phase space is,∫
allV

d
3
v = 2π

∫ ∞
−∞

dv‖

∫ ∞
0

dv⊥ v⊥

For a distribution that is symmetric in v‖ (such as the one above) we may use the following for

the full velocity integral (note distributions are always symmetric with respect to
perpendicular thermal velocity):∫

allV
d
3
v = 2π

∫ ∞
0

dv‖

∫ ∞
0

dv
2
⊥ (7.12)

Then the relevant moments are,

nh = 2π

∫ ∞
0

dv‖

∫ ∞
0

dv
2
⊥Fh, Ph⊥ = 2π

∫ ∞
0

dv‖

∫ ∞
0

dv
2
⊥mhFh

v2
⊥
2
, Ph‖ = 2π

∫ ∞
0

dv‖

∫ ∞
0

dv
2
⊥mhFhv

2
‖
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Modified bi-Maxwellian - dominant density gradient
In this course we wish to understand the main physics properties, slightly at the expense of
more general situations. Let us consider the limit

r

nc

dnc

dr
�
(

r

T⊥

dT⊥

dr
,
r

T‖

dT‖

dr
,

r

Bmin

dBmin

dr

)
.

In which case we have that,
∂Fh

∂r

∣∣∣∣
E,µ
≈
Fh

nc

dnc

dr

From the definition of Eq. (7.9) and the definitions of the parallel and perpendicular pressure
we obtain

δWfA =
1

2

∫
d
3
x |ξr|2

cos Θ

R0

{∫
d
3
vmh

(
v2
⊥
2

+ v
2
‖

)
∂Fh

∂r
−

d

dr

(
P⊥h + P‖h

)}

≈
1

2

∫
d
3
x |ξr|2

cos Θ

R0

1

nc

dnc

dr

{(
P⊥h + P‖h

)
−
(
P⊥h + P‖h

)}
(7.13)

where,

P⊥h + P‖h = 2π

∫ ∞
0

dv‖

∫ ∞
0

dv
2
⊥

(
v2
⊥
2

+ v
2
‖

)
mhFh

= 2π

∫ ∞
0

dv‖

∫ ∞
0

dv
2
⊥

(
v2
⊥
2

+ v
2
‖

)
m

5/2
h

nc(r)

(2π)3/2T⊥(r)T‖(r)
1/2

exp

− mhv
2
‖

2T‖(r)
−

mhv
2
⊥

2T̂⊥(r,Θ)


= nc(r)T⊥(r)

[(
T̂⊥(r,Θ)

T⊥(r)

)2

+

(
T̂⊥(r,Θ)

T⊥(r)

)
1

A(r)

]
, A(r) =

T⊥(r)

T‖(r)
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Modified bi-Maxwellian - large aspect ratio expansion
We now adopt the large aspect ratio expansion B = B0(1− cos Θ), Bmin = B0(1− ε). Hence,

P⊥h + P‖h = nc(r)T⊥(r)
(1− ε cos(Θ))[1− ε + A(1 + ε)− 2Aε cos(Θ)]

A[1− ε− Aε + Aε cos(Θ)]2
.

We note that for a strongly perpendicular distribution function we can have that εA ∼ 1 or
larger. But, in order to make further analytic simplifications, we assume that εA� 1, this still
providing essential understanding. Hence we obtain,

P⊥h + P‖h ≈ ncT⊥
[(

1 +
1

A

)
+

(
1−

1

A

)
(1 + 2A)ε(cos Θ− 1)

]
. (7.14)

Hence, we obtain,{(
P⊥h + P‖h

)
−
(
P⊥h + P‖h

)}
= ncT⊥

(
1−

1

A

)
(1 + 2A)ε cos Θ. (7.15)

As expected this expression vanishes for A = 1.
I For a deeply passing distribution we have a surplus of pressure on the HFS (due to

having diminished trapped fraction)

A� 1 : δWfA =
1

2

∫
d
3
x |ξr|2

1

R2
0

(
−
r

nc

dnc

dr

)
ncT‖ cos

2
Θ

The pressure weighted average curvature yields improved stability δWfA > 0 assuming
dnc/dr < 0

I For a deeply trapped distribution we have a surplus of pressure on the LFS:

A� 1 : δWfA =
1

2

∫
d
3
x |ξr|2

1

R2
0

(
−

1

nc

dnc

dr

)
(−2ncT⊥) cos

2
Θ

The pressure weighted average curvature in yields weakened stability δWfA < 0
assuming dnc/dr < 0
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Pressure averaged curvature
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Passing and trapped fractions
When considering kinetic corrections we will need the velocity integral over passing particles
and trapped particles. Particles are passing if v‖ does not change sign over an orbit, or if a

zero in v
2
‖ does not exist. Note that,

mh

2
v
2
‖ = E − µB(r,Θ)

where we consider that µ, E and r are constant over an orbit (passing or trapped). Hence the
following should also not change sign over a passing orbit,

mh

2E
v
2
‖ =

1

E
[E − µB(r,Θ)] = 1− λB(r,Θ), λ =

µ

E
.

Passing particles explore all values of B on a given flux surface r, from Bmin(r) at Θ = 0 to

Bmax(r) at Θ = π. Hence, the zero in v
2
‖ is avoided over the passing particle orbit providing

that,

0 ≤ λ <
1

Bmax(r)
, i.e. 0 ≤

v2
⊥

B(v2
‖ + v2

⊥)
<

1

Bmax

This can be written as a condition on v
2
⊥, i.e. 0 ≤ v2

⊥ < (v
2
‖ + v

2
⊥)B/Bmax or

0 ≤ v2
⊥ <

v2
‖

Bmax(r)/B(r,Θ)− 1
.

Hence the passing fraction of velocity space is:∫
pass

d
3
v = 2π

∫ ∞
0

dv‖

∫ v2
‖/(Bmax/B−1)

0
dv

2
⊥ (7.16)

The trapped fraction of velocity space is therefore,∫
trap

d
3
v =

∫
allV

d
3
v − 2π

∫ ∞
0

dv‖

∫ v2
‖/(Bmax/B−1)

0
dv

2
⊥ = 2π

∫ ∞
0

dv‖

∫ ∞
v2
‖/(Bmax/B−1)

dv
2
⊥

(7.17)
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Passing and trapped fractions
The trapped fraction of particles for a population Fh can be obtained by evaluating:

ft =

(∫
trap

d
3
v Fh

)
/

∫
allV

d
3
v Fh

The exercises will explore the trapped fraction for an isotropic plasma. The results can be
generalised for the modified bi-Maxwellian:

ft =


T̂⊥
T‖

(Bmax − B)/B

1 +
T̂⊥
T‖

(Bmax − B)/B


1/2

.

Using the lowest order expressions for B, Bmax and T̂⊥ we thus have

ft =


T̂⊥
T‖

ε(1 + cos Θ)

1 +
T̂⊥
T‖

ε(1 + cos Θ)


1/2

[1 + O(ε)] .

This expression and the first one at the top of the slide agrees with the trapped fraction of an
isotropic species in the limit T⊥ = T‖. Letting now εT⊥/T‖ � 1 the trapped fraction is

ft = [εT⊥/T‖]
1/2

[1 + cos Θ]
1/2

Notice that the standard textbook definition of the trapped fraction evaluates at Θ = 0 for an
isotropic case, giving ft =

√
2ε. The flux averaged trapped fraction

ft ≈
1

2π

∫ π
−π

ft =
2

π

√
2εT⊥/T‖
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Kinetic fast ion corrections
A more general solution to the perturbed drift kinetic equation is (see e.g. Porcelli PoP 1994,
Graves PPCF 2000):

δFh = −ξ ·∇Fh +


qj

〈
φ̇
〉
ξ
ψ ∂Fh

∂E
(ω − nω∗h)

ω − n
〈
φ̇
〉

+ iνeff

trapped ions

0 passing ions.

in the limit where the bounce frequency of fast ions is much larger than the mode frequency ω,

the average toroidal precession drift
〈
φ̇
〉

, the collision frequency νeff and the diamagnetic

frequency

ω∗h = q
−1
j

∂Fh

∂ψ

/
∂Fh

∂E
.

Here
〈
φ̇
〉
ξ
ψ

represents the orbit averaged Lagrangian which vanishes for passing ions.

I In the highly collisional limit νeff →∞ we obtain the anisotropic (adiabatic) fluid

result δFhf = −ξ ·∇Fh = −ξr∂Fh/∂r of Eq. (7.7) considered until this slide.

I In the limit ω ∼ n
〈
φ̇
〉

we have possible Landau wave-particle resonant energy transfer.

This effect is responsible e.g. for fishbones for the high frequency branch of n = 1, m = 1
internal kinks (explored if we had more time)

I A low frequency branch ω = 0 which in the collisionless limit is,

δFh = δFhf + δFhk, with δFhf = −ξr
∂Fh

∂r
, δFhk =

 ξ
r ∂Fh

∂r
trapped ions

0 passing ions.
(7.18)

=

 0 trapped ions

−ξr
∂Fh

∂r
passing ions.

(7.19)

The high and low frequency branches can co-exist. The kinetic corrections for the low
frequency branch are strongly stabilising if ∂Fh/∂r < 0 (core peaked profiles). Note in absence
of δFhf , stabilisation would be said to be due to trapped ion physics. Taken all together it
might be said to be due passing particles (absence of trapped ions). The literature is confused
on this, both interpretations are possible. 172 / 190



Kinetic fast ion corrections
We write the total energy

δW = δWc + δWfA + δWk

where from the last slide, Eqs. (7.4) and Eq. (7.8)

δWc =
1

2

∫
d
3
x
[
|δB⊥|

2
+ B

2 |∇ · ξ⊥ + 2ξ⊥ · κ|
2 − 2(ξ⊥ ·∇P )(κ · ξ∗⊥)− J‖(ξ

∗
⊥ × b) · δB⊥

]
δWfA = −

1

2

∫
d
3
x ξ
∗
⊥ · κ ξ

r

{∫
d
3
vmh

(
v2
⊥
2

+ v
2
‖

)
∂Fh

∂r
−

d

dr

(
P⊥h + P‖h

)}

δWk =
1

2

∫
d
3
x ξ
∗
⊥ · κ ξ

r

{∫
trap

d
3
vmh

(
v2
⊥
2

+ v
2
‖

)
∂Fh

∂r

}

Again for simplicity we assume gradients in Fh are dominated by gradients in nc(r). Using the
lowest order definition for the curvature, and noting that only the even component of the
curvature contributes,

δWk = −
1

2

∫
d
3
x |ξr|2

cos Θ

R0

{∫
trap

d
3
vmh

(
v2
⊥
2

+ v
2
‖

)
∂Fh

∂r

}
(1 + O(ε))

= −
1

2

∫
d
3
x |ξr|2

cos Θ

R0

1

nc

dnc

dr

{(
P⊥h(trap) + P‖h(trap)

)}
(1 + O(ε)) (7.20)

So that including δWfA, from Eq. (7.13), we may write the total hot response in the
convenient form,

δWfA + δWkA =
1

2

∫
d
3
x |ξr|2

(
−

cos Θ

R0

)
︸ ︷︷ ︸
κ·∇r

[
−

1

nc

dnc

dr

] {(
P⊥h(pass) + P‖h(pass)

)}
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Kinetic fast ion corrections
Simple extension of the exercises show that in the isotropic limit the trapped pressure
components are

T⊥

T‖
= 1 : P⊥h(trap) + P‖h(trap) = ncT⊥

(4Bmax − B) [Bmax − B]1/2

2B
3/2
max

.

Substituting B = B0(1− ε cos θ) and Bmax = B0(1 + ε) and expanding in ε we obtain,

T⊥

T‖
= 1 : P⊥h(trap) + P‖h(trap) ≈

3

2
ncT⊥ft(1 + O(ε)), ft =

√
ε(1 + cos Θ)

It is possible to generalise this result for the modified bi-Maxwellian. Assuming again
εT⊥/T‖ � 1 one obtains

P⊥h(trap) + P‖h(trap) ≈
3

2
ncT⊥ft(1 + O(ε)), ft =

√
εA(1 + cos Θ) (7.21)

where A = T⊥/T‖.

A result that is important for the calculation of δWk is

1

2π

∫ π
−π

dΘ cos Θft =
ft

3
, ft =

2

π

√
2εA (7.22)

Note that these kinetic corrections are larger than the hot corrections to the fluid δW by a

factor (Aε)
−1/2

. But clearly hot fluid contributions will dominate if there are very few
trapped particles (i.e. where A� 1). We now put all the results together.
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Total hot contributions to δW
We now consider the sum δWfA + δWk. Use

∫
d
3
x = 2πR0

∫ π
−π

dΘ

∫ a
0
dr r. From Eqs.

(7.13), (7.15), (7.20), (7.21) and (7.22) we obtain,

δWfA + δWk = π
2
∫ a
0
dr r|ξr|2

(
−T⊥

dnc

dr

)[
ft − ε

(
1−

1

A

)
(1 + 2A)

]

we may now look at three limits:

I The strongly parallel anisotropic limit where there are no fast trapped ions A = 0:

δWfA + δWk = π
2
∫ a
0
dr r|ξr|2

(
−T‖

dnc

dr

)
ε

I The isotropic limit where we only have kinetic corrections:

δWfA + δWk = π
2
∫ a
0
dr r|ξr|2

(
−T

dnc

dr

)
ft, ft =

2

π

√
2εT⊥/T‖

I The strongly perpendicular limit where we have A� 1:

δWfA + δWk = π
2
∫ a
0
dr r|ξr|2

(
−T⊥

dnc

dr

)[
ft − 2ε

T⊥

T‖

]

Note though that this result is valid only for εA� 1

Fast particles are stabilising to these terms in all cases if −dnc/dr > 0 (since these δW terms
are positive), otherwise destabilising for −dnc/dr < 0. A separate calculation allowing for
εA ∼ 1 requires numerical calculation, but the opposite conclusion is found. For εA ∼ 1 the
fraction of passing particles becomes small, so fast ion stabilisation also becomes weak
(δFh → 0).
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Isotropic Kinetic corrections
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Total fast ion effects: effect of anisotropy

177 / 190



Fast ion corrections to pressure driven instabilities
The fast ion contributions to δW considered to this point are relevant only if they can drive or
damp important tokamak instabilities. Note that the drive or damping from the fast ions
enters essentially through the fast ion pressure gradient T⊥dnc/dr.

I Current driven instabilities are not sensitive to these fast ion corrections. Recall that
tearing modes, external kink modes etc appear at δW ∼ ε2. Pressure gradient
corrections are not important at that order

I Pressure driven instabilities can be expected to be affected by fast ion populations under
empirically relevant conditions. Interchange, infernal and internal kink instabilities are
highly relevant to tokamak operations.

The last slides consistently integrates fast ion physics effects into the stability criteria of
internal kink modes and interchange modes.

The total energy is δW = δWc + δWfA + δWk. These separate terms require The average
pressure,

P = Pt + Ph, Ph =
P⊥h + P‖h

2

For the case where fast ion density gradients are much larger than temperature gradients, we
have that (

−T⊥
dnc

dr

)
≈

d

dr

(
−2Ph

) A

1 + A

so that

δWc =
1

2

∫
d
3
x
[
|δB⊥|

2
+ B

2 |∇ · ξ⊥ + 2ξ⊥ · κ|
2 − 2(ξ⊥ ·∇P )(κ · ξ∗⊥)− J‖(ξ

∗
⊥ × b) · δB⊥

]
δWfA + δWk = 2π

2
∫ a
0
dr r|ξr|2

d

dr

(
−2Ph

)
Gh, Gh =

Aft + (1− A)(1 + 2A)ε

2(1 + A)
, ft =

2

π

√
2εA.

Recalling that the grad-Shafranov equilibrium and the definition of κ includes Ph.
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Total Energy for toroidal modes
We now refer back to results in week 3. The sum of the field line bending terms of Eq. (3.33)
(with boundary terms neglected (ξ

r
0(a) = 0)) and the toroidal terms of Eq. (3.35) yield the

core contribution δWc in a torus:

δWc =
2π2B2

0

R0

∫ a
0
dr r

{[(
r
dξr0

dr

)2

+
(
m

2 − 1
)

(ξ
r
0)

2

](
1

qs
−

1

q

)2

+
(ξr)2

q2s

[
εα

(
1−

1

q2s

)]}
+

1

n2
δWT (α).

The first term involving the ballooning parameter

α = −
2q2sR0

B2
0

dPc

dr
+ αh, αh = −

2q2sR0

B2
0

dPh

dr

is (1− q2s)δWC in Eq. (3.35) and subsequent equations. Note α includes the average fast

particle pressure. Also δW
T

(α) is an additional toroidal contribution, e.g. Eq. (3.36) for the
case of m = 1 assuming the Heaviside solution for ξ

r
(r). Adding the hot ion contributions

δWfA + δWk we obtain

δW =
2π2B2

0

R0

∫ a
0
dr r

{[(
r
dξr0

dr

)2

+
(
m

2 − 1
)

(ξ
r
0)

2

](
1

qs
−

1

q

)2

+
(ξr)2

q2s

[
αε

(
1−

1

q2s

)
+ αhGh

]}
+ δW

T
(α), (7.23)

where

Gh =
Aft + (1− A)(1 + 2A)ε

2(1 + A)
.
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Modified Mercier Criterion
In chapter 6 we investigated the Mercier criterion from the infinite ballooning equation. But it
can also be obtained from Eq. (7.23). For Mercier instabilities we neglect the extra toroidal

term δW
T

, which is appropriate for m 6= 1 and shear not too small. The corresponding
Euler-Lagrange equation is then

1

r

d

dr

{
r
3
(

1

qs
−

1

q

)2 dξr

dr

}
=

1

q2s

[
αε

(
1−

1

q2s

)
+ αhGh

]
ξ
r

Mercier (interchange) instabilities are highly localised. We thus expand using a layer variable
(same one as we used for the resistive problems) x = (r− rs)/rs, where q(rs) = qs. Noting the

definition of the magnetic shear and using (1/qs − 1/q)
2 ≈ x2

s
2
/q

2
s , we thus have,

d

dx

(
x

2 dξ
r

dx

)
+DM ξ

r
= 0, DM =

1

s2

[
εα

(
1

q2s
− 1

)
− αhGh

]

where we note the symmetry with Eq. (6.18), obtained from the infinite n ballooning equation.
Note the hot particle modified Mercier factor DM . As explained in chapter 6, Mercier
instabilities are unstable for

DM >
1

4
.

Since Gh > 0 for all fast ion populations, we find that fast ions are stabilising to interchange
modes providing that αh > 0, i.e. centrally peaked profiles. We now see why interchange
modes are rarely observed in large hot tokamaks! Notice that the effect of hot particles also
enters into the standard Mercier term (since α = αc + αh) but the contribution involving Gh
is usually larger, especially for |1/q2s − 1| � 1.

Finally, it is possible to obtain an estimate of the growth rate for interchange modes (see
Graves et al PPCF 2022 for details):

γ

ωA
=

16 s exp{π [DM − 1/4]−1/2 − C + π/2}
qs
√

1 + 2qs
,

where C = 0.577.. is the Euler-Mascheroni constant. 180 / 190



Modified m = 1 internal kink stability
For this problem we simply apply the Heaviside step solution into Eq. (7.23) on setting m = 1.

Using the normalisation defined after Eq. (3.35), ie. δW = ˆδW (2π
2
R0B

2
0 |ξ

r
0 |

2
). We obtain,

ˆδW4 =
(
1− q2s

)
ˆδW
C

+
1

n2
ˆδW
T

+
1

ε21q
2
s

∫ r1
0

dr
r

r21

αhGh, ˆδWC = −
1

εsq4s

∫ rs
0

dr r2

r3s
α,

see the notes page at the end of chapter 3 for more details. Now select the most important
case, the n = m = 1 internal kink problem. Hence, setting qs = 1 the Mercier term(
1− q2s

)
ˆδW
C

vanishes, and we are left with,

ˆδW = 3(1− q0)
(
(β
c
p)

2 − β2
p

)
+

1

ε21

∫ r1
0

dr
r

r21

αhGh

with q0 = q(r = 0) < 1 and β
c
p ≈ 0.3 for a parabolic q-profile and

βp =
1

ε1

∫ r1
0

dr r2

r31

α = −
2

B2
0ε

2
1

∫ r1
0

dr r2

r21

d(Pc + Ph)

dr
.

Here βp enters the internal kink problem via the Shafranov shifted equilibrium

∆
′

= ε(li/2 + βp). Hence we see how the fast particles influence the toroidal term, and indeed
why the fast particle distribution cannot be highly anisotropic (the toroidal equilibrium
calculation would have to take into account the extra toroidal harmonics in the pressure).

Hence we see that while the fast ions have a destabilising effect in the toroidal term (via the
correction to βp) the dominant effect of fast particles will be the stabilising term associated
with αhGh. It explains why sawteeth are very long in plasmas with energetic particles. The
growth rate for the internal kink is (from Eq. (4.18)):

γ

ωA
= ε

2
1

π

s1

[
3(1− q0)

[
β

2
p − (β

c
p)

2
]
−

1

ε21

∫ r1
0

dr
r

r21

αhGh

]
.
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