

SWISS
PLASMA
CENTER

EPFL Lecturers

- Federico Felici
- Antoine Merle
- Cristian Galperti
- Holger Reimerdes
- Alessandro Pau

Teaching Assistants

- Francesco Pastore
- Daniel Biek
- Pedro Molina
- Reinart Coosemans
- Stefano Marchioni

- Cassandre Contré
- Michele Marin
- Antonia Frank
- Simon van Mulders
- Mengdi Kong

EPFL Course background


- Early versions of this course taught at TU Eindhoven 2014-2017 as MSc course
- Merged with SPC Doctoral school course (2018)
 - First taught by J. Lister, then J-M. Moret
- Originally taught every 2 years, lasting 1 week
 - Following diagnostics course the previous week
 - Considered too intense
- Now extended over 2 weeks.. with enhanced local and international participation!

EPFL Logistics

- Room CO3 for lectures
- Rooms CO5 & CO6 for exercises

We start at 9:00, most days, in CO3

EPFL Computing / Software for exercises

- Exercises are in MATLAB
- Rooms CO5 and CO6 have workstations with Windows and MATLAB installed
 - Download exercise from Moodle
 - Software packages needed for the exercises also on Moodle

• Accounts:

- Those with EPFL accounts will have a network drive space
- External participants need to either
 - use the same post
 - move their data around by other means when switching posts (USB keys, cloud repositories...)
- EPFL participants with accounts on LAC can do the exercises there (ask us)

EPFL Learning objectives

- Get insight in plasma and tokamak physics processes and why they require (or benefit from) control
 - Learn how a tokamak 'works' in practice.
- Gain understanding of control-oriented models for tokamak magnetic and kinetic control, and their role in controller design.
 - Derive 'simple' models for various tokamak processes
 - Use models of TCV to design simple controllers.
- Understand the different phases of a tokamak discharge, and the control problems for each phase.
- Become aware of various components of tokamak control systems
 - Controllers, state estimation, event detection...
- Be aware of control technology issues and related limitations.
- Promote links between:
 plasma physics tokamak technology control engineering

EPFL Course overview

- Part 0 Recap/quick run-through of (linear) control theory
- Part I Axisymmetric magnetic equilibrium control
 - Basic electromagnetic modeling of toroidal currents in conductors
 - Plasma current and position estimation and control
 - Magnetic equilibrium, equilibrium (re)construction
 - Free-boundary equilibrium evolution, shape control

Part II - Kinetic control

- Control of temperature, density and plasma current profiles in 0D and 1D
- Diagnostics & actuators for kinetic control

Part III - Further topics & trends

- Operational limits from MHD, MHD control
- Power exhaust issues & control
- Supervisory control, actuator management and off-normal event handling
- Control technology
- Machine Learning for tokamak plasma control

- Oral exam on Friday 16th
- List of questions will be distributed
- Topics covered marked with * in course schedule
- 2ECTS = 28h lectures + 28h self-study

EPFL Course schedule - Week 1

(See Moodle for updates)

Monday 6.2.2023				
9:00-11:00	Lecture 0	General Intro & basic control recap	CO3	*
11:00-12:30	Lecture 1	Magnetic Control 1: Currents & Fields	CO3	*
13:30-15:15	Lecture 1	Magnetic Control 1: Currents & Fields	CO3	*
15:30-17:30	Exercise 1	Exercise 1: PF coil current control	CO5 & 6	*
Tuesday 7.2.2023				
9:00-10:45	Lecture 2	Magnetic control 2: Ip control	CO3	*
11:00-12:30	Lecture 2	Magnetic control 2: Mag. Measurements	CO3	*
13:30-15:30	Exercise 2	Exercises: Ip control / plasma reconstruction	CO5 & 6	*
16:00-17:45	Lecture 3	Magnetic control 3: RZ control	CO3	*
Wednesday 8.2.2023				
9:00-10:45	Lecture 3	Magnetic control 3: RZ control	CO3	*
11:00-12:30	Exercise 3	Exercises: R,Z control: Nyquist, loop gain tuning etc	CO5 & 6	*
13:30-15:45	Exercise 3	Exercises: R,Z control: Nyquist, loop gain tuning etc	CO5 & 6	*
16:00-17:45	Lecture 4	Magnetic control 4: Grad-Shafranov equations & Free boundary inverse solvers: MEQ suite of codes, FBT & LIUQE	CO3	*

SWISS **PLASMA** CENTER

EPFL Course schedule - Week 1 (See Moodle for updates)

Thursday 9.2.2023				
9:00-11:00	Exercise 4	Equilibrium code exercises: FBT & LIUQE	CO5 & 6	*
11:00-12:30	Lecture 5	MHD limits and MHD control	CO3	*
13:30-15:30	Poster session	Mini poster session	CO hallway	У
15:30-16:45	Lecture 6	Technology lecture	CO3	
17:00-18:30	Visit	TCV/SPC visit	TCV / PPH	l?
19:00-?	Social event	Social event: Dinner Chalet Suisse		
Friday 10.2.2023				
9:00-10:30	Exercise	Free time for exercises	CO5 & 6	
10:30-12:30	Lecture 7	Divertor heat flux control	CO3	
13:30-15:45	Exercise	Free time for exercises	CO3	
16:00-17:45	Exercise	Free time for exercises	CO3	

CO5 & 6

EPFL Course schedule - Week 2 (See Moodle for updates)

Exercise 10

Monday 13.2.2023 9:00-12:30 Lecture 8 Magnetic control 5: Free boundary evolution & control CO3 13:30-17:30 Exercise 8 Free boundary evolution exercise CO5 & 6 **Tuesday 14.2.2023** 9:00-10:15 Lecture 9 Kinetic control actuators & diagnostics, 0D kinetic co CO3 0D kinetic control exercise 10:30-12:30 Exercise 9 CO5 & 6 Free time for exercises CO5 & 6 13:30-17:30 **Exercise Wednesday 15.2.2023** 9:00-12:30 Lecture 10 1D proflie dynamics and control CO₃ 11:30-12:30 Exercise 10 RAPTOR code and exercise introduction CO₃

Profile evolution (RAPTOR) exercise

13:30-17:30

EPFL Course schedule - Week 2 (See Moodle for updates)

Thursday 16.2.2023			
9:00-11:30	Lecture 11	Machine Learning for plasma control	CO3
11:30-12:30	Lecture 11	Magnetic control of TCV through deep Reinforcement Learning	CO3
13:30-15:00	Lecture 12	Emerging topics: supervisory control & actuator management, needs for ITER, etc	CO3
15:00-16:00	Lecture 12	Dynamic pulse scheduling and disruption avoidance	CO3
16:00-17:30	Exercise	Free time for exercises	CO5 & 6
Friday 17.2.2023			
AM	Exercise	Free time for exercises Oral Exams	CO5 & 6
PM	Exercise	Free time for exercises Oral Exams	CO5 & 6

EPFL Events/activities

Poster session: Thursday 9th 13:30-15:30, CO second floor

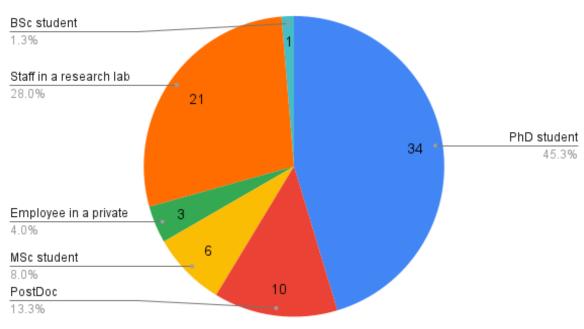
- Responsible: Simon van Mulders
- Please announce your poster title to Simon if you have not done so yet

TCV Tour: Thursday 9th 17:00-18:30

- Responsible: Cassandre Contré
- Let Cassandre know if you will NOT join

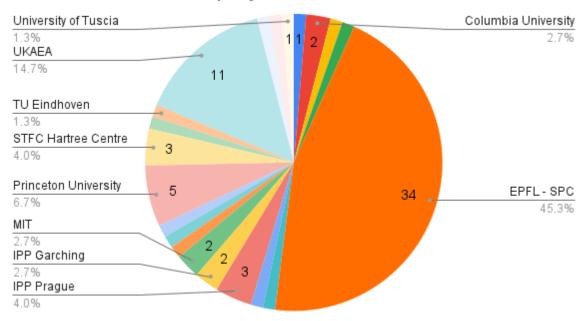
Thursday dinner

- 19:30 Chalet Suisse, Lausanne (map)
- Approximately 30CHF for main course (fondue, raclette, ...)
- Let us know your attendance after the coffee break
- Responsible: Pedro Molina

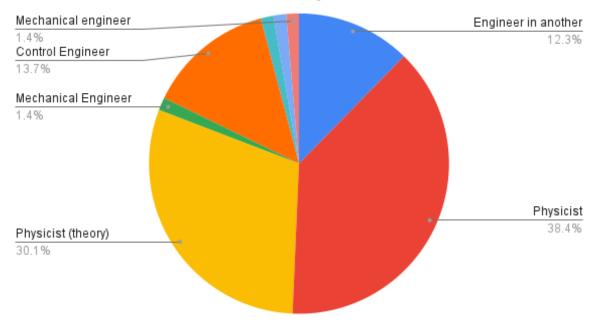

Saturday snow activity

Responsible: Antonia Frank & Pedro Molina

EPFL Who are you



EPFL Who are you


Count of Institute / company name

EPFL Who are you

Count of What role best identifies you

EPFL Final words before we start

- Follow what you can there's something to take away for everyone
- Pair up with someone with a different skillset help each other
- Ask questions
- Have fun

