Free boundary exercise

Cassandre Contré, Reinart Coosemans, Antonia Franck, Michele Marin, Simon Van Mulders

February 2023

1 Poloidal flux in tokamak

- a) Draw a poloidal cross section of a generic tokamak with vacuum vessel, 1 central solenoid, 6 poloidal field coils and a limited plasma with $\kappa = 1.5$.
- b) Sketch, in the same figure, the magnetic field generated by a positive current in the central solenoid assuming the tokamak has an air core.
- c) Sketch the magnetic field generated by a positive current in the solenoid assuming the tokamak has an iron core (iron transformer yoke).
- d) Sketch the flux surface distribution inside the vacuum vessel and indicate the magnetic axis and the last closed flux surface. In our sign convention, does the poloidal flux have a maximum or minimum at the magnetic axis?
- e) For the air core case, sketch the value of the poloidal flux as a function of R (major radius) on the horizontal symmetry plane of the tokamak passing through the plasma (Z=0). First consider a case without a current in the plasma. Assume the Ohmic coil current is positive (at the beginning of the discharge) and the vacuum vessel does not carry any current.
- f) Sketch the value of the poloidal flux (with similar conditions as above), this time including the effects of a positive plasma current.
- g) Repeat the previous two exercises but now for the end of the discharge, when the Ohmic coil has a negative current.

2 The safety factor q in practice

In the course, the definition of the safety factor q is given:

$$q = \frac{T}{2\pi} \oint \frac{1}{R^2} \frac{d\ell}{|B_p|} \tag{1}$$

where the integral is evaluated on a flux surface contour in the poloidal plane. Recall $T(\psi) = RB_{\phi}$

- a) If the plasma is diverted, i.e. the last closed flux surface has an \times -point, what value does q have at the last closed flux surface?
- b) Derive the expression for the 'engineering q' q^* . This is the value of q at the last closed flux surface assuming a large aspect ratio tokamak for which $R \approx R_0$ and assuming the toroidal magnetic field to be external and constant such that $B_{\phi} = B_0$. Furthermore it is assumed that the poloidal field is constant on the flux surface and determined by the enclosed plasma current.¹
- c) Estimate the maximum plasma current that can be induced in a tokamak before touching the q=2 ideal MHD limit, for $B_0=2.5\mathrm{T},~a=0.6\mathrm{m},$ $R_0=1.65\mathrm{m},~\kappa=1.5$. Compare this to the typical parameters of the ASDEX Upgrade tokamak (look them up online). Repeat the exercise for a high-elongation TCV plasma: $B_0=1.5\mathrm{T},~a=0.25\mathrm{m},~R_0=0.88\mathrm{m},$ $\kappa=2.5$.

3 Full magnetic control simulation using MEQ (optional)

MEQ comes with a tutorial documentation/tutorials/anamak_rzp_control.m that contains a full example of closed-loop control of R,Z,I_p and orthogonal PF coil currents.

- a) Study the tutorial, possibly inspecting the file meqctrl to learn the details of the controller.
- b) Around line 49, a time-dependent coil current trajectory is determined to sustain the plasma current. This is stored in LX.Ia and LX.Iu. Why is LX.Iu constant in time but not zero?
- c) Check whether the time-dependent coil current stored in LX.Ia affects the magnetic field evolution by plotting the poloidal flux generated by the time-derivative \dot{I}_a . What do you notice about this flux distribution? What is its gradient in the plasma region? And what does the value of the flux represent?
- d) Later, the structure ctrlpar is defined which contains controller parameters. In particular ctrlpar.KzQ contains the vertical position controller. Change these gains and see how the vertical stability is affected. What is the minimum and maximum range for the proportional gain? Comment out the (slower) full free-boundary evolution simulations (call to fget() on line 101) and do the initial trials only with rzp and fgel (rigid and linearized GS models). Finally compare your simulations for the various models.

¹Hint: the circumference of an ellipse with axis a and b is approximately $c=2\pi\sqrt{\frac{a^2+b^2}{2}}$.

e) (Optional) Tune the control gains and/or add a feedforward controller to improve the response to the the change in reference current. Compare the error norm in the plasma current error in time to the original solution. Send your improved solution scripts to federico.felici@epfl.ch.