Kinetic control of tokamaks

Federico Felici

Ecole Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne, Switzerland

EPFL Doctoral School Course PHYS-734, February 2023

Outline I

Minetic control

OD model of tokamak confinement
Sources of power, particles and current
Plasma self-generated sources
Auxiliary sources of heat and current
Sinks of power and particles
Confinement transitions

Particle transport

Sensors/Diagnostics for kinetic control

Current practice for kinetic control

Section 1

Kinetic control

Subsection 1

0D model of tokamak confinement

0D models of tokamaks

• Energy balance equation for plasma pressure $p = (n_e T_e + n_i T_i) \approx 2nT$ (or thermal energy density $w_{th} = \frac{3}{2}p$)

$$\frac{3}{2}\frac{\mathrm{d}p}{\mathrm{d}t} = S_{source} - S_{sinks} \tag{1}$$

where

- S_{sources} is the source power density
- S_{sinks} is the sink power density

See the book by Freidberg for an overview of power balance considerations for reactors, Lawson's criterion, etc. [?]

0D models of tokamaks

Particles

$$\frac{\mathrm{d}n}{\mathrm{d}t} = S_{source,n} - S_{sink,n} \tag{2}$$

- S_{sources,n} is the source of particles
- S_{sinks,n} is the sink of particles
- Global current balance

$$I_{pl} = I_{p,inductive} + I_{p,non-inductive}$$
 (3)

- Inductive current: current driven by (induced) loop voltage.
- Non-inductive current: other sources, self-generated by plasma or auxiliary current drive.

Subsection 2

Sources of power, particles and current

Fusion power

- $\frac{4}{5}$ of each fusion reaction's energy is in the fast 14MeV neutron. To be used by breeder to breed tritium and to extract energy.
- $\frac{1}{5}$ of each fusion reaction is contained in a 3.5MeV α -particle.
- Alpha particle power density (for DT reactions) is

$$S_{\alpha} = E_{\alpha} n_{D} n_{T} \langle \sigma v \rangle = \frac{f_{DT}}{(1 + f_{DT})^{2}} E_{\alpha} n^{2} \langle \sigma v \rangle$$
 (4)

where $f_{DT} = n_D/n_T$ and we have used $n_T + n_D = n$

• For sustained fusion reaction, significant fraction of plasma thermal energy must come from α -particles.

$$P_{\alpha}/P_{in} = 1 \leftrightarrow Q = P_{fus}/P_{in} = 5$$

Ohmic power

- The plasma current causes resistive heating $P_{oh} = V_{loop}I_p = I_p^2R_p$.
- 'Ohmic plasmas' are plasmas heated purely by Ohmic power, no auxiliary sources.
- Unfortunately, resistivity decreases with plasma temperature, so P_{oh} decreases. Purely ohmic tokamak plasmas can't reach high enough temperatures for ignition.

Bootstrap current

- Self-generated plasma current due to neoclassical (trapped particle) effects (see [1] for the physical explanation).
- Caused by pressure gradient, proportional to $\frac{\partial p}{\partial \psi}$.
- driven non-inductively. But auxiliary current drive is expensive.

• For steady-state tokamaks, we want the entire plasma current

- For steady-state tokamaks, we would like a *large bootstrap current fraction*, $I_{BS}/I_p > 50\%$, rest by auxiliary current drive.
- Active field of research in 'advanced scenarios': most current driven by bootstrap + auxiliary.

Neutral beam injection

- Inject high-energy beam of neutral particles, ionize upon entering plasma
- Beam ions thermalize by colliding with plasma ions, kinetic energy of beam becomes thermal energy of plasma

• Also drive electrical current and give momentum (rotation) to the plasma

(R_u=110, 120, 130 cm)

(R_u=50, 60, 70 cm)

- Advantages
 - 'Workhorse', good for bulk heating and current drive.
- Disadvantages
 - Power can only be on or off for each injector.
 - Technologically difficult for high energy and high power.
 Need 'negative ion' beams.

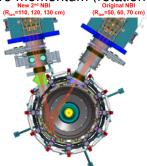
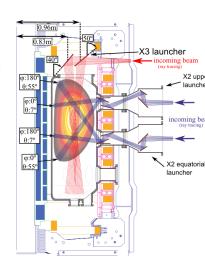
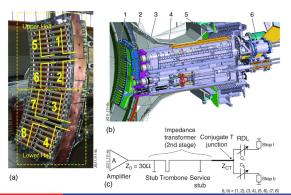



Figure: NSTX

Electron Cyclotron Heating & Current Drive


- Electrons gyrate around field at cyclotron frequency $\omega_c = \frac{eB}{m}$
- EM waves resonantly heat electrons.
- Advantages:
 - Waves propagate through vacuum, no coupling problems.
 - Steerable: highly localized heating/cd location in plasma.
 - Can drive electric current.
- Disadvantages:
 - Heats electrons only.
 - Concentrated stray radiation may damage wall or diagnostics, need protection.
 - Difficult technology for sources ($f \sim 170 \mathrm{GHz}$) - but good progress.

Kinetic control of tokamaks

Ion Cyclotron Heating and Current Drive

- · Advantages:
 - Source technology easy, $f \approx 50 \mathrm{MHz}$.
 - Heats the ions: good for fusion.
- Disadvantages:
 - Antennas must be close to plasma to couple power: antenna-plasma interaction and problems with impedance matching

Lower Hybrid Heating and Current Drive

- Advantages:
 - Source and trasmission technology is easy, 1 8 GHz.
 - Good at driving non-inductive plasma current.
- Disadvantages:
 - Only electron heating.
 - Technologically difficult coupling of antenna to plasma.
 - Hard to tell where the power/current will go.

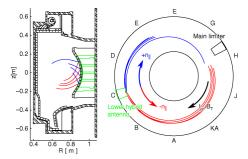


Figure: LHCD wave propagation according to Genray code. From [2]

Subsection 3

Sinks of power and particles

Radiation

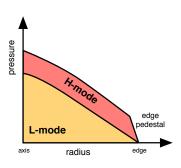
- Physical origin
 - Cyclotron: radiation due to centripetal acceleration of gyrating particles.
 - Line radiation: ionization processes involving bound charge states.
 - Bremsstrahlung: radiation due to acceleration (change of velocity direction) of particles during collisions.
- Bremsstrahlung is usually dominant for large hot tokamaks.
 - Approximate model:

$$S_{brem} = 5.35 \times 10^3 Z_{\text{eff}} (n_{e20})^2 T_e^{1/2}$$
 (5)

- Here, $Z_{\text{eff}} = \frac{1}{n_e} \sum_j Z_j^2 n_j$ is the effective charge. (j sums over impurity species). Impurities have higher charge and cause electrons to radiate more. Important to keep Z_{eff} low.
- If high-Z impurities accumulate in plasma, then impurity line radiation may dominate.

Conductivity losses

- The temperature gradient from core to edge causes outward thermal diffusion.
- Ultimately, energy flows out of the plasma into the limiter or divertor.
- This is quantified by the energy confinement time. Neglecting all other sources and sinks we have

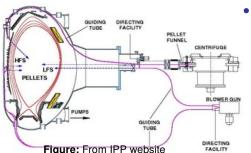

$$\frac{\mathrm{d}p}{\mathrm{d}t} = -S_{cond} = -\frac{1}{\tau_E}p\tag{6}$$

so the pressure decays with characteristic time τ_E .

- Unfortunately, τ_E decreases with increasing input power. Otherwise we could reach any temperature by just heating sufficiently.
- Until very recently, tractable first-principle models for τ_e did not exist: use *scaling laws* instead.

L-H transition

- L-mode: 'normal' model of operation for tokamaks.
- H-mode: Transport is locally suppressed near the edge. Edge Transport Barrier gives edge pedestal.
 - Pressure pedestal gives extra pressure in entire plasma
 - Occurs in diverted plasmas, after reaching power threshold
 - Detailed mechanisms not understood, involves complex turbulence and flow.
 - Edge pedestal can repetitively collapse, origin of Edge Localized Mode (ELM).



Subsection 4

Particle transport

Gas valves/pellet injectors

- Gas valves
 - Inject gas into vacuum chamber
 - Neutral gas particles become ionized soon after they enter the plasma.
 - Time delays if valves are far away.
 - Gas stays near edge and does not penetrate into the plasma in certain conditions.

Pellet injectors

- Inject small pellets of frozen
 D₂ or H₂ ice at high speed.
- Penetrates into the plasma before ablating.
- Can be used for localized fuelling deep in the plasma.

0D model of tokamak particle confinement

- Three 'reservoirs': plasma, vacuum, wall.
- Flows:
 - lonization: neutrals in vacuum get ionized when entering the plasma.
 - Recombination: ions in plasma get neutralized and leave plasma
 - SOL losses: plasma form the scrape-off layer exit plasma and impact limiter/diverted.
 - Recycling: Particles from wall pushed out by new incoming paticles.

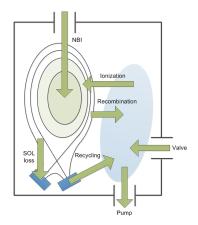
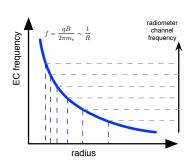


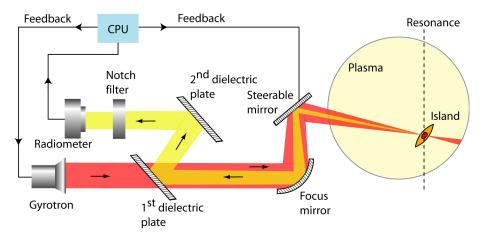
Figure: Particle flows in a tokamak reactor [T. Blanken Fus.Eng.Des 2017]

Subsection 5


Sensors/Diagnostics for kinetic control

Sensors, aka Diagnostics

- Measurements of high-temperature plasma are not easy.
- Entire courses exist on plasma diagnostics.
- Here we look only at diagnostics that are used for real-time control.

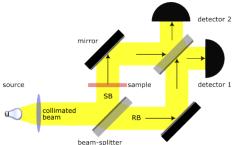

ECE - Electron Cyclotron Emission

- Measure EC radiation leaving the plasma.
- Choose measured frequency → nominal emission locadtion inside plasma.
- In practice, thermal, supra-thermal, and relativistic effects play an important role, often source of radiation is not well-localized.
- Advantages
 - · High temporal resolution.
 - Viewing angle can be steered (in-line ECE).
- Disadvantages
 - Measurement location depends on B field.
 - Cutoff at high density.

In-line ECE

- ECE line of sight shared with ECRH launcher [3].
- Steerable line of sight, sensing and actuating in same location.

Thomson scattering


- Laser scatters off plasma electrons.
- Intensity of scattered light is proportional to plasma density.
- Broadening of scattered spectrum is proportional to plasma temperature.
- Advantages
 - Localised measurement.
- Disadvantages
 - Laser repetition rate limits temporal resolution.

Radiation measurements

- Soft X-ray
 - Plasma core Bremsstrahlung and line radiation is mostly in the X-ray part of the EM spectrum
 - X-ray detectors can be used to measure line-integrated X-ray radiation in given portion of the spectrum.
 - Can be processed by tomographic inversion techniques to get pictures of plasma position, shape, or internal plasma fluctuations.
- Bolometry
 - Broadband measurement of Visible + UV + X-ray radiation
 - · Used to get total radiated power.

Interferometry

- Laser beam follows 2 paths, one through plasma, one not.
- Beam through plasma travels more slowly, phase shift w.r.t. unperturbed beam.
- Interference pattern with other beam gives measure of plasma density.
- Measurement of *line-integrated electron density*: $\Delta\phi = \frac{\lambda e^2}{2\pi\epsilon_0 m_e c^2} \int_L n_e dl \text{ where } L \text{ is the path of the chord.}$

Motional Stark Effect diagnostic

- Neutral particles (from NBI source) passing through magnetized plasma experience E = v × B field.
- When they ionize the visible light is split under the influence of this E field (Stark effect)
- Polarization of light is aligned with B field: localized measurement.
- Advantages
 - Localized measurement of internal plasma B field: hard to obtain otherwise.
- Disadvantages
 - Technologically difficult, stray polarized light, difficult to calibrate.

Inverting line-integrated measurements

- Given measurements $y_j = \int_{L_j} x(R, Z) dI$ along multiple chords j, how do we reconstruct x(R, Z)?
- Tomographic, or Abel inversion. Assume x is parametrized, for example

$$x = \sum f_i(\psi_N(R, Z))b_i \tag{7}$$

where $\psi_N = (\psi(R,Z) - \psi_a)/(\psi_b - \psi_a) \in [0,1]$ and f is some basis function. Then given $\psi_N(R,Z)$ (from equilibrium reconstruction) we can construct $x(R,Z) = \sum_i F_i(R,Z)b_i$ and write

$$\hat{y}(x) = \sum_{i} b_{i} \int_{L} F_{i}(R, Z) dI$$
 (8)

and we can solve the least-squares problem

$$\min_{b} \sum_{i} \sum_{i} \left(y_{j} - \sum_{i} b_{i} \int_{L_{j}} F_{i}(R, Z) dI \right)$$
 (9)

New development: state observers

- Tomographic inversion methods are static, they treat each measurement sample as independent in time.
- Ongoing work: State observers for interpreting measured signals from plasma including model knowledge.

Standard solution: static inversion

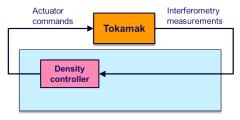
$$v = Cx \to x = C^+ v \tag{10}$$

where C^+ is some inverse of C.

- Simple and robust.
 - Does not take time evolution of the system into account.

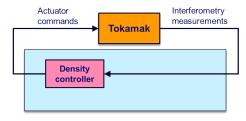
Observer: dynamic state estimator

$$\dot{x} = Ax + Bu + K(\hat{y} - y) \tag{11}$$

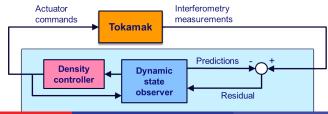

$$\hat{y} = Cx \tag{12}$$

Where *K* is the *Kalman Gain*. This scheme is known as a **Kalman Filter**.

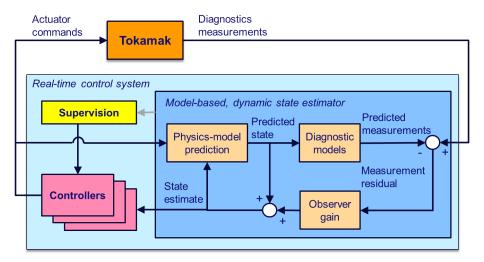
- K can be designed from knowledge of A, B, C, D and the covariance of the expected noise.
- It can be shown that this is the optimal filter for this system, for which E[(x - x̂)²] is minimal.
- See course/book on systems theory or estimation for details.


State observer: example for density control

 Current practice - control of gas valve via single interferometer chord



State observer: example for density control


 Current practice - control of gas valve via single interferometer chord

New approach: model-based observer

State observer: example for density control

Subsection 6

Current practice for kinetic control

Common practices, challenges for kinetic control

- Series of SISO control loops. Direct link between diagnostic and actuator.
 - Single interferometer chord → plasma gas valve
 - Plasma β from magnetic measurements \rightarrow NBI or ECRH power.
 - Individually tuned PID controllers.

Common practices, challenges for kinetic control

- Series of SISO control loops. Direct link between diagnostic and actuator.
 - Single interferometer chord → plasma gas valve
 - Plasma β from magnetic measurements \rightarrow NBI or ECRH power.
 - Individually tuned PID controllers.
- β control usually works quite well.
- · Some issues with density controllers:
 - Single-sided actuator: at most can close the valve valve, can not extract more particles. Need anti-windup compensation.
 - Most simple controllers do not work well for all density regimes.
 Need to re-tune and re-commission controllers.
 - Gas valve vs pellet fuelling, different efficiency depending on density/temperature

Common practices, challenges for kinetic control

- Series of SISO control loops. Direct link between diagnostic and actuator.
 - Single interferometer chord → plasma gas valve
 - Plasma β from magnetic measurements \rightarrow NBI or ECRH power.
 - Individually tuned PID controllers.
- β control usually works quite well.
- Some issues with density controllers:
 - Single-sided actuator: at most can close the valve valve, can not extract more particles. Need anti-windup compensation.
 - Most simple controllers do not work well for all density regimes.
 Need to re-tune and re-commission controllers.
 - Gas valve vs pellet fuelling, different efficiency depending on density/temperature
- Ongoing research topics:
 - Control of radiation fraction and heat flux to mitigate wall loads.
 - Actuator management: RT allocation of actuators to various tasks.
 - Burn control: nonlinear control problem & solution.

Bibliography I

Peeters, A. 2000 Plasma Physics and Controlled Fusion 42 B231

James, A.N. et al. 2013 Plasma Physics and Controlled Fusion 55 125010

Hennen, B.A. et al. 2010 Plasma Physics and Controlled Fusion 52 104006