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1 State Space representation

a)Write down the set of ODEs defining the circuit dynamics.
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b) Write them as a first order ODE in a vector matrix form.
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c)Among the variables, identify the states of the system.
One possible choice is e, voltage across the capacitor and i, current flowing the circuit.
d) Write down the state space representation for this system.

X = AX + BU,
Y =CX + DU
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With no forcing B = 0 and with no feedthrough D=0.
e)Write down the state space representation of this new system

X = AX + BU,
Y =CX + DU
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This time B # 0 while D = 0. The input is a voltage and the outputs are the states of
the system.
f) Determine the stability of the system

%% State space representation

A = [0,1/Cc;-1/Lc,-Rc/Lc]l; % Construct A matrix

B = [0;1/Lc]; % Construct B matrix

C = [1,0;0,1]; % Construct C matrix (The states are the outputs)
D = [0;0]; % Construct D matrix

sys = ss(A,B,C,D); 7% ss construct the state space representation

%% Stability of the system

figure(1);clf;

pzmap(sys) % Displays the poles and zeros of the system

pole = max(real(pole(sys))); % Gets the pole on the real axis
fprintf (’The pole location on the real axis %d’,pole)

The poles of the system always feature Re(p) < 0 therefore the system is stable. This is
physically justified by the presence of only energy conserving or dissipating elements in
the system.

g) Plot the step response for the various inductance values.

step(sys(:,1)); % Step response at the voltage
input to the outputs (states of the system)
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Figure 1: Step responses for various inductances.

Exercise 2 - Circuit diagram (Electrical Engineering)

a) Derive the transfer function from voltage to current for this circuit.

di
v=1% 1R
a T

Laplace transform yields the following equation
V(s) = Lsi(s) + Ri(s)

The transfer function is as follows:

i(s) A
V(s) 7s+1

where, A = 1/R is the steady state gain, 7 = L/R is the time constant.

b) Plot the step response for a 1V step for R = 1Q and L = 1uH, L = 10uH,
and L = 100puH

%% Transfer function representation

Ag = 1/Rc; ' Steady state gain

tau = Lc/Rc; % Time constant

s = tf(’s’); % Define s as a transfer function variable



G = Ag/(tauxs+1);’% Transfer function for the system v(s) to i(s)

%% Step response using the transfer function model
figure(3);clf;
step(G); % Step response at the voltage input to the current
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Figure 2: Step responses for various inductances.

c) Sketch the bode plot for the different inductances. Compare them by
using the matlab bode function. Use the Bode diagrams to explain the step
responses.

%% Bode plot for the transfer function
figure(4);clf;
bode(G); % Bode plot for the transfer function
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Figure 3: Bode plots for various inductances.



d) Convert the transfer function to a discrete time plant with
Tustin mapping. Note that it is a rational function of z71. Study
its stability with various settings

Ts = le-7; % Sample time for the discrete system,
this has to less than the system time constant
Gd = c2d(G,Ts,’tustin’);

figure(5) ;clf;

step(Gd)

figure(6) ;clf;

impulse(Gd); % Impulse response

Exercise 3 - P-controller design (Control)

Figure 4: Control scheme for exercise 3.

a) For the plant G(s), design a proportional controller that provides a maxi-
mum bandwidth (frequency up to which | G(s)C(s) |> 1), while ensuring sta-
bility.

This question is subtle. The plant G is a stable second order system (it features two
poles and no zero) and stability with a proportional controller is in principle ensured
for ANY (positive) gain of the controller C. This can be verified by observing that the
phase ¢ of the system transfer function never moves below —7 and this allows to always
satisfy the Bode stability criterion for a stable plant in feedback (positive phase margin
PM = ¢ — (—m) of the open loop system L = CG at the bandwidth). Note that this does
not imply that ROBUST stability is achieved, since the stability margins get extremely
low for a high K.

b) Verify both conditions (Maximum sensitivity function and Nyquist crite-
rion) for your controller. Taking C(s) = K, the maximum bandwidth is achieved at



maximum K that still satisfies the stability margin. Using Matlab, one can find itera-
tively K = 1.4. The plots for the proportional controller are obtained using the Matlab
commands:

K=1.4;

C=K;

figure

subplot (221)

nyquist (P*C)

axis(3*x[-1 1 -1 1])
hold all

% margin
theta=0:1/100:2*pi;
plot(-1+0.5*cos(theta) ,0.5*%sin(theta),’r’)
title(’Nyquist diagram’)

subplot (222)
bodemag (1/ (1+P*C) ,w)

hold on

plot([w(1) w(end)],[6 6],’r--")
title(’Sensitivity function’)

subplot (223)
step(1-1/(1+Px*C))
title(’Step on reference’)
subplot (224)

step(P/(1+PxC))

title(’Step on disturbance’)
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Figure 5: Results for proportional controller.

The Nyquist diagram in figure 5 shows that the system passes the circle with radius 0.5
on the right, indicating stability. The sensitivity is nicely below the 6dB. Note in the
step responses that one oscillation takes approximately 6 seconds, this corresponds to the
bandwidth of approximately 1 rad/s. Note that the proportional controller is not able to
remove a disturbance at the plant input.

c) Derive the transfer function between the u(t) and r(t), y(t) and r(t), d(t)
and y(t).

y  GC

= Trac closed loop

” C e
- — Trac control sensitivity
y G . . .
c_l = m process sensitivity

d) Plot the step response for the above derived transfer functions.
Refer the figure 5.



e) Add a delay to the controller response u(t) and plot the root locus for the
closed loop system and study the effect on the stability of the system.

%% Adding a delay to the controller

C_delay = ss(C); % State space for the controller
C_delay.InputDelay = 0.6; % Delay for the controller

C_del = pade(C_delay); % Pade approximation

L_del = C_delx*G;

L = CxG;

figure(1); rlocus(L) % root locus of the open loop

figure(2); rlocus(L_del) % root locus of the open loop with delay

The root locus shows how the poles change following a variation of the controller gain in
feedback. The poles of the closed loop system start from the open loop ones and move
away from them. For the system with no delay they never get unstable (i.e. they never
move in the half-plane with positive real part). In the case with delay instead they cross
the imaginary axis for a sufficiently high gain. Since it’s impossible to have a signal
transmission without delay, it will be impossible to reach an infinite bandwidth.
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Figure 6: a) Root locus with no delay. b) Root locus in presence of delay



