
RAPTOR tutorial
Simon Van Mulders

simon.vanmulders@epfl.ch

February 2023

mailto:simon.vanmulders@epfl.ch

Outline

2

§ Part I - This talk
• Introduction to RAPTOR
• Equations, physics model and numerical method
• RAPTOR code structure: directories, data objects, functions
• Version management – git (https://gitlab.epfl.ch/spc/raptor)
• How to get started
• License agreement

§ Part II - Try it for yourself
• Work through the RAPTOR tutorials to familiarize yourself with options
• Excercise

https://gitlab.epfl.ch/spc/raptor

Basics of RAPTOR
§ RApid Plasma Transport simulatOR [Felici NF2011, Felici NF2018]

• Fast transport code for time evolution of 1D tokamak plasma profiles
• Designed for real-time and control-oriented use

§ Initial conception:
• Solve coupled, non-linear, 1D diffusion PDEs for poloidal flux 𝜓 and Te (now additionally: Ti and ne)
• Fixed MHD equilibrium, parametrized actuators and transport

§ Numerics
• Using cubic splines, boundary condition at any radius
• Implicit numerical solver
• Analytic Jacobians w.r.t. state and inputs and local linearization
• Embedded in non-linear optimizer, w. analytic gradients

§ Modular
• Feedback controllers can be used for any actuator
• Easy to add more physics or more functionality

§ Language/versioning
• Matlab (Simulink for real-time C code generation)
• git for code version control (https://gitlab.epfl.ch/spc/raptor)

3

Non-linear optimizer:

https://doi.org/10.1088/%200029-5515/51/8/083052
https://doi.org/10.1088/1741-4326/aac8f0
https://gitlab.epfl.ch/spc/raptor

Extensions
§ A hierarchy of models to evaluate turbulent transport:

• Simple formula with tuning parameters [Felici PPCF 2012] and Bohm-gyroBohm model [Erba NF 1998]
• Scaling-law-driven gradient-based model exploiting core profile stiffness [Teplukhina PPCF 2017]
• Surrogate neural network of quasi-linear gyro-kinetic code QuaLiKiz [van de Plassche PoP 2020]

§ PDEs for Ti and ne have been added [Felici NF 2018]
§ Time-varying equilibrium for transient phases: allows to model impact of changing

geometry during Ip ramps [Teplukhina PPCF 2017]
§ Stationary state solver, allowing to optimize flat-top operating point [Van Mulders NF 2021]
§ On-line interpretative applications

• Real-time state estimation [Piron FED2021] and kinetic equilibrium reconstruction [Carpanese NF2020]
• Model predictive control [Maljaars NF 2017]

§ Off-line predictive applications
• Non-linear scenario optimization [Felici PPCF 2012, van Dongen PPCF 2014, Teplukhina PPCF 2017,

Van Mulders NF 2021, Mitchell subm. FED2023]
• Full-discharge modeling [Teplukhina PPCF 2017],
• including 1st principles transport [Felici NF 2018] and impurity radiation [Maget PPCF 2022, Ostuni

NF 2022]
§ Outlook: uncertainty quantification, compatibility with IDS/IMAS, real-time q profile control,

couple to fast NBI and ECH/ECCD models, impurity transport …

4

https://doi.org/10.1088/0741-3335/54/2/025002
https://dx.doi.org/10.1088/0029-5515/38/7/305
https://doi.org/10.1088/1361-6587/aa857e
https://doi.org/10.1063/1.5134126
https://doi.org/10.1088/1741-4326/aac8f0
https://doi.org/10.1088/1361-6587/aa857e
https://doi.org/%2010.1088/1741-4326/ac0d12
https://www.sciencedirect.com/science/article/pii/S0920379621002076
https://dx.doi.org/10.1088/1741-4326/ab81ac
https://dx.doi.org/10.1088/1741-4326/aa8c48
https://doi.org/10.1088/0741-3335/54/2/025002
https://doi.org/10.1088/0741-3335/56/12/125008
https://doi.org/10.1088/1361-6587/aa857e
https://doi.org/%2010.1088/1741-4326/ac0d12
https://doi.org/10.1088/1361-6587/aa857e
https://doi.org/10.1088/1741-4326/aac8f0
https://doi.org/10.1088/1361-6587/ac4b93
https://dx.doi.org/10.1088/1741-4326/ac8cd6
https://dx.doi.org/10.1088/1741-4326/ac8cd6

§ Flux-surface-averaged diffusion of poloidal flux
• Neoclassical conductivity, bootstrap current
• Current drive sources as sums of gaussians or manual profiles
• Neumann boundary condition through total Ip

Equations solved by RAPTOR (1/4)

5

§ Flux surface averaged temperature diffusion
• Solve Te (and optionally Ti), with boundary condition at arbitrary 𝜌
• Heat sources as sums of gaussians or manually prescribed
• Simple analytical models for heat sources and sinks
• ADAS cooling factor data for impurity radiation
• Ad-hoc model for thermal diffusivity with various transport models (previous

slide)

Equations solved by RAPTOR (2/4)

6

http://www.adas.ac.uk/

Equations solved by RAPTOR (3/4)

§ Flux surface averaged particle diffusion
• For choice of species, electrons, ions, up to 3 impurities, with boundary

condition at arbitrary 𝜌
• Non-simulated species can be set as fractions of other species, directly

prescribed, or constrained by Zeff and quasi-neutrality
• e.g. set trace W to match experimental radiated power

7

Equations solved by RAPTOR (4/4)
§ Magnetic equilibrium terms (V’,g0,g1,g2,g3,Φb)

• No coupling to Grad-Shafranov solver
• Time-dependent sequence can be interfaced
• Post-processed to correct format from CHEASE output files

§ Other physics (optional)
• H-mode pedestal, e.g. setting BC at 𝜌=0.8 with scaling law
• MHD: Sawteeth and NTM module

8

Some background: spatial discretization of profiles

§ Express profile as sum of spline basis functions (finite element method)
§ Note: time and space dependent factor

9

From Continuous time PDE to
Discrete-time matrix ODE
§ Introducing the spline representation of y(𝜌,t) (e.g. 𝜓):

§ Projecting onto the spline basis functions and integrating by parts, a set of
ODEs for the time evolution of the spline coefficients is obtained:

§ For the various eq. and compacting into non-linear state evolution equation:

1
0

NB: M,D,l,s depend
non-linearly on (y,u)

Matrix-vector ODE:

Implicit time stepping
§ Temporal discretization (usually 𝜃=1, fully implicit method):

§ Non-linear eq. at each time step:

§ At each time step, given state xk, inputs uk at time step k,
• Take steps in Newton descent direction d:

• Need Jacobian, obtained from analytical expression for all the derivatives
(copious application of chain rule):

• Iterate until residual fk < tolerance
• Go to next time step

§ Store Jacobians at each time step

1
1

Parameter sensitivity of profile evolution
§ Time evolution depends on model and input parameters

• One example: a transport model parameter
• Another example: a parameter defining the input trajectory

§ Differentiating with respect to parameter p, we get the sensitivity
equation

• Linear ODE for dxk/dp, solve while evolving non-linear PDE:
Forward sensitivity analysis

• Jacobians dfk/dxk, dfk/dxk+1 are known from Newton iterations
• Computational cost proportional to p

1
2

Local linearization and cost/constraint gradients
§ dxk/dp gives the linearization of the state trajectories in the parameter

space

§ With optimization variables p parametrizing an input trajectory,
dxk/dp enables evaluation of analytical cost and constraint gradients

1
3

RAPTOR data objects: structures
• config: configuration for generating model and parameter structures

§ Specify which equations are solved for,
e.g. config.ne.method = 'state’;

§ Specify equilibrium data
§ Physics modules specified though RAPTOR_module class

e.g. config.echcd = RAPTORmodule('echcd_gaussian’);
or config. chi_e = RAPTORmodule('chi_BgB');

§ Numerics (radial and temporal grid, spline order, solver tolerances, etc.)
§ Environment (paths etc.), run-time plot and display options

• model: pre-calculated data (matrices etc.), should not be changed manually
§ Spline basis matrices, radial grid, physics module config

• params: contains all parameters that can be tuned between runs
§ Time grid
§ Parameters for transport models, other physics modules
§ Numerics / debugging flags

• init: parameters for generating initial state x0

1
4

RAPTOR data objects: time-varying vectors
• x: state quantities which the code solves for
• v: pre-known (time-varying) kinetic profile quantities
• g: geometry-related quantities (calculated from equil config)
• u: actuator inputs

§ In terms of these objects, a time step in the code solves
• xk+1= f(xk,gk,vk,uk,model,params)

1
5

RAPTOR workflow

1
6

[model,params,init,g,v,U] = build_RAPTOR_model(config)

[x0] = ...
RAPTOR_initial_conditions(...
model,init,g,v)

simres = RAPTOR_predictive(x0,g,v,U,model,params);

out=RAPTOR_out(simres,model,params);

post-processing

run

initial conditions

Generate RAPTOR model, g,v

user

user

config = RAPTOR_config

user

get defaults

: optional modification by useruser

user

Configuration physics modules with RAPTOR_module class

Directory structure
§ RAPTOR/

• code: core code files
• tests: tests to check that code runs correctly
• demos: demonstration files and tutorials
• doc: documentation
• equils: equilibrium files defining equilibrium profiles
• projects: projects that are built “on top of” RAPTOR
• optimization: tools for non-linear optimization
• data: store temporary data here (not versioned)
• personal: store personal scripts here (not versioned)
• license: license agreement
• RT: Real-time implementations (Simulink)

1
7

Version control - git
§ Web-based interface for the code repository:

(https://gitlab.epfl.ch/spc/raptor)
§ git: distributed version control system
§ Protected branches: development and master
§ Short-lived development branches per feature/bug,

integrated to master via merge request
§ Many tutorials exist for git

1
8

https://gitlab.epfl.ch/spc/raptor

Where to get help
§ Getting started: tutorials and demo files

• in the /demos directory, execute help demos and do the tutorials
• Run some standard scenarios in /demos/standard_scenarios

§ Explanations on the meaning various parameters:
• As comments next to default value definition

§ RAPTOR_config (for general parameters)
§ Inside the module to which the parameter applies (for the rest)

§ Physics and numerics
• [Felici PPCF 2012, Felici PhD thesis, Felici NF 2018]

§ Equation details
• RAPTOR equation document in /doc directory

1
9

https://doi.org/10.1088/0741-3335/54/2/025002
https://infoscience.epfl.ch/record/168656
https://iopscience.iop.org/article/10.1088/1741-4326/aac8f0/meta

User’s license and conditions

2
0

EPFL-SPC
Station 13
1015 Lausanne (Switzerland)
Fax: +41 21 69 35176

Authorisation to use and apply

RAPTOR

at the ___ (insert association name)

The computer code RAPTOR has been developed at the Swiss Plasma Center, Ecole
Polytechnique Fédérale de Lausanne (EPFL-SPC), Switzerland.

RAPTOR (RApid Plasma Transport Simulator) is a 1D tokamak transport code specially
designed for rapid execution compatible with needs for real-time execution or for use in
nonlinear optimization schemes. RAPTOR is an open-source code available only for non-
commercial usage.

The undersigned has received a copy of RAPTOR under the conditions that:

1.- The code does not change its name even if modifed.

2.- Modifcations of the code that are developed are made available to the SPC.

3.- Results produced with the original or the modifed versions of RAPTOR should
appropriately reference the original publications:

For use of RAPTOR as a real-time interpretative code:
F. Felici et al. Nuclear Fusion 51(8), p.083052 (2011)

For predictive simulations of poloidal fux and electron temperature, or its use in
nonlinear optimization routines:

F. Felici et.al. Plasma Physics and Controlled Fusion 54(2), p.025002 (2012)
For predictive multi-channel simulations including ion energy and particle transport
equations:

F. Felici et al, Nuclear Fusion 58 p.096006 (2018)

4.- RAPTOR nor its progeny may be transferred or made available to other research
groups without the written authorisation from the SPC-EPFL.

5.- The user accepts that the code is provided on an as-is basis without any warranty or
conditions of any kind.

Responsible person

Name: __________________________________

email: __________________________________

_______________________ ___________________________
Place and Date Signature

Code_transfer_RAPTOR, version July 2018

