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Dynamic(al) systems

Mathematical concept 
consisting in


•   : a state space whose 
variables describe the 
state of the system at any 
point of its evolution


•   : an evolution rule, a 
function that specifies the 
future of all state variables given only the present state


•  : a group to label the state evolution (time)





S

ϕ

T

ϕ :T × S→ S
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Classification of dynamical systems

The state space  can be

• continuous

• discrete (on/off, lattices, finite state machines, automata) 

• finite dimensional

• infinite dimensional (temperature distribution in a solid, PDEs)


The evolution rule  can be

• deterministic (each state has a unique consequent)

• stochastic (random future state)


The time  can be

• discrete (population generations, sampled systems)

• continuous


S

ϕ

T
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Discrete time

Deterministic evolution rule for a discrete time dynamical system,

, such that





Example: population equation





: growth rate


: carrying capacity


ϕ :!× S→ S

x(k +1) =ϕ k,[ ]x(k)( )

N (k +1) = rN (k) K − N (k)
K

⎛
⎝

⎞
⎠

r

K
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Continuous time

Deterministic evolution rule for a continuous time dynamical system 
with continuous state space

• 

• Orbit :  with  the initial conditions

• Identity : 

• Associativity :  

Dynamics can be restarted at any time  to get the same resulting 
orbit (future depends only on present)


• Differentiability :  exists, so the orbit is the solution of an ODE, i.e. 

most of the physical time evolution laws : 


ϕ :! + ×!
n → !n;(t, x)!ϕ(t, x)

x(t) =ϕ(t, x(0)) x(0)
ϕ(0, x) = x

ϕ(t + s, x) =ϕ(t,ϕ(s, x))
s

dϕ
dt

dx
dt

= dϕ(t, x(0))
dt

≡ Φ(t, x)
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Linear time independent dynamical systems
Continuous time:  is a linear time independent function of 


With  a  matrix, this is a 1st order homogeneous linear ODE

Discrete time: the map  is time independent and linear in 





This is a 1st order difference linear equation


Both are state space model of linear dynamical systems


Φ(t, x) x

dx
dt

= Φ( t , x) = A ⋅ x

A n × n

ϕ(t, x) x

x(k +1) =ϕ k , x(k)( ) = A ⋅ x(k)
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Plants
A plant is a dynamical system 
driven by externally imposed 
actions  (inputs). Formally


The measured quantities or the 
relevant parameters of the plant  (outputs) may not directly be the 
state variables, but are given by some function 


u

!x = Φ(t, x,u)

x(k +1) =ϕ k, x(k),u(k)( )

y
y = h(x,u)
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Linear plants - state space model

Linear functions for  and    

For discrete time plants                         

 defines the dynamic (evolution rule) of the dynamical system 
 defines how each input acts on the evolution of each state  
 relates the outputs and the states (measurement matrix) 
 direct feedthrough (sensitivity of the measurements to the inputs)

Matlab>>	sys	=	ss(A,B,C,D);

Φ(x,u) h(x,u)
!x(t) = A

nx×nx
! ⋅ x(t)+ B

nx×nu
! ⋅u(t)

y(t) = C
ny×nx
! ⋅ x(t)+ D

ny×nu
! ⋅u(t)

⎧

⎨
⎪

⎩
⎪

x(k +1) = A ⋅ x(k)+ B ⋅u(k)
y(k) = C ⋅ x(k)+ D ⋅u(k)

⎧
⎨
⎩

A
B
C
D
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State space transformation

Apply the similarity transformation  to the state space model 
(  is a square invertible matrix)








The choice of  has no influence on the input to output relation of the 
plant (same output for same input)


′x ≡ T ⋅ x
T

!x = A ⋅ x + B ⋅u
y = C ⋅ x + D ⋅u

⎧
⎨
⎩ x=T −1⋅ ′x⎯ →⎯⎯

T −1 ⋅ !′x = A ⋅T −1 ⋅ ′x + B ⋅u
y = C ⋅T −1 ⋅ ′x + D ⋅u

⎧
⎨
⎩⎪

T ⋅⎯ →⎯
′!x = T ⋅A ⋅T −1 ⋅ ′x +T ⋅B ⋅u
y = C ⋅T −1 ⋅ ′x + D ⋅u

⎧
⎨
⎩⎪

!x = A ⋅ x + B ⋅u
y = C ⋅ x + D ⋅u

⎧
⎨
⎩

′A ≡T ⋅A⋅T −1

′B ≡ T ⋅B
′C ≡ C ⋅T −1

′D ≡D⎯ →⎯⎯⎯⎯⎯
′!x = ′A ⋅ ′x + ′B ⋅u
y = ′C ⋅ ′x + ′D ⋅u

⎧
⎨
⎩

T
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System stability

Use the eigenvalue decomposition of ,  (  is diagonal), 
to define the state space transformation 


The homogenous ( ) evolution equation is then





The case of complex eigenvalues (they come in complex conj. pairs)


The system is stable (in the sense that its solution is finite), if for all 
eigenvalues 

A A =V ⋅P ⋅V −1 P
′x =V −1 ⋅ x, ′A ≡V −1 ⋅A ⋅V = P

u = 0

′!x = P ⋅ ′x → ′!xn = pn ′xn ,n = 1…nx → ′xn (t) = ′xn (0)e
pnt

pn = γ n + iω n

pn+1 = γ n − iω n

⎧
⎨
⎩

⇒ ′xn (t)+ ′xn+1(t) = e
γ nt ′xn (0)e

iωnt + ′xn+1(0)e
− iωnt( )

ℜ pn( ) ≤ 0
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For discrete time systems

with  and 

The system is stable if for all z-plane eigenvalues 

x(k +1) = A ⋅ x(k)+ B ⋅u(k)
y(k) = C ⋅ x(k)+ D ⋅u(k)

⎧
⎨
⎩

u = 0 A ' = P

′x (k +1) = P ⋅ ′x (k)⇒ ′xn (k +1) = pn ′xn (k),n = 1…nx

pn ≤1
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Integral transforms
You all know about the Fourier transform of a time signal :

 with 

Integral transform with a more general kernel 

Laplace transform: 

 with 

f (t)

F ( f (t)) = e− iω t f (t)dt
−∞

∞

∫ ≡ F(ω ) ω ∈R

g(γ ,t)

G ( f (t)) = g(γ ,t) f (t)dt∫ ≡ F(γ )

g = e− st

L( f (t)) = e− st f (t)dt
0

∞

∫ ≡ F(s) s∈!
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Laplace transform user guide
Useful properties / applications

Linearity LTI

Superposition LTI

Time 
derivation

ODE

Time delay Discrete time

Final value

Fourier Frequency response

L f (t −τ )( ) = e− sτL f (t)( )

L !f (t)( ) = sL f (t)( )

F(ω ) = F(s = iω )

lim
s→0

sF(s) = lim
t→∞

f (t) DC gain: just 
remember s = iω = 0

 with L af (t)( ) = aL f (t)( ) a∈R
L f (t)+ g(t)( ) = L f (t)( )+L g(t)( )
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Transfer functions - continuous time
Laplace transform of the state space equations

Using , define transfer functions in the Laplace 
domain as ratios of the transform of the input and output signals


!x(t) = A ⋅ x(t)+ B ⋅u(t)
y(t) = C ⋅ x(t)+ D ⋅u(t)

⎧
⎨
⎩

→
sx(s) = A ⋅ x(s)+ B ⋅u(s)
y(s) = C ⋅ x(s)+ D ⋅u(s)

⎧
⎨
⎩

sΙ − A( ) ⋅ x(s) = B ⋅u(s)

x(s)
u(s)

= sΙ − A( )−1 ⋅B

H
ny×nu
! (s) ≡ y(s)

u(s)
= C ⋅ sΙ − A( )−1 ⋅B + D
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We have a MIMO system (Multiple  Input Multiple  Output)


Each transfer function is a rational function of : take the state space 
transformation where  (diagonal) (this does not change the input 
output relationship)








nu ny

s
′A = P

H (s) = ′C ⋅ sΙ − P( )−1 ⋅ ′B + ′D

sΙ − P( )−1 =
s − p1 0

!
0 s − pnx

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

−1

=

1
s − p1

0

!

0 1
s − pnx

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
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with , 


Note that all the transfer functions share the same denominator (poles)


H (s) = ′C ⋅

1
s − p1

0

!

0 1
s − pnx

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

⋅ ′B + ′D

Hij (s) =
′Cik ′Bkj

s − pkk=1

nx

∑ + ′Dij =
β0 + β1s +…+ βM s

M

1+α1s +…+αNs
N

N = nx M =
N −1, ′Dij = 0
N , ′Dij ≠ 0

⎧
⎨
⎩
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Zeros and poles

Let   be a continuous-time (SISO) transfer function

• Poles of  are the roots of 

• Zeros of  are the roots of 

Let  be a state-space representation of  such that 

• Poles of  are the eigenvalues of A

• Zeros of  are finite values of s for which  loses rank

H(s)= N(s)
D(s)
H(s) D(s)
H(s) N(s)

(A,B ,C ,D) H(s)
H(s)≡ y(s)

u(s) =C ⋅ sΙ − A( )−1 ⋅B +D

H(s)

H(s) sI − A −B
C D

⎛

⎝⎜
⎞

⎠⎟
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Exercise: Manipulating LTI systems in MATLAB

Explore the properties of the transfer function 


Verify the system’s stability, check that the step response settles to the 
DC gain.
>>	s=tf(’s’)	%	define	s	operator 
>>	Htf	=	(s+1)/((s+3)*(s-2);	%	transfer	function	representation 
>>	pole(H)	%	poles	of	H	-	is	it	stable? 
>>	zero(H)	%	zeros	of	H 
>>	Hss	=	ss(H)	%	state-space	representation 
>>	Hzpk	=	zpk(H)	%	zero-pole-gain	representation 
>>	step(Htf,3)	%	plot	‘step	response’	until	t=3s 
>>	dcgain(Htf);	%	‘DC	gain’:	value	at	s=0 

G = (s +0.5)
(s +1)(s +2)
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Sampled signals
A sampled signal (with constant sampling 
time ) can be represented as

Its Laplace transform is

So it is natural to define the

T

f (t) ⋅ δ (t − kT )
k=−∞

∞

∑

f (t)δ (t − kT )e− stdt
k=−∞

∞

∑ =
0

∞

∫ f (kT )e− skT δ (t − kT )dt
0

∞

∫
1

! "## $##k=0

∞

∑
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z-transform
Let ; the Laplace transform of our sampled signal, , 
becomes the z-transform (just a new kernel for the general integral 
transform)

z ≡ esT f (k) ≡ f (kT )

Z f (k)( ) = f (k)z−k
k=0

∞

∑ ≡ F(z)
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z-transform user guide
1 sample delay

Final value

Fourier Frequency response

abusively written
f (k −1) = z−1 f (k)

 is a rational functionF(z)

Z f (k −1)( ) = z−1Z f (k)( )

DC gain: just remember
f (k −1)←

∞←k
f (k)

f (k −1) = f (k)
f (k −1) = z−1 f (k)⇔ z = 1

F(ω ) = F(z = eiωT )

lim
z→1

z −1( )F(z) = lim
k→∞

f (k)
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Transfer functions - discrete time
z-transform of the state space equations

Using , define transfer functions in the  domain 
as ratios of the transform of the input and output signals

x(k +1) = A ⋅ x(k)+ B ⋅u(k)
y(k) = C ⋅ x(k)+ D ⋅u(k)

⎧
⎨
⎩

→
zx(z) = A ⋅ x(z)+ B ⋅u(z)
y(z) = C ⋅ x(z)+ D ⋅u(z)

⎧
⎨
⎩

zΙ − A( ) ⋅ x(z) = B ⋅u(z) z

x(z)
u(z)

= zΙ − A( )−1 ⋅B

H (z) ≡ y(z)
u(z)

= C ⋅ zΙ − A( )−1 ⋅B + D
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 is a rational function; similarly to the continuous time case

with 

Recursive estimation of the output (IIR digital filter)

 

H (z)

Hij (z) =
′Cik ′Bkj

z − qkk=1

nx

∑ + ′Dij = z−1
′Cik ′Bkj

1− qkz
−1

k=1

nx

∑ + ′Dij =
b0 + b1z

−1 +…+ bNz
−N

1+ a1z
−1 +…+ aNz

−N

N = nx

H (z) = b0 + b1z
−1 +…+ bNz

−N

1+ a1z
−1 +…+ aNz

−N = y(z)
u(z)

1+ a1z
−1 +…+ aNz

−N( )y(z) = b0 + b1z
−1 +…+ bNz

−N( )u(z)
y(k)+ a1y(k −1)+…+ aN y(k − N ) = b0u(k)+ b1u(k −1)+…+ bNu(k − N )
y(k) = b0u(k)+ b1u(k −1)+…+ bNu(k − N )− a1y(k −1)−…− aN y(k − N )
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Continuous to discrete time
You want to simulate / predict / control a
• physical system (continuous time) with
• digitally acquired signals (ADCs)
• a computer (clocked)

User guide:
• Take the continuous time Laplace domain transfer function

• Remember , so replace . Oops,  is not 

a rational function of , so cannot apply 

H (s) = β0 + β1s +…+ βM s
M

1+α1s +…+αNs
N

z ≡ esT s = 1
T
ln z = − 1

T
ln z−1 H (z)

z−1 f (k −1) = z−1 f (k)
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• Find an approximation for  as a rational function of , eg. trapeze 
approximation of the integration (Tustin transform)

 
Matlab>>	T=1e-3;	Cz	=	c2d(Cs,T,’tustin’);


s z−1

y(t) = u(t ')dt '
0

t

∫ ↔ y(s) = 1
s
u(s)

y(k) = y(k −1)+T u(k)+ u(k −1)
2

y(z) = z−1y(z)+T u(z)+ z
−1u(z)
2

y(z) = T
2
1+ z−1

1− z−1
u(z)

s← 2
T
1− z−1

1+ z−1
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Control systems
A controller (control system) is a 
dynamical system

• that takes as inputs

• reference signals  and

• the outputs  of the plant 


• and produces as outputs

• the inputs  to be applied to the plant to satisfy


• control objectives:

• stabilise an unstable plant 

• the plant outputs  follow the references 

• the control inputs  remain within given bounds 

• …


•  is often called the control law


r
y G

u

G
y r
u

u= K(r , y)
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Exercise: Closed-Loop transfer function
• Let the control law be:  with linear transfer function K

• Write the transfer function, in terms of G(s) and K(s) describing the 
relation between:

• Y(s) and R(s)

• E(s) and R(s) 

• U(s) and R(s)

u= K(r − y)
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A simple controller


Reference tracking performance (closed loop,  to )





Tracking error performance (closed loop,  to )





r y

y = Gu = GKe = GK (r − y)→ y = GK
1+GK

r → r

r e

e = r − y = 1− GK
1+GK

⎛
⎝

⎞
⎠ r→

e = 1
1+GK

r → 0
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Controller effort (closed loop,  to )





Open loop (open loop,  to )





Matlab>>	 
s=tf(’s’);	G	=	1/(s+1);	K	=	1; 
sys_yr	=	feedback(G*K,1);	sys_er	=	feedback(1,K*G);	 
sys_ur	=	feedback(K,G)


r u

u = K (r − y) = K (r −Gu)→ u = K
1+ KG

r →G−1r

r y

y = GKr
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In a more realistic situation


we may have to deal with

• input noise (load disturbance) 

• output noise 

• model uncertainties (not treated here)


d
n
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Input noise rejection (  to ): 


Output noise rejection (sensitivity function) (  to ): 


y = G(u + d)+ n = G(K (r − y − n)+ d)+ n⇒

y = GK
1+GK

r + G
1+GK

d + 1
1+GK

n

d y G
1+GK

→ 0

n y 1
1+GK
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Feedforward


Tracking error (  to ): 


Note that choosing  allows for similar tracking performance at 
smaller control gain 


r e 1−GF
1+GK

F ≅ G−1

K
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Controller design - closed loop stability

How to chose  ? First priority: closed-loop stability! 


Poles of closed-loop are roots of , i.e. values  for 
which . Ensure these are stable, i.e.. 


• Routh-Hurwitz theorem (test in terms of polynomial coefficients)

• OR	Matlab	(21st	century): 
>>	s=tf(’s’);	G	=	(s-3)/((s+1)*(s+2));	%	plant	definition 
>>	K=1;	sys_cl	=	1/(1+G*K);	all(real(pole(sys_cl))<0) 
						false 
>>	K=0.5;	sys_cl	=	1/(1+G*K);	all(real(pole(sys_cl))<0) 
						true


• Nyquist stability criterium


K

1+G(s)K(s) p∈!
G(s)K(s)= −1 ℜ(p)<0
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Nyquist plot


We want the transfer function  to be stable, no poles with 


Cauchy's argument principle :


Let F(s) be a function  
Let  be number of poles/zeroes of  in the contour  

 where N is winding number:  
(number of clockwise encirclements - number of counterclockwise 
encirclements) by  of 0


Nyquist contour: a contour  that captures RHP ( )


Nyquist plot: locus  


1
1+GK

ℜ > 0

F :!→!
P / Z F s( ) Γ

Z −P =N

F Γ( )

Γ ℜ > 0

ℜ F(iω )( ),ℑ F(iω )( )( ) ω ∈ −∞,∞] [
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Nyquist stability criterion

 : the number of RHP poles of , (= # RHP poles of )


 : the number of RHP zeros of  

We require  to guarantee stability of .


Winding number of the Nyquist plot of  around 0 
(or that of around -1) :  


The closed loop transfer function  is stable (Z=0) 

if the number of unstable poles of (P) 
is equal to the negative of the winding number (N) of the Nyquist 

plot of around s=-1


P 1+GK GK

Z 1+GK

Z = 0 1
1+GK

1+GK
GK N = Z −P = −P

1
1+GK

GK

GK

Control and operation of tokamaks PHYS 734

Fundamentals Session 1 - /36 44



Exercise: Nyquist plot

NB: The Nyquist criterium tells us about the stability of the closed-loop 

 by testing only a property of !


Exercise: Given  how many windings should the 

Nyquist contour of  have in order for the closed loop to be stable? 

For which values of  is the closed-loop  stable?


Matlab tips:

• s=tf(’s’);	G	=	-(s-0.5)/((s+2)*(s+1));


• K1=1;	K2=-1;	nyquist(G*K1,G*K2); 

1
1+GK

GK

G = −(s −0.5)
(s +1)(s +2)

GK

K ∈ℜ 1
1+GK
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Stability margin on the Nyquist plot

Assuming the closed loop is stable, we still want to stay away from 
encircling the -1 point!


Phase margin :  
i.e. by what amount can I change  
before instability? 


Gain margin :  
i.e. by what amount can I change  
before instability?


Modulus margin :  

∠GK +π 	at	ω 	where	 GK =1
∠GK

GK
−1 	at	ω 	where	∠GK = -π

GK

1
min 1+GK
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Gain and phase margins

Bode plot : 


Gain margin: by how much can

•  the controller gain be increased 

•  the plant model be wrong


before reaching 


• Phase margin: by how much can

•  the controller phase be increased 

(faster closed loop response)

•  the plant model be wrong


before reaching 


GK(iω )

K
G

∠GK = −π

K

G
GK = 1
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Exercise - bode plot


Exercise: Given  (same as previous exercises).


• What is the gain and phase margin for K=1?


• Relate this to the answer you found in the previous exercise.


Matlab tips:

• s=tf(’s’);	G	=	-(s-0.5)/((s+2)*(s+1));


• K1=1;	K2=-1;	bode(G*K1,G*K2); 

G = −(s −0.5)
(s +1)(s +2)

Control and operation of tokamaks PHYS 734

Fundamentals Session 1 - /40 44



Controller design - tradeoffs

• Performance: make transfer functions e.g. d➝e, r➝e ‘small’ at up to 

some bandwidth frequency ω < ωb.

• Noise rejection: make transfer functions n➝e, n➝u ‘small’ at high 

frequency ω > ωb

• Robustness: Maintain stability/performance even if the true plant is 

not exactly equal to G. e.g. via stability margins.


There is usually a tradeoff between performance and robustness. A 
‘tame’ controller (low performance, low bandwidth ωb) will work even if 
the plant model is very wrong. High performance control (high ωb) 
requires good knowledge of model and uncertainties.


Tradeoff between these conflicting requirements: the ‘art’ of 
control engineering 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PID controller

The PID (Proportional Integral Derivative) controller is a simple and old 
controller with





P term

Example: , 


• Stabilise an unstable plant ( ) if 


• Make the closed loop response faster: 


K = KP +
1
s
KI + sKD = KP 1+ 1

sTI
+ sTD

⎛
⎝⎜

⎞
⎠⎟

G = 1
s − p

⇒1+GK = s − p + KP

s − p
1+GK = 0⇒ p0 = p − KP

p > 0 p0 < 0⇒ KP > p

p0 = p − KP < p
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D term

• Add a factor  to the open loop response , so reduce the 
phase lag by  (if allowed by gain margin)


• Destabilises plants with pure delay


Example: 


1+ sTD( ) GKP

∠ 1+ iωTD( )∈ 0,π[ ]

G = e− sL 1
1+ sT

⇒GK (iω ) = KP
1+ iωTD
1+ iωT

e− iωL

D gain Stability

stable

no phase marginTD > T

TD ≤ T

ω 0 = ∞ −∞

0

∠GK (ω 0 )

TD ≤ T
KP

ω 0 = 0KP ≤1

GK ≤1 GK (ω 0 ) = 1
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I term

• Eliminate DC tracking error


For a P or PD controllers, the DC tracking 
error of the closed loop





With an I term : 

1
1+GK

⎞
⎠⎟ s=0

= 1
1+G(s = 0)KP

> 0

1
sTI

K (s = 0) = ∞⇒ 1
1+GK

⎞
⎠⎟ s=0

= 0
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