Control and operation of tokamaks Exercise 2 - Plasma current control and plasma position determination

Lecturer: F. Felici

Instructors: D. Biek, R. Coosemans, S. Marchoni, P. Molina, F. Pastore

EPFL - SPC

February 2023

Ex 2.1: Plasma current control

Assume a simple model describing the Ohmic coils, plasma current, and current in the first (slowest) eigenmode of the vacuum vessel current distribution

$$L_{OH}\dot{I}_{OH} + M_{p,OH}\dot{I}_p + M_{p,OH}\dot{I}_e + R_{OH}I_{OH} = V_{OH}$$
 (1)

$$M_{e,OH}\dot{I}_{OH} + M_{e,p}\dot{I}_p + L_e\dot{I}_e + R_eI_e = 0$$
 (2)

$$M_{p,OH}\dot{I}_{OH} + M_{p,p}\dot{I}_p + M_{p,e}\dot{I}_e + R_pI_p = 0$$
(3)

- a) Describe the spatial distribution of current in the slowest vacuum vessel eigenmode.
- b) Calculate the loop voltage required to drive a plasma current of 300kA assuming $R = 3 \times 10^{-6} \Omega$.
- c) Calculate the current ramp rate in the OH coils required to sustain this plasma current if $M_{p,OH} = 0.8748 \times 10^{-4}$.
- d) Assume the OH coils have a current range of ± 20 kA. Compute the maximum flux swing in Wb if $M_{p,OH} = 0.8748 \times 10^{-4}$.
- e) For how long can this plasma current be sustained at most?

Ex 2.2: Plasma position determination

In this exercise you will construct a linear estimator for the plasma current, vertical and radial position based on measurements.

In the file Plasma_position_determination.m, a current distribution Ix for a TCV equilibrium is given on the plasma grid x (with grid coordinates rx,zx) with a given total current radial and vertical position. The associated set of poloidal field coil currents Ia is also given.

The measurements of magnetic probes and flux loops corresponding to this current distribution are calculated and time-dependent noise with standard deviation eBm,eFf is added to these measurements (Bm,Ff). The coil currents Ia are assumed to have no measurement noise.

Also, it is shown how to define a much smaller plasma grid h and how to compute a matrix Txh such that Ix=Txh*Ih allows to convert current distributions on one grid to another.

- a) Write a weighted least-squares problem to determine the current distribution Ix on the full x grid from the measurements of magnetic probes and flux loops, in the form $\min ||AI_x b||_2$. Does this least-squares problem have a unique solution?
- b) Write a least-squares problem to determine the current distribution **Ih** on the reduced grid. What is A and b? Does this problem have a unique solution?
- c) Write the solution of least-squares problem in (b) in the form Ih=Ahy*y where y is the vector of measurements [Bm;Ff;Ia]. Calculate Ahy and plot the current distribution Ix obtained for the first time slice of the noisy measurement on the (r, z) grid.
- d) Recall that the plasma current can be determined from the current distribution as $I_p = \sum_{j=1}^{n_x} I_{x,j}$. Write a linear estimator for the plasma current from the measurements such that $I_p = H_{I_p} \cdot y$
- e) We can define an estimator for the plasma radial and vertical position, by assuming the position corresponds to the centroid of the current distribution:

$$\hat{r} = \frac{\sum_{j}^{n_x} r_{x,j} I_{x,j}}{\sum_{i}^{n_x} I_{x,i}} \tag{4}$$

$$\hat{z} = \frac{\sum_{j}^{n_x} z_{x,j} I_{x,j}}{\sum_{i}^{n_x} I_{x,i}}$$
 (5)

Use these expressions to compute an estimate of r and z based on the measurements of magnetic probes and flux loops. Is this a linear estimator?

f) Write a estimator for the plasma rI_p and zI_p i.e. the product of radial/vertical position and plasma current. Is this linear?

- g) Plot the outputs of the linear estimators and compare to the known values of r_0I_{p0} , z_0I_{p0} , I_{p0} . Attempt to improve the estimate of z_0I_{p0} and I_{p0} by changing the number of degrees of freedom in Ih and explain the results.
- h) (Optional) Plot the mean and standard deviation of I_p , zI_p , rI_p estimates for various values of nr, nz (and nh = nz * nr). Does the estimator quality increase, decrease or stay the same when increasing nh? Explain why.
- i) (Optional) Now assume that the circuit current measurements Ia_meas is also affected by measurement noise of standard deviation eIa=100[A]. Check the quality of your estimator and compare it to the non-noisy case. Reformulate the least squares problem to jointly estimate the plasma current distribution and circuit currents from the measurements and compare the estimation results.