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Section 1

Kinetic control
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Subsection 1

0D model of tokamak confinement
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0D models of tokamaks

• Energy balance equation for plasma pressure
p = (neTe + niTi) ≈ 2nT (or thermal energy denstiy wth = 3

2p)

3
2

dp
dt

= Ssource − Ssinks (1)

where
• Ssources is the source power density
• Ssinks is the sink power density

See the book by Freidberg for an overview of power balance
considerations for reactors, Lawson’s criterion, etc. [?]
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0D models of tokamaks

• Particles
dn
dt

= Ssource,n − Ssink,n (2)

• Ssources,n is the source of particles
• Ssinks,n is the sink of particles

• Global current balance

Ipl = Ip,inductive + Ip,non−inductive (3)

• Inductive current: current driven by (induced) loop voltage.
• Non-inductive current: other sources, self-generated by plasma or

auxiliary current drive.
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Subsection 2

Sources of power, particles and current
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Fusion power

• 4
5 of each fusion reaction’s energy is in the fast 14MeV neutron.
To be used by breeder to breed tritium and to extract energy.

• 1
5 of each fusion reaction is contained in a 3.5MeV α-particle.

• Alpha particle power density (for DT reactions) is

Sα = EαnDnT 〈σv〉 =
fDT

(1 + fDT )2 Eαn2〈σv〉 (4)

where fDT = nD/nT and we have used nT + nD = n

• For sustained fusion reaction, significant fraction of plasma
thermal energy must come from α-particles.
Pα/Pin = 1↔ Q = Pfus/Pin = 5
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Ohmic power

• The plasma current causes resistive heating Poh = VloopIp = I2
pRp.

• ‘Ohmic plasmas’ are plasmas heated purely by Ohmic power, no
auxiliary sources.

• Unfortunately, resistivity decreases with plasma temperature, so
Poh decreases. Purely ohmic tokamak plasmas can’t reach high
enough temperatures for ignition.
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Bootstrap current

• Self-generated plasma current due to neoclassical (trapped
particle) effects (see [1] for the physical explanation).

• Caused by pressure gradient, proportional to ∂p
∂ψ .

• For steady-state tokamaks, we want the entire plasma current
driven non-inductively. But auxiliary current drive is expensive.

• For steady-state tokamaks, we would like a large bootstrap current
fraction, IBS/Ip > 50%, rest by auxiliary current drive.

• Active field of research in ‘advanced scenarios’: most current
driven by bootstrap + auxiliary.
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Neutral beam injection

• Inject high-energy beam of neutral particles, ionize upon entering
plasma

• Beam ions thermalize by colliding with plasma ions, kinetic energy
of beam becomes thermal energy of plasma

• Also drive electrical current and give momentum (rotation) to the
plasma

• Advantages
• ‘Workhorse’, good for bulk

heating and current drive.

• Disadvantages
• Power can only be on or off

for each injector.
• Technologically difficult for

high energy and high power.
Need ‘negative ion’ beams. Figure: NSTX
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Electron Cyclotron Heating & Current Drive

• Electrons gyrate around field at
cyclotron frequency ωc = eB

m

• EM waves resonantly heat electrons.
• Advantages:

• Waves propagate through vacuum,
no coupling problems.

• Steerable: highly localized
heating/cd location in plasma.

• Can drive electric current.

• Disadvantages:
• Heats electrons only.
• Concentrated stray radiation may

damage wall or diagnostics, need
protection.

• Difficult technology for sources
(f ∼ 170GHz) - but good progress.
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Ion Cyclotron Heating and Current Drive
• Advantages:

• Source technology easy, f ≈ 50MHz.
• Heats the ions: good for fusion.

• Disadvantages:
• Antennas must be close to plasma to couple power:

antenna-plasma interaction and problems with impedance matching

Figure: NSTX
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Lower Hybrid Heating and Current Drive
• Advantages:

• Source and trasmission technology is easy, 1− 8GHz.
• Good at driving non-inductive plasma current.

• Disadvantages:
• Only electron heating.
• Technologically difficult coupling of antenna to plasma.
• Hard to tell where the power/current will go.

Figure: LHCD wave propagation according to Genray code. From [2]
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Subsection 3

Sinks of power and particles
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Radiation

• Physical origin
• Cyclotron: radiation due to centripetal acceleration of gyrating

particles.
• Line radiation: ionization processes involving bound charge states.
• Bremsstrahlung: radiation due to acceleration (change of velocity

direction) of particles during collisions.

• Bremsstrahlung is usually dominant for large hot tokamaks.
• Approximate model:

Sbrem = 5.35× 103Zeff(ne20)2T 1/2
e (5)

• Here, Zeff = 1
ne

∑
j Z 2

j nj is the effective charge. (j sums over
impurity species). Impurities have higher charge and cause
electrons to radiate more. Important to keep Zeff low.

• If high-Z impurities accumulate in plasma, then impurity line
radiation may dominate.
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Conductivity losses

• The temperature gradient from core to edge causes outward
thermal diffusion.

• Ultimately, energy flows out of the plasma into the limiter or
divertor.

• This is quantified by the energy confinement time. Neglecting all
other sources and sinks we have

dp
dt

= −Scond = − 1
τE

p (6)

so the pressure decays with characteristic time τE .
• Unfortunately, τE decreases with increasing input power.

Otherwise we could reach any temperature by just heating
sufficiently.

• Until very recently, tractable first-principle models for τe did not
exist: use scaling laws instead.
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L-H transition

• L-mode: ‘normal’ model of operation
for tokamaks.

• H-mode: Transport is locally
suppressed near the edge. Edge
Transport Barrier gives edge
pedestal.

• Pressure pedestal gives extra
pressure in entire plasma

• Occurs in diverted plasmas, after
reaching power threshold

• Detailed mechanisms not
understood, involves complex
turbulence and flow.

• Edge pedestal can repetitively
collapse, origin of Edge Localized
Mode (ELM).
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Subsection 4

Particle transport
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Gas valves/pellet injectors
• Gas valves

• Inject gas into vacuum chamber
• Neutral gas particles become ionized soon after they enter the

plasma.
• Time delays if valves are far away.
• Gas stays near edge and does not penetrate into the plasma in

certain conditions.

Figure: From IPP website

• Pellet injectors
• Inject small pellets of frozen

D2 or H2 ice at high speed.
• Penetrates into the plasma

before ablating.
• Can be used for localized

fuelling deep in the plasma.
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0D model of tokamak particle confinement

• Three ‘reservoirs’: plasma, vacuum,
wall.

• Flows:
• Ionization: neutrals in vacuum get

ionized when entering the plasma.
• Recombination: ions in plasma get

neutralized and leave plasma
• SOL losses: plasma form the

scrape-off layer exit plasma and
impact limiter/diverted.

• Recycling: Particles from wall
pushed out by new incoming
paticles.

Figure: Particle flows in a tokamak
reactor [T. Blanken Fus.Eng.Des 2017]
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Subsection 5

Sensors/Diagnostics for kinetic control
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Sensors, aka Diagnostics

• Measurements of high-temperature plasma are not easy.

• Entire courses exist on plasma diagnostics.

• Here we look only at diagnostics that are used for real-time
control.
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ECE - Electron Cyclotron Emission

• Measure EC radiation leaving the plasma.

• Choose measured frequency→ nominal
emission locadtion inside plasma.

• In practice, thermal, supra-thermal, and
relativistic effects play an important role,
often source of radiation is not
well-localized.

• Advantages
• High temporal resolution.
• Viewing angle can be steered (in-line

ECE).

• Disadvantages
• Measurement location depends on B

field.
• Cutoff at high density.
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In-line ECE

• ECE line of sight shared with ECRH launcher [3].
• Steerable line of sight, sensing and actuating in same location.
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Thomson scattering

• Laser scatters off plasma electrons.

• Intensity of scattered light is proportional to plasma density.

• Broadening of scattered spectrum is proportional to plasma
temperature.

• Advantages
• Localised measurement.

• Disadvantages
• Laser repetition rate limits temporal resolution.
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Radiation measurements

• Soft X-ray
• Plasma core Bremsstrahlung and line radiation is mostly in the

X-ray part of the EM spectrum
• X-ray detectors can be used to measure line-integrated X-ray

radiation in given portion of the spectrum.
• Can be processed by tomographic inversion techniques to get

pictures of plasma position, shape, or internal plasma fluctuations.

• Bolometry
• Broadband measurement of Visible + UV + X-ray radiation
• Used to get total radiated power.
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Interferometry

• Laser beam follows 2 paths, one through plasma, one not.
• Beam through plasma travels more slowly, phase shift w.r.t.

unperturbed beam.
• Interference pattern with other beam gives measure of plasma

density.
• Measurement of line-integrated electron density:

∆φ = λe2

2πε0mec2

∫
L nedl where L is the path of the chord.

Figure: Schematic diagram of a Mach-Zender interferometer
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Motional Stark Effect diagnostic

• Neutral particles (from NBI source) passing through magnetized
plasma experience E = v × B field.

• When they ionize the visible light is split under the influence of this
E field (Stark effect)

• Polarization of light is aligned with B field: localized measurement.
• Advantages

• Localized measurement of internal plasma B field: hard to obtain
otherwise.

• Disadvantages
• Technologically difficult, stray polarized light, difficult to calibrate.
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Inverting line-integrated measurements

• Given measurements yj =
∫

Lj
x(R,Z )dl along multiple chords j,

how do we reconstruct x(R,Z )?
• Tomographic, or Abel inversion. Assume x is parametrized, for

example
x =

∑
fi(ψN(R,Z ))bi (7)

where ψN = (ψ(R,Z )− ψa)/(ψb − ψa) ∈ [0,1] and f is some
basis function. Then given ψN(R,Z ) (from equilibrium
reconstruction) we can construct x(R,Z ) =

∑
i Fi(R,Z )bi and

write

ŷ(x) =
∑

i

bi

∫
L

Fi(R,Z )dl (8)

and we can solve the least-squares problem

min
b

∑
i

∑
i

(
yj −

∑
i

bi

∫
Lj

Fi(R,Z )dl

)
(9)
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New development: state observers

• Tomographic inversion methods are static, they treat each
measurement sample as independent in time.

• Ongoing work: State observers for interpreting measured signals
from plasma including model knowledge.

Standard solution: static inversion

y = Cx → x = C+y (10)

where C+ is some inverse of C.

• Simple and robust.

• Does not take time evolution of
the system into account.

Observer: dynamic state estimator

ẋ = Ax + Bu + K (ŷ − y) (11)

ŷ = Cx (12)

Where K is the Kalman Gain. This scheme
is known as a Kalman Filter.

• K can be designed from knowledge
of A,B,C,D and the covariance of
the expected noise.

• It can be shown that this is the
optimal filter for this system, for
which E[(x − x̂)2] is minimal.

• See course/book on systems theory
or estimation for details.

F. Felici (SPC-EPFL) Kinetic control of tokamaks PHYS-734, February 2023 31 / 36



default

Kinetic control Sensors/Diagnostics for kinetic control

State observer: example for density control

• Current practice - control of gas valve via single interferometer
chord

• New approach: model-based observer
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State observer: example for density control
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Subsection 6

Current practice for kinetic control
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Common practices, challenges for kinetic control

• Series of SISO control loops. Direct link between diagnostic and
actuator.

• Single interferometer chord→ plasma gas valve
• Plasma β from magnetic measurements→ NBI or ECRH power.
• Individually tuned PID controllers.

• β control usually works quite well.
• Some issues with density controllers:

• Single-sided actuator: at most can close the valve valve, can not
extract more particles. Need anti-windup compensation.

• Most simple controllers do not work well for all density regimes.
Need to re-tune and re-commission controllers.

• Gas valve vs pellet fuelling, different efficiency depending on
density/temperature

• Ongoing research topics:
• Control of radiation fraction and heat flux to mitigate wall loads.
• Actuator management: RT allocation of actuators to various tasks.
• Burn control: nonlinear control problem & solution.
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