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Dynamical systems Control systems

e Linear time invariant (LTI) « controller architectures
systems « relevant closed loop

- Plants performances

« input / output noise rejection

Integral transforms . feedforward

« Laplace

 z-transform (sampled signals) Controller design

« closed loop stability

« gain and phase margin
« Nyquist stability criterion
 root locus method

« PID controllers

Transfer functions

e continuous time

 discrete time

« continuous / discrete time
mappings
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Dvnamic(al) systems

Mathematical concept
consisting in

« § : a state space whose
variables describe the
state of the system at any
point of its evolution

« (¢ :an evolutionrule, a
function that specifies the
future of all state variables given only the present state

« T :agroup to label the state evolution (time)

Q:TxS—>S
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Classification of dynamical systems

The state space S can be
 continuous
« discrete (on/off, lattices, finite state machines, automata)

« finite dimensional
« infinite dimensional (temperature distribution in a solid, PDES)

The evolution rule ¢ can be

» deterministic (each state has a unique consequent)
« stochastic (random future state)

The time T can be
« discrete (population generations, sampled systems)
« continuous
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Deterministic evolution rule for a discrete time dynamical system,
@ :7xS—S§, such that

x(k+1) = p([k,] x(k))

Example: population equation
N(k+1)= rN(k)(K_TN(k))

r: growth rate

Population size, N

K : carrying capacity
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Continuous time

Deterministic evolution rule for a continuous time dynamical system
with continuous state space

e 0:R XR" > R";(t,x) > @(t,x)

« Orbit : x(r)=@(z,x(0)) with x(0) the initial conditions

o Identity : ¢(0,x)=x

« Associativity : ¢t +s,x) = @(t,0(s,x))
Dynamics can be restarted at any time s to get the same resulting
orbit (future depends only on present)

. Differentiability : Cji—qto exists, so the orbit is the solution of an ODE, i.e.

dx _ do(t,x(0))
dt dt

most of the physical time evolution laws : = d(1,x)
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Linear time independent dynamical systems

Continuous time: ®(¢,x) is a linear time independent function of x

B )= A-x
di

With A a nxn matrix, this is a 1st order homogeneous linear ODE

Discrete time: the map ¢(¢,x) is time independent and linear in x
x(k+1)= (X, x(k))= A-x(k)

This is a 1st order difference linear equation

Both are state space model of linear dynamical systems
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A plant is a dynamical system
driven by externally imposed
actions u (inputs). Formally

x=®(,x,u)

x(k+1)= go(k,x(k),u(k))

The measured quantities or the
relevant parameters of the plant y (outputs) may not directly be the
state variables, but are given by some function y=h(x,u)
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Linear plants - state space model

()= A -x()+ B -u(r)

R X1, nXn,

Linear functions for ®(x,u) and h(x,u) Y= C -x()+ D -u()

- =

nyXn, nyxn,

x(k+1)=A-x(k)+ B-u(k)

For discrete time plants
v(k)=C-x(k)+ D u(k)

A defines the dynamic (evolution rule) of the dynamical system

B defines how each input acts on the evolution of each state

C relates the outputs and the states (measurement matrix)

D direct feedthrough (sensitivity of the measurements to the inputs)

Matlab>> sys = ss(A,B,C,D);
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State space transformation

Apply the similarity transformation x’=T - x to the state space model
(T is a square invertible matrix)

{)'C:A-x+B-u {T"l-x’zA-T'l-x’+B-u {x’zT-A-T'I-x’+T-B-u
x=T"'.x’

—
y=C-x+D-u y=C-T"-x’+D-u " ly=C-T"X+D-u
A'=T-AT-!
B’=T-B 1
X=A-x+B-u IC)/EEDCT X'=A"-x"+B -u
y=C-x+D-u 7 y=C"-x"+D"-u

The choice of T has no influence on the input to output relation of the
plant (same output for same input)
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System stabilit

Use the eigenvalue decomposition of A, A=V -P-V~' (P is diagonal),
to define the state space transformation x’=V~"'-x,A’=V"'-A-V=P

The homogenous (u =0) evolution equation is then
X=P-x—>x=px.n=1.n_—x()=x(0)e"
The case of complex eigenvalues (they come in complex conj. pairs)

{pn =y, tio,

S a0 +x, () =" (x(0)e” +x7,,(0)e )
pn+1 = yn _ la)n

The system is stable (in the sense that its solution is finite), if for all

eigenvalues | R(p,) <0
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For discrete time systems
{x(k+1) =A-x(k)+ B-u(k)
v(k)=C-x(k)+ D-u(k)
with u=0 and A'=P
xX'(k+1)=P-x"(k)y=x/(k+1)=p x/(k),n=1...n,

<1

The system is stable if for all z-plane eigenvalues ||P.
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Integral transforms

You all know about the Fourier transform of a time signal f(z):

oo

£ (f@)= [ e f(t)dr = F(w) with o eR

—00

Integral transform with a more general kernel g(y,1)

G(FO)=[gy.nf@®)dt=F(y)

Laplace transform: g=¢7"

[ o)

L(f@)=[e™ f(t)dt = F(s) with s eC
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Laplace transform user guide

Useful properties / applications

Linearity L(af(1))=a/l(f(r)) withaeR LTI
Superposition  Z(f(t)+g(t))=L(f@))+ L(g()) LTI
time L(f®)=sL(f1) ODE
derivation
Time delay L(ft—1))=e"L(f (1)) Discrete time
Final value lin(r)l sF(s)=1im f(¢) DC gain: just
" o remember s=iw =0
Fourier Fw)=F(s=iw) Frequency response
=PFL Control and operation of tokamaks PHYS 734
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Transfer functions - continuous time

Laplace transform of the state space equations

xX(t)=A-x(t)+ B-u(t) sx(s)=A-x(s)+ B-u(s)
yv(t)=C-x(t)+D-u(t) - v(s)=C-x(s)+ D -u(s)

Using (sI— A)-x(s)= B-u(s), define transfer functions in the Laplace
domain as ratios of the transform of the input and output signals

x(s)

u(s)

H (S)Eﬂ=c-(sI—A)‘l-B+D
nyxan, u(s)

y

(sI A) -B
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We have a MIMO system (Multiple », Input Multiple », Output)

Each transfer function is a rational function of s: take the state space

transformation where A”= P (diagonal) (this does not change the input
output relationship)

H(s)=C"-(s1-P)" -B’+D’

1
-1 O
S— D 0 S— D
-1

(SI — P) = =

0 S= D, 0 1

S — pnx
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1
0
S— D
H(s)=C"- -B"+ D’
0 1
S= D,
S~ GiBy L B+ Bs+..+B,s"
H,(s)=) 2 +D/ = =
o S— Dy l+as+...+oys
_ N-1,D]=0
with N=n_, M = ,
N,D; #0

Note that all the transfer functions share the same denominator (poles)
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Zeros and poles

Let H(s)=——= N(s) be a continuous-time (SISO) transfer function
D(s)

« Poles of H(s) are the roots of D(s)
« Zeros of H(s) are the roots of N(s)
Let (A,B,C,D) be a state-space representation of H(s) such that

H(s )_% C(s1-A) -B+D

« Poles of H(s) are the eigenvalues of A

. Zeros of H(s) are finite values of s for which ( S’EA —lf j loses rank
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Exercise: Manipulating LTI systems in MATLAB

Explore the properties of the transfer function G = (s+0.5)
(s+1)(s+2)

Verify the system’s stability, check that the step response settles to the

DC gain.

>> s=tf(’s’) % define s operator

>>
>>
>>
>>
>>
>>
>>

Htf = (s+1)/((s+3)*(s-2); % transfer function representation
pole(H) % poles of H - is it stable?

zero(H) % zeros of H

Hss = ss(H) % state-space representation

Hzpk = zpk(H) % zero-pole-gain representation

step(Htf,3) % plot ‘step response’ until t=3s

dcgain(Htf); % ‘DC gain’: value at s=0
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Sampled signals

A sampled signal (with constant sampling N
: A0 ] R N S S
time T') can be represented as AP EATY

ossn |l

lts Laplace transform is

k=—oo

J: i f@)6(t—kT)e™"dt =i fkT)e™ Té(z —kT)dt

1

So it is natural to define the
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Let z=¢"; the Laplace transform of our sampled signal, f(k)= f(kT),

becomes the z-transform (just a new kernel for the general integral
transform)

Z(f(K)) Zf(k)z‘k = F(z)
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z-transform user guide

1 sample delay /(f(k-1))=z"'2(f(k))

Final value ligll(z—l)F(z) = lim f(k)

Fourier F(w)=F(z=¢e"")

F(z) is a rational function

abusively written

flk=1)=2z"f(k)

DC gain: just remember

fle=1) < f(k)

fk=1)= f(k)
fk=D=z"f(k) = z=1

Frequency response
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Transfer functions - discrete time

z-transform of the state space equations

{x(k+1) =A-x(k)+ B-u(k) % {zx(z) =A-x(2)+B-u(z)

y(k)=C-x(k)+ D -u(k) V() =C-x(2)+ D -u(z)

Using (zI—A)-x(z) = B-u(z), define transfer functions in the z domain
as ratios of the transform of the input and output signals

X2) _

=(z1-A) "B
2) (I-A)
H(z L C-(zI-A)"-B+D
u(z)
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H (z) is a rational function; similarly to the continuous time case

. V> Y4 N 7 D’ -1 -N
H _ S CikBkj D/ _ . -1 CikBkj D, . b() +b1Z +...+bNZ
ij(Z) = TD, =22 ST U, = 1 N
k=1 <Y, k=1 l_qu 1+a1z +...+a,z

with N =n_
Recursive estimation of the output (lIR digital filter)

by+bz +..4+byz" _ ()

H(z)=
@) l+az" +...+ayz"  u(z)

(1+az" +...+ayz " )y =(by + bz +...+byz ™" Ju(z)
yk)+ayk=1)+...+a,y(k—N)=bu(k)+bu(k—1)+...+byu(k—N)
y(k)=bu(k)+butk—1)+...+byu(k—N)—ay(k—1)—...—a,y(k—N)
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Continuous to discrete time

You want to simulate / predict / control a
 physical system (continuous time) with
« digitally acquired signals (ADCs)
« a computer (clocked)

User guide:
« Take the continuous time Laplace domain transfer function

His) = B,+Bs+...+8,s"
1+os+...+a,s"

1 1 :
. Remember z=¢"", so replace s = ?lnz = —?lnz_l. Oops, H(z) is not

a rational function of z', so cannot apply f(k—1)=z"f(k)
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. Find an approximation for s as a rational function of z™', eg. trapeze

approximation of the integration (Tustin transform)

t 1
y(t) = |, u(tdr & ¥(s)=_u(s)

y(k)zy(k—1)+Tu(k)+u(k_l)

u(2)+z77'u(z)

W2)=2"y@)+T

T1+7"

Y@)=—1 = u(z)

21-7"
§ — — —
T1+7

Matlab>> T=1e-3; Cz = c2d(Cs,T,’tustin’);
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Control systems

A controller (control system) is a
dynamical system
- that takes as inputs References
- reference signals r and
« the outputs y of the plant G
« and produces as outputs
- the inputs u to be applied to the plant to satisfy
« control objectives:
« stabilise an unstable plant G
« the plant outputs y follow the references r
« the control inputs u remain within given bounds

u6 y——>(1)

Outputs

Controller Plant

« u=K(r,y) is often called the control law

- Control and operation of tokamaks PHYS 734
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Exercise: Closed-Loop transfer function

« Let the control law be:u=K(r— y) with linear transfer function K

46y
References Outputs
Controller Plant

« Write the transfer function, in terms of G(s) and K(s) describing the
relation between:

* Y(s)and R(s)
* E(s)and R(s)
« U(s)and R(s)
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A simple controller

uGy 1
Outputs

References

Controller Plant

Reference tracking performance (closed loop, r to y)

_GKr
1+ GK

y=G6u=GKe=GK(r—y)—|Y —r

Tracking error performance (closed loop, r to ¢)

GK 1
=r—v= — e = r
e=r—y (1 1+GK)r% 1+ GK —0
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uG y—r—»(1)
References QOutputs
Controller Plant
Controller effort (closed loop, r to u)
u= K r -1
u=K(r—-y)=K@r—-Gu)—> 1+ KG —->Gr

Open loop (open loop, r to y)

v =GKr

Matlab>>

s=tf(’s’); G = 1/(s+1); K = 1;

sys_yr = feedback(G*K,1); sys er = feedback(1l,K*G);
sys_ur = feedback(K,G)
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In a more realistic situation

References

Controller Plant

we may have to deal with

« input noise (load disturbance) d

« output noise n

« model uncertainties (not treated here)

Control and operation of tokamaks PHYS 734
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u Gyl (D)

‘ Controller Plant

References

yv=Gu+d)+n=GK(r—y—n)+d)+n=
GK G J 1

y= r+ + n
1+ GK 1+ GK 1+ GK
Input noise rejection (d to y): —0
P j ( y) T
1
Output noise rejection (sensitivity function to y):
p j ( y )(n toy) e
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Feedforward

C-

References

Tracking error (r to e):

Feedforward
+ pu G y
Controller Plant
1-GF
1+ GK

Cutputs

Note that choosing F = G™" allows for similar tracking performance at
smaller control gain K

=PrL
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Controller design - closed loop stabilit

How to chose K ? First priority: closed-loop stability!

Poles of closed-loop are roots of 1+G(s)K(s), i.e. values peC for
which G(s)K(s)=-1. Ensure these are stable, i.e.. R(p)<0

« Routh-Hurwitz theorem (test in terms of polynomial coefficients)

e OR Matlab (21st century):

>> s=tf(’s’); G = (s-3)/((s+1)*(s+2)); % plant definition
>> K=1; sys cl = 1/(1+G*K); all(real(pole(sys cl))<0)
false

>> K=0.5; sys cl = 1/(1+G*K); all(real(pole(sys cl))<0)
true

» Nyquist stability criterium
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We want the transfer function

to be stable, no poles with R >0
1+ GK

Cauchy's argument principle :
Let F(s) be a function FC—C

Let P/Z be number of poles/zeroes of F(s) in the contour T'
Z—P=N where N is winding number:

(number of clockwise encirclements - number of counterclockwise
encirclements) by F(I") of 0

Nyquist contour: a contour I" that captures RHP (R >0) ) Im
Nyquist plot: locus (R(F(iw)),3(F(iw))) @ € J-oo,09
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Nyquist stability criterion
P : the number of RHP poles of 1+ GK, (= # RHP poles of GK)

Z :the number of RHP zeros of 1+ GK

We require Z =0 to guarantee stability of
1+GK

Winding number of the Nyquist plot of 1+ GK around 0
(or that of GKaround -1): N=Z—-P=-P

The closed loop transfer function is stable (Z=0)

1+GK
if the number of unstable poles of GK (P)
is equal to the negative of the winding number (N) of the Nyquist
plot of GK around s=-1
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Exercise: Nyquist plot

NB: The Nyquist criterium tells us about the stability of the closed-loop

by testing only a property of GK'!
1+ GK y g only a property

—(s—-0.5)
(s+1)(s+2)
Nyquist contour of GK have in order for the closed loop to be stable?

stable?

Exercise: Given G=

how many windings should the

For which values of K e is the closed-loop
1+ GK

Matlab tips:
e s=tf(’s’); G = -(5-0.5)/((s+2)*(s+1));

e K1=1; K2=-1; nyquist(G*K1,G*K2);
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margin on the Nyquist plot

Assuming the closed loop is stable, we still want to stay away from
encircling the -1 point! Imaginary
part

Phase margin : ZGK +7 at @ where |GK|=1 1.
l.e. by what amount can | change ZGK v R
before instability? S-S \

Gain margin : |GK|_1 at w where ZGK =-1

l.e. by what amount can | change GK| \ ¥
before instability? S, "

Modulus margin . —
min|1 + GK|
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Gain and phase margins

Bode plot GK (iw): t 6K (i)

Gain margin: by how much can
e K the controller gain be increased
« G the plant model be wrong 0dB
before reaching LGK =—nx

Gain Margin

« Phase margin: by how much can
« K the controller phase be increased
(faster closed loop response)
« G the plant model be wrong
before reaching |GK|=1
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Exercise - bode plot

Exercise: Given G=—— ) (same as previous exercises).
(s+1)(s+2)

» What is the gain and phase margin for K=1?
» Relate this to the answer you found in the previous exercise.
Matlab tips:

e s=tf(’s’); G = -(s-0.5)/((s+2)*(s+1));

e K1=1; K2=-1; bode(G*K1,G*K2);
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Controller design - tradeoffs

« Performance: make transfer functions e.g. d—e, r—e ‘small’ at up to
some bandwidth frequency w < we.

« Noise rejection: make transfer functions n—e, n—u ‘small’ at high
frequency w > wp

« Robustness: Maintain stability/performance even if the true plant is
not exactly equal to G. e.g. via stability margins.

There is usually a tradeoff between performance and robustness. A
‘tame’ controller (low performance, low bandwidth wy) will work even if
the plant model is very wrong. High performance control (high wp)
requires good knowledge of model and uncertainties.

Tradeoff between these conflicting requirements: the ‘art’ of
control engineering
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PID controller

The PID (Proportional Integral Derivative) controller is a simple and old
controller with

1 1
K=K,+-K, +sK, IKP(1+—+STD)
s sT,

P term

s—ptK,

= 14+GK =
S—Pp S—Pp

Example: G = , 1+GK=0=p,=p—-K,

« Stabilise an unstable plant (p>0)if p,<0=K,>p

- Make the closed loop response faster: p,=p—-K, <p
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D term

. Add a factor (1+sTD) to the open loop response GK,, so reduce the
phase lag by Z(1+iwT,)e[0,7] (if allowed by gain margin)

« Destabilises plants with pure delay
Example: G=¢" " N GK(iw)=K, Lol ior

+sT 1+iwT
Dgain |[GK|<] |GK(w)|=1  ZGK(®,) Stability
T,<T K,<l1 w,=0 0 stable
T :
T,>T T, < i @, = —oo no phase margin
P
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process variable

I term | set point
2%
. . A o=
« Eliminate DC tracking error el

integral calculation
based on sum of emor,
e(t)=SP-PV

For a P or PD controllers, the DC tracking
error of the closed loop

Copyright © 2008 by Douglas J. Cooper. All Rights Reserved

1 ) 1
— | = >0
1+GK )., 1+G(s=0)K,

WithanltermL:K(s=0)=oo:>#) =0
sT, 1+GK ),

PEL Control and operation of tokamaks PHYS 734
= Fundamentals Session 1 - 44/44



	Control and operation of tokamaks PHYS-734 Session 1 Fundamentals in control theory
	Content
	Dynamic(al) systems
	Classification of dynamical systems
	Discrete time
	Continuous time
	Linear time independent dynamical systems
	Plants
	Linear plants - state space model
	State space transformation
	System stability
	Integral transforms
	Laplace transform user guide
	Transfer functions - continuous time
	Zeros and poles
	Exercise: Manipulating LTI systems in MATLAB
	Sampled signals
	z-transform
	z-transform user guide
	Transfer functions - discrete time
	Continuous to discrete time
	Control systems
	Exercise: Closed-Loop transfer function
	A simple controller
	In a more realistic situation
	Feedforward
	Controller design - closed loop stability
	Nyquist plot
	Nyquist stability criterion
	Exercise: Nyquist plot
	Stability margin on the Nyquist plot
	Gain and phase margins
	Exercise - bode plot
	Controller design - tradeoffs
	PID controller
	P term
	D term
	I term


