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Content of Plasma Instabilities =P-L

1. The Ideal MHD Model and axisymmetric equilibria

2. Grad-Shafranov solutions: toroidal and shaped axisymmetric
equilibria

3. Theory of linear ideal MHD stability

4. External kink modes and inertia treatment for ideal and resistive
problems

5. Linear and non-linear Tearing Modes

6. Localised toroidal instabilities: ballooning modes and interchange
modes

7. Fast ion effects on pressure driven long wavelength instabilities
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Lecture 1

The ideal MHD Model and axisymmetric
equilibria

J. P. Graves
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Content of this lecture =P-L

1. The Ideal MHD Model and axisymmetric equilibria
Kinetic derivation of perpendicular force balance
Conservation of flux in ideal MHD
Equilibrium force balance
Axisymmetric equilibria with cylindrical coordinates
Grad-Shafranov equation with flux coordinates
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The Ideal MHD Model =P-L

» The MHD model is briefly derived here in a way that allows simple
adaptation to more realistic (e.g. kinetic - MHD) models. The MHD model
assumes that the plasma is collisional, despite the fact that ideal MHD is
often applied to the dynamics of almost collisionless tokamak plasmas.

> Nevertheless, ideal MHD does well describe perpendicular (to the
equilibrium magnetic field) dynamics of macroscopic instabilities.
Cross-magnetic field behaviour is relatively slow. Ideal MHD is not a good
descriptor of dynamics parallel to the magnetic field, which for collisionless
plasmas, occurs too rapidly for the ideal MHD model.

» Luckily, parallel dynamics are often stabilising, or they introduce other
classes of instabilities which can be distinguished experimentally from ideal
MHD. For this reason, ideal MHD can be used in order to assess the lowest
level (necessary but not sufficient) stability of a magnetised plasma. Despite
its limitations, it remains an extremely complex and powerful tool to
investigate stability. It is also a closed system, enabling e.g. non-linear effects
to be studied in a way that is generally too complicated for any other model.
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The Ideal MHD Model =P-L

d
d—i +pV-u = 0 (Conservation of mass)
du . .
P +VP—-JxB = 0 (Equation of motion)
d
% (Pp™) = 0 (Adiabatic equation of state)
E+uxB = 0 (Ideal Ohm'’s law)
V-B = 0 (Field lines have no sources or sinks)
VxB—-J = 0 (Ampere’s law)
B
aa—t +V xE = 0 (Faraday’s law),

where wu is the fluid velocity, p is the mass density, P is the plasma pressure, J is
the current density, v is the adiabaticity index and the convective derivative
d/dt = 0/0t +u - V. The electric and magnetic fields E and B consist of
externally applied fields and averaged fields arising from long-range inter-particle
interactions.
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The Ideal MHD Model =P-L

dp

p +pV-u = 0 Exact - no assumptions on gyro radius or collisionality
d
pd—’l; + VP —-JxB = 0 Anisotropic pressures in collisionless plasmas
d _ . .
u (Pp 7) 0 Poor model for system closure in collisionless plasma
E+wux B = 0 Reasonable model for small Larmor radius
V.-B = 0 Exact- Maxwell’s
VxB—-J = 0 Pre-Maxwell - good for MHD relevant timescales
oB
v +VxE = 0 Exact

Luckily, near marginal stability (small growth rates), plasma motions are
incompressible. It will be seen that for incompressible motions the parallel
momentum equation does not play an important role (though this is only true
when there is no plasma rotation - advanced topic outside e.g. Freidberg). The
energy equation also has intuitive meaning in the collisionless limit. With this in
mind, we derive the MHD model in a non-standard way.
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Appropriate Assumptions and Variables

The neglect of gV - E (Poisson equation ¢gV - E = p, with p the charge
distribution) implies that QUASI NEUTRALITY is valid everywhere:
Z Zjnj = ne with j summed over ion species, and n is density
J

It is customary to introduce a mass density p rather than number density. Due to
quasi-neutrality, and electron/ion mass ratio, fluid mass density in MHD is
essentially:

MiNG; + MeNe R M4iN;
i.e. the momentum of the fluid is carried by the ions. We define the mass density

p=m;n; (1.1)

Electrons do make an appearance in the fluid like quantity of the current
(difference between ion and electron velocity density):

J =e(Zinju; — nete) (1.2)

Electrons and ions also contribute to the plasma pressure, P = P; + Pe.

=P

L
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Guiding Centre Motion =PrL

The orbit of a single particle, with velocity components v and v and mass m; (me for an
electron) and charge e, in an electro-magnetic field can be written as

v =vigyro tybtvig

where v | gyro is the rapid gyro motion about a field line, 'qu is the streaming along a field
line (basic confinement) and the remainder is the slow guiding centre drift velocity, comprising
the sum of E x B, VB, curvature k = (b- Vb) (where b = B/B), and polarisation drifts for
ions and electrons:

ExB b uiv3+2 +d<E><B) (1.3)
v i = ——5— — X | = — K — \ — .
Lot B2 Qus 2 B ™2 \" B2
Ex B b uiVB+2+d<ExB> (1.4)
v = —— = — X | —— 4 v+ — (| —— .
et T B2 T Q.. 2 B 1T T a2
where Q. ; = eZ. ;B/mc ; (Ze = —1) etc. So, some important properties to note: the E x B

drift is in the same direction for both ions and electrons, and forms the basis for the MHD
fluid velocity. Corrections are in the opposite direction for electrons and ions, so thus, create
the MHD current. Corrections are ry, /a smaller, where rp, = v /Qc.

Take the distribution function of ions F; and F. (recall that dvsFiYE = n; ) and evaluate
the first moment of the distribution functions in order to obtain the ‘fluid’ velocity to leading
order in gyro radius (this neglects Hall terms and resulting diamagnetic effects):

E x B

o (1.5)

1
3 ~
Uje = /dU Fi eVlgie ™
e

which can be re-written as Ohm’s law, which states that the electric field in a frame moving
with the plasma (fluid velocity u is zero:

E+uxB=0
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Conservation of Flux in Ideal MHD =P-L

Consider a closed loop C of surface S drawn
in the fluid. A magnetic field B passes
through the loop, bounded by I, and so the
flux @ linking the loop is

<I>:/B-dS
S

The flux can change in two ways.

1) The loop can deform, and by altering its
shape, it can lose or capture field lines. If the
loop moves with velocity v., and 8l is an
elemental length tangential to the loop L,
then in time §t it will sweep out an elemental
area:

8S. = v, 6t X 6l = v.6tél sin©
and the flux linking this element is
6P, = (v 6t X 8l) - B = —(ve X B) - 8L6t.

2) Alternatively, the flux can change through
B itself changing in time. The change in flux
through a stationary element of area S in
time dt is

oB
6Py = — -S4t
ot

and the total rate of change of flux is
therefore the sum of 1) and 2):
5P 5. 6Py

5t ot 5t
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Concept of Conservation of Flux in Ideal MHD =P L

On proceeding to the limit where 6t, §S and 6l tend to
zero, and summing the contributions from the elemental
loops, it follows that,

e f( B) dl+/ 9B 4s
22— § (we x B) - 22 4s,
dt L s ot

where the line integral evaluated around the loop L.
Use Faraday’s law 0B/0t = —V X E, and employ

Stoke’s theorem / (VXxA) - dS= }{ A - dl to obtain,
S L

d®
—:?{(vch)wil—?{Ewil
dt L L

Apply now resistive Ohm’s law E + v X B —nJ =0,
with 7 the resistivity and v the fluid velocity, giving:

4%
—:7}{{(vcfv)><B+nJ}~dl
dt L

If we define the boundary S, and the increment S as

those of the fluid, such that the fluid moves with
velocity v, then

i f J-di
a N ’
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Concept of Conservation of Flux in Ideal MHD =P L

On proceeding to the limit where 6t, §S and 6l tend to
zero, and summing the contributions from the elemental
loops, it follows that,

e f( B) dl+/ 9B 4s
22— § (we x B) - 22 4s,
dt L s ot

where the line integral evaluated around the loop L.
Use Faraday’s law 0B/0t = —V X E, and employ

Stoke’s theorem / (VXxA) - dS= }{ A - dl to obtain,
S L

d®
—:?f(uch).dt—fE.au
dt L L

Apply now resistive Ohm’s law E + v X B —nJ =0,
with 7 the resistivity and v the fluid velocity, giving:

d®

kit :7}({(%71)) X B +nJ}-dl

dt L

If we define the boundary S, and the increment 6 S as those of the fluid, such that the fluid

moves with velocity v, then
a®
— = —f nJd -dl.
L

dt
Plainly in the ideal limit we have the conceptually appealing notion of field lines being frozen
into the fluid. For, if the fluid elements retain their identity it follows that the magnetic field
topology is necessarily invariant. This constraint has a profound effect on the allowable class of
MHD motions. Clearly, a small amount of resistivity would allow the field lines to diffuse

through the fluid (e.g. sun spots and solar flare activity, as well as tearing modes in tokamaks). y
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Current and Momentum Equation =PrL

Evaluate the guiding centre current by subtracting Egs. (1.3) and (1.4) and evaluating the first
moments of the electron and ion distributions

3 3 p - b [, VB, d (ExB
JLg—e/dU(i"JLgi_ engc)—EX L?"’ ||H+PE Bz (1.6)

where

2 2
v v

P, =P, +P,. :mi/deFi—; +m€/du3F€—;
" 2 2
P =Pj; + P, = mi/dng‘ivH +me/dv3FevH

PR MG /dv?’Fi
‘We also need to consider the magnetisation dn/dr
(diamagnetic) current D —

B
Jpy =-V X (PLE)

The total current is the sum J = JLg + Jpr- The
trick is so substitute Ohm’s law (1.5) into the

guiding centre current (1.6) and form the cross B B
product with B in order to obtain the momentum
equation: If there is a density gradient, a current is

generated perpendicular to B and dn/dr.
Larmor radius (and currents) also affected

P <b x dz: ) xb=JXxB-V, g by temperature (vA2) and field strength.
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Momentum Equation continued =PrL

Here we have

P, 0 0
P=P I+ (P —P)bb=| 0 P. 0 and V, =V —bb-V) (1.7)
o 0 B

where [ is the unit dyadic. This diagonal pressure tensor, and properties of
curvature vector reveal the useful result:

Vi -P=[V-bb V)P + (P —-PL)k
Let us recap the model equations so far:

dp
— Vv . = 0
dt+p u

d'u,L

p—| —-JxB+V,-P = 0

dt || =
E+uxB =

V-B

VxB-J =

a—B—i-VxE =
ot

o © © o

(1.8)

We note that we need to close the system with an energy equation (giving P), and
an equation for u);. Depending on the application, we will close the system as
appropriate.
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MHD Equilibrium =PrL

We initially look at a static equilibrium, meaning that there are no equilibrium
flows w = 0 and du/d¢t = 0. Consider the isotropic case where P; = P =P.
Thus we have to solve

JxB=VP (1.9)

On taking the divergence of Ampeére’s law V x B = J it follows that V - J = 0,
indicating that there are no sources or sinks in the current, in accordance with
charge neutrality. It is evident from Eq.(1.9) that J- VP =0and B-VP =0
which means that lines of magnetic field and current lie on surfaces of constant
pressure. In a tokamak these isobaric surfaces are known as flux surfaces
» The so called ‘hairy ball’ theorem, attributed to Poincaré, states that the
only smooth surface which can be covered by a non-vanishing vector field
(i.e. current of magnetic field vectors) is a toroidal one.
> Hence toroidal surfaces of constant pressure (flux surfaces) will have the
attractive property that the fields of B and J be non-zero everywhere on the
surface.

» This indicates that the J x B force can, in principle at least, balance the
pressure everywhere.
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Definitions of Cylindrical Coordinates =PrL

We note that there are two types of cylindrical coordinates used in our field. The
first type represents a cylindrical system which is an un-approximated definition of
the toroidal plasma. The other type is used in stability studies, and involves
approximating to an infinite aspect ratio (R/a — 00), and circular nested flux
surfaces. We should not confuse these very different meanings of ‘cylindrical.’
Both will be used in this course.

Cylindrical coordinates of un-approximated Approximated cylindrical tokamak used in

torus looking down from above stability studies

Azimuthal\coord length
2=Ry®

(Z pointing outwards towards us)

(R Z, @)
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Right Handed Cylindrical and Flux Coordinates =P L

We use an unconventional ordering (R, Z, ¢) for cylindrical coordinates (usual
ordering is (R, ¢, Z). The unconventional ordering allows a smooth and easy
transformation to flux coordinates (1, ©, ¢), where ¢ is again the third coordinate.
Much confusion could be avoided in plasma physics if everyone started from
cylindrical (R, Z, ¢). See Goedbloed and appendices for more information, and
vector calculus identities. Many of you will have already come across the

consequences of this problem

Lo z
Cylindrical Coords Toroidal Flux Coords
[}
( ~a
\0
AO‘\&
&
—
@ o (firsy
R.Z® Z(first) v 00
Right handed system W (thumb)
R(thumb) Right handed system
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Axisymmetric Toroidal Equilbria =PrL

‘We employ the cylindrical coordinate system (R, Z, ¢), where (see notes pages):
1 8(RBR) OBy 1 0By
B = Brer + Bgzeyz + Bye V-B= ———~ _—Z e

»ee OR 0z R 0¢
with €R.Z,¢ orthogonal unit vectors. We assume equilibrium axisymmetry, which means that
all equilibrium quantities (e.g. pressure magnetic field and current) are independent of ¢, so
that B = B(Z, R). This then allows us to introduce a stream function to represent the field
components in the poloidal plane

o o
RBr =——— and RBy = —
Y 77 8R
or more succinctly,
B =Byey+ By with B, = V¢ x Vi and Vo= %4’ (1.10)

It is clear that toroidal and poloidal fields are perpendicular to V1, i.e. the field lines lie on
surfaces of constant 1. It is now clear why these surfaces are named flux surfaces, since ¥ is
related to the poloidal flux ¢, for instance through a ring in the equitorial plane defined by
S={Z=0,R(¥1) < R< R(¥2)}

z
¥p

/SBp~d3‘=/SVX(¢V¢)~dS

- fwvw cdl = 27w (g — 1) (1.11)

The total poloidal flux (vacuum as well
as plasma field) through the circular
magnetic axis is found by taking
R(¢1) = Ro and R(v¢2) = 0, where

R = Rg, Z = 0 defines the magnetic
axis.

®
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Axisymmetric Toroidal Equilibria =PrL

Applying Ampére’s law in the cylindrical system we obtain (see exercises)

Jr =

1 8(RBy) 8 /1 0y 1 0%y
SR e ()
YA R OR OR

9By Iy = 9(RBg) _ Loy, 1974
’ ’ R AR R 822

Grouping the poloidal and toroidal currents, identified in Eq. (1.10), one obtains the compact
expression

1 1
J = —V(RBy) X ey + —A e 1.12
7 (RBgy) st 5 é ( )
with A* the Laplacian-like Grad-Shafranov operator, which in general coordinates is given by
At —riv. (Lv (1.13)
= =7 .
while in the cylindrical coordinate system, we have
. 8 /1 8 8?2
At =r2 (2 2) 4 2
OR \ R OR 022
Now, substituting the field Eq. (1.10) and the current Eq. (1.12) into force balance
J x B — VP =0, and forming the dot product with ey, (for which VP - ey = 0) yields an

equation for the toroidal field that is independent of pressure,

O(RBy) 94 O(RBy) 0% _
OR 8Z 8z OR

This states that the Jacobian of the functions RBy and 4 is zero. The vanishing of the
Jacobian implies that

F(+¢) = RBy is constant on a flux surface (1.14)
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Axisymmetric Toroidal Equilibria =PrL

Now use the fact that field lines lie on isobaric surfaces B - VP = 0:
1 1 P 1 P
—B-VP=—-Vixey VP———6¢—6 _7781#78
R ROROZ ROZOR

which is the Jacobian of P and 1, which again vanishes, so that P = P(¢).
Finally, forming the dot product of VP = J x B, with er we obtain

oP 1 O(RB 1 10
putalp——— fM By — =A%t 1/1
OR R OR R ROR
Using the fact that both P and RB are functions of 1 only:
or _ oy dp oY 1 FdF oY A*y

OR  ORdy ORR2 dy OR R2’
which directly gives the Grad-Shafranov Equation

_R2 M _
dy
Note that on substitution of Eq.(1.13) into Eq.(1.15) we see the true power of the

Grad-Shafranov equation. In particular, it is independent of the system of
coordinates on a given flux surface.

F(w)

A*y = F)?

(1.15)

Equation (1.15) is a non-linear, second order elliptic partial differential equation
for the equilibrium in terms of the flux. The general procedure for finding its
solution is first to prescribe the pressure P(v) and current function F(v) as some
physically reasonable distribution of the flux .
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Flux Coordinates for Equilibrium problems =PrL

V4
3z 4+ constant ’(/)

1 (N
165

v THALN

%

D
R N
B / {7

5y
» The equilibrium problem in axisymmetry requires solving for the locations of

constant ¢ surfaces over the R, Z plane.

> R

» For flux coordinate problem, we define a minor radius coordinate r for which
1 is a constant on constant r surfaces. For mapping these surfaces into R, Z
we require also a poloidal coordinate ©®. The complete coordinate system is
(r,©,9)

» This flux coordinate system is not unique. We choose the most convenient,
depending on the problem investigated.
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Flux Coordinates =P-L

Of great importance in equilibrium calculations, but also in the modelling of plasma transport
and in stability analysis, are flux coordinates (r, ©, ¢). Here ¢ is the usual toroidal angle. The
radial coordinate () labels the flux surfaces. It can be the poloidal (or toroidal) flux itself,
or the volume enclosed by each flux surface, or can be chosen to closely resemble the minor
radius (distance to the magnetic axis). The various definitions used for the poloidal angle ©,
however, are convenient in very specific applications: (i) the proper geometrical angle can be
used when the geometry is fixed, for instance in tomographic diagnostic methods, (ii) an
orthogonal coordinate system (Vr .- VO = 0) can be convenient in ballooning stability analysis
and certain means of solving the Grad-Shafranov equation, (iii) and most universally applied,
especially in stability studies, are coordinates in which the field lines appear straight. In these
coordinates the local pitch of the magnetic field line trajectory

d¢
=2 1.16
1= 09 (1.16)
is a constant on each flux surface. Note that the standard definition of the safety factor g if
the average of q; over the poloidal angle,

_ 1 27
a() = ;/O @ (0, ) do (1.17)

Hence g is invariant on the flux surface, i.e. ¢ = g(%). For straight field line coordinates,

q; = q, so that d¢/d© is also a flux surface quantity (by definition). There are other straight
field line coordinates such as Boozer coordinates. Here, the toroidal angle and poloidal angles
are modified in order to permit the field to be written in a simplified way in covariant form,
and allow straight field lines even when the equilibrium is not axisymmetric (e.g. stellarator).
A problem with straight field line coordinates is poor resolution on the low field side (LFS),
especially for low aspect ratio, and high pressure (e.g. for modelling spherical tokamaks). The
equilibrium will be expanded analytically with flux coordinates not fulfilling (i), (ii), or (iii).
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Types of flux coordinates =PrL

(i) Proper geometric angle (ii) Straight field line system (iv) Orthogonal system
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Flux Coordinates =P-L

Recall that the Jacobian Jof any coordinate system (r, ©, ¢) is such that the volume element
is given by 3
dv® = drdOde¢ J

For general non-orthogonal flux coordinates, the Jacobian is written in its general form
J=(Vr Ve xve) L. (1.18)

Meanwhile, the square of element of length dl along the magnetic field comprises the following

sum over the components of the metric tensor g;;, with J = y/det(g; ;):

di? = gy rdr® + 29, @drdO + go ©dO% + g4 sdd> (1.19)
with
T e T° R 2
gr,r = E\V@\ y Ire = *EV@ Vr, ge,e = §|VT| and gg ¢ = R™. (1.20)

We now employ these definitions in the Grad-Shafranov equation Eq.(1.15) (with Eq.(1.13)).
Useful are the following operators on a scalar f and vector Y :

V=V f+veaf+v¢af vy=_ {6 (IJVr-Y)+ o (JVO.-Y) + 9 (TVé Y)}
- ’ 7 lor " 20 EXS

9¢
1.21
The crucial point is that the Grad-Shafranov equation is in terms of a divergen(ce )
operator, see Eq.(1.13), which is straightforward to obtain for non-orthogonal
coordinates (see notes pages and exercise series). We obtain:

2 ’ ’
A*d}:R [3 <TP 9(—),(—))7 9 (w gr,(—))] (1.22)
J | or J 00 J
where
, , ax
Vi(r) =4¢"'Vr, where X' = o (1.23)
T
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Notes

Derivation of Grad-Shafranov Equation in Flux Coordinates:
Begin with the general divergence relation of Eq. (1.21),

1 o o o
V- Y=< — Vr-Y _— ve .Y — Vo Y
]{arw rY)+os(g )+ 55 (T8 '}

Now, we wish to obtain

A*w — B2 1 _ 2 1
e () ()

so that in the above substitute,
1
= (77)
giving
v.Y v(lvw) 1{8(‘7v VILJ)+O(JVO Vw)+a(JV¢ Vd))}
Y =V [ — = Zvr. — (== wve. — (= .
R2 J Lor \ R2 80 \ R2 d¢ \ R2

Now, the poloidal plane is perpendicular to the ¢ direction, so that V¢ -V = 0. Using also Eq.

(1.23), V¥ (r) = ¥'Vr where X' = dX/dr, and Egs. (1.20), i.e. (g0 = —(J>/R*)VO - Vr
and go,6 = (J2/R?)|Vr|?) ecasily gives Eq. (1.22)

" R* [0 (90,0 ;9 (9gre
Aty = |2 (P90 _ 2 (In
v .7{&«( 7 wae(y)




Aspect ratio expanded equilibria =PrL

For making analytic progress we will perform a Fourier expansion in R and Z :

R(r,®) = Rp+rcos©® — A(r) + i Sm (1) cos(m — 1)© + P(r) cos © (1.24)
m=2
Z(r,®) = rsin® — i Sm(r)sin(m — 1)© + P(r)sin©, (1.25)
m=2

where Rg is the major radius at the magnetic axis, r is a flux label, and A is the Shafranov
shift (this expansion is essentially the axisymmetric limit of the VMEC code). Here P(r) are
small corrections (as seen later).

Comparing this with another standard way of writing the equilibrium (e.g. as described in
special CHEASE ad-hoc equilibrium),

R = Rg+ fcos(w+ dsinw) (1.26)
Z = frsinw, (1.27)

where the squareness and higher harmonics are ignored, and Ry = [R(© = 0) + R(© = w)]/2
and 7# = [R(© = 0) — R(© = 7)]/2 are respectively the major and minor geometric radii. One
can identify this equilibrium in terms of the parameters in Eqgs. (1.24) and (1.25) with

Roy=Rg—A+S3, #=r+8s.
Also, upon choosing R(© = 7) = R(w = 7) and Z(© = ) = Z(w = ) we have

7 — So

K= . 1.28
r+ So ( )
Thus the Sy (r) profile defines the elongation profile. Also, a best fit between these coordinates
gives,
455
o= —),
8

where S3(r) defines the triangularity profile). 25 /190



Boundary conditions for equilibria =PrL

Realistic boundary conditions (BC) are obviously required, and these come in
essentially two forms.

1. A sufficient BC would be to define ¥ (R, Z) on a closed contour, i.e. by
defining the shape of one flux surface, for instance. If a fixed outer surface is
specified, then in essence the plasma-vacuum boundary is replaced by the
surface of a perfect conductor (on which 1 is necessarily constant). This is a
fixed boundary condition, which defines v in the entire plasma.

2. By specifying a flux surface in the vacuum region, one has a free boundary
problem. Taking into account the currents in the coils leads to a somewhat
different approach. One can use the known currents in the coils and an
assumed plasma current distribution to compute ¥ on a boundary which is
convenient for the computations, a rectangle, say. With these Dirichlet
boundary conditions one then solves the Grad-Shafranov equation in the
interior. This leads to a different plasma current distribution than originally
assumed, and one iterates the procedure. As an alternative, or in addition to
considering the coil currents and computing B in the metal parts as well as
the vacuum, poloidal field measurements can be available close to the coils or
near the plasma. This makes the set of boundary conditions altogether more
inhomogeneous and a very adaptable equilibrium solver is required. The
system can even be over-determined.
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Notes

Contravariant and Basis Vectors:
Define the cartesian basis
C = x€y + yéy + 2€;

where &, €y, €, are contravariant basis vectors. For a cartesian system, the covariant basis
vectors are simply

— ﬁ =g &Y = E = e, e

= = &y = =

oz ’ dy v

We now define a set of general coordinates [ul, u?, u3] (e.g. these might be [R, Z, ¢] or [r, ©, ¢]).
These coordinates have associated basis:

ac
T oz

=é,

oc
Contravariant basis : e; = -, 1=1,2,3
out
Covariant basis : el = ﬁui, i=1,2,3
These are related to each other as follows, through the Jacobian J
K 1

& =78 x &, =
e -1 — — = =
& =J & x &, J =¢&; - (& X &)
e.g. where i =1, j =2 and k = 3.
Any vector B can then be written as follows
. =3 1. 2. 35

Contravariant form : B =B €, + B“¢é> + B”é3,

Covariant form : B= B1€1 + Bzé‘2 + B3é37
where B? are the contravarient vector components, and B; are the covariant vector components.

i

The following identify holds for any basis, € e; = 1 for i # j, and é’iej = 0 for 4 = j, so that

the contravariant vector components can be written in terms of the projection of the vector B
and the covariant basis vector components:

B'=B.&=B.va', i=1,2,3



Notes

Metric tensors and Jacobians:

The contravariant matrix tensor is defined as

€1 € -€ € -€3
gij = | €2- € € -& Ey-€3
€3 €3 - €y €3 - €3

where off diagonal components are non-zero for a non-orthogonal system. The Jacobian is
T =\/lgi,j| = € - (€2 X €3)

Note that J > 0 for a right handed coordinate system (we will always adopt right handed
coordinate systems in this course).

The covariant matrix tensor is defined as

-1 1 oS - 1 -3
e - € e - € e €
i, -2 Sl -2 -2 -2 3
g =& -¢€ e . e e . e
3 Sl 3 2 =3
e’ . e e’ - € e’ .- €

where off diagonal components are non-zero for a non-orthogonal system. The Jacobian is

1 1
T = =

Vl0gijl € (€2 xé3)

Finally note the important relations:

By =g;;B, B'=g4"7B;.



Notes

Vector Calculus (we need only grad and div here):

Consider the scalar f we have,

A0 20 80

Vf= & & .
F= ul u? Bud ; Qu't

Consider now the divergence of the vector B in contravariant form

V.B=v.(B'e +B%& + B%&)
=V (B'&)
using the identities given earlier,

V-B=V-(B'
=V . (B'g& x &)
= (& x &) .V (B'T) + Bijw
=7 'e - V(B'T)

(B T)
_ZJ ou't

0

7ZJ4MB$

_, (o(gB?! a(JB? a(JB?
_ g1 ( )Jr ( )+ ( )
Aul ou? ou3



Notes

(R, Z, ¢) coordinate system:

Notice the order of this coordinate system is different from the standard cylindrical system,
reason being that we will wish later in the course to convert to flux coordinates (7, ©, ¢) with ¢
appearing at the same order. In terms of cartesian system (z,y, z):

x = Rcos ¢
y = —Rsin¢
z=2

where ¢ = x€y + y&y + 2€, and 22+ y2 = R2.

Contravariant identities:

&R = 8Z/OR = cos ¢ &y — sin ¢ &y ler| =
&y = 08/0Z = &, ezl =1
&y = 03/8¢ = —Rsin ¢ & — Rcos ¢ &y €] = R

Notice from inspection the important identities:

98y -
29 R (=VR)
TR ey (= RT9)
and
&z X &5 = Rcos ¢ & — Rsing &y = REr, &y X €r = Rz, Rpxéz= ’1g¢
so that

J =¢€r-(€z x &) =R



Notes

(R, Z, ¢) coordinate system continued:

ér-ér @Er-€z ERr-Ey 1 0 o0
9ij=\€z"€r €z-€7 Ez-&|=[0 1 0O
€y - €R €y €z Ep - € 0 0 R
Covariant identities:
ef=VR=U ey x4 =¢x
e =VzZ=0 e, xep=2¢z
& =Ve=g lepxéy =R &, |&*=R7!

N e . gR gl gZ R . VR-VR VR-VZ VR-V¢ 1
gl =% et &% .72 .| =|VZz.-VR Vz.VzZ VZ-V¢|=|0
. e g .gZ . P V¢-VR V¢-VZ V-V 0

Some vector calculus identities (more in Goedbloed book) in terms of

B = Bpel + Bye? + Bye® = Brell + Bye? + Bye?, &4 = 9]
e

- o o )
=R 207 | 60
AR oz ¢

of . 8f &4 of
7+77

Ror " %oz T R 0

) af e, 0

f oz, 00 % 0]

R 8Z ' R 9¢



Notes

(R, Z, ¢) coordinate system continued:

- = 1 o 5 10 ®
V-Bsz( Byy —BZ 4+ — ~(RB%)
R OR 2z R 0¢
1 ( B )+ B n 10 (B¢)
T Ror F 7T Ros \ R
> % (RBr)+ 2By 4+~ 2B
TRrRor M T 9z 7 T Ros ?
and
1 8BZ = 1 (a(R*B?)  9BRY\ 1 (oBE  aBZ\ _
VxB=—|—— — €rp — — €z ——\——=—— )¢
R 9¢ R OR 8¢ R 8z OR
(1 0By ) 1 (aBd) aBR)_‘Z R(@BR 3BZ)_¢
R 09¢ R 0Z OR ¢ oz OR
18B; 0By | 1 (8(RBy) 9BRr)\ . (BBR BBZ>A
=—\=m=—=F "= lér— = |\—F—  —F—)éz—-\ —5 — = ) é
R 0¢ 2z R OR ¢ 2z OR
N Lo . z R 5 R
where & notation indicates unit vectors. Note we have By = B, Bp = B, e = ér = e,

ez =éz=e? R7'By =B, = RB®, R 'e, = &4 = Re?

In the main lecture slides, the field is written as B = Brer + Bgzez + B¢e¢, where ey is a
unit vector, so the main lecture slides use the results in these notes pages, but transform the
notes with By — By and &g — ey,



Notes

Axisymmetric non-orthogonal coordinate system (r, ©, ¢)

It is possible to conveniently construct the metric for this system specifically for the case of
axisymmetry via R = R(r, ®) and Z = Z(r, ©) and lifting some of the results from the notes on
the (R, Z, ¢) coordinates. Specifically, The cartesian system ¢ = x&, + y&y + z€ is transformed
to flux coordinates via

z = R(r,©) cos ¢
y = —R(r,O)sin ¢
= Z(r,0)

It is then possible to construct contravariant and covariant identities and associated vector (and
tensor) calculus in terms of as yet undefined R(r, ©). These notes are completed in the exercise
series and associated worked solutions provided as part of this course.





