EPFL

H Swiss
Plasma

M =======S RAPTOR tutorial

Simon Van Mulders

m Ecole
polytechnique
fédérale
de Lausanne

February 2023

mailto:simon.vanmulders@epfl.ch

=PFL Qutline

= Part | - This talk

* Introduction to RAPTOR
Equations, physics model and numerical method
RAPTOR code structure: directories, data objects, functions
Version management — git (https://gitlab.epfl.ch/spc/raptor)
How to get started
 License agreement

= Part Il - Try it for yourself
» Work through the RAPTOR tutorials to familiarize yourself with options
» Excercise

M Swiss
Plasma
Center

= 2

https://gitlab.epfl.ch/spc/raptor

=PrL

M Swiss
Plasma
Center

Basics of RAPTOR

= RApid Plasma Transport simulatOR [Felici NF2011, Felici NF2018]
» Fast transport code for time evolution of 1D tokamak plasma profiles
» Designed for real-time and control-oriented use

Initial conception:

+ Solve coupled, non-linear, 1D diffusion PDEs for poloidal flux ¢y and T, (now additionally: T;and n)

* Fixed MHD equilibrium, parametrized actuators and transport

Numerics
« Using cubic splines, boundary condition at any radius
* Implicit numerical solver
* Analytic Jacobians w.r.t. state and inputs and local linearization

Non-linear optimizer:

+ Embedded in non-linear optimizer, w. analytic gradients
actuator evolution

M Od u I ar (input trajectories)
+ Feedback controllers can be used for any actuator I
+ Easy to add more physics or more functionality

Tokamak profile

profile evolution
(state trajectories)

simulation
S —

Language/versioning

Nonlinear

* Matlab (Simulink for real-time C code generation)

optimization

+ git for code version control (hiips://gitlab.epfl.ch/spc/raptor)

cost/constraints
—

https://doi.org/10.1088/%200029-5515/51/8/083052
https://doi.org/10.1088/1741-4326/aac8f0
https://gitlab.epfl.ch/spc/raptor

=PrL

M Swiss
Plasma
Center

Extensions

A hierarchy of models to evaluate turbulent transport:
» Simple formula with tuning parameters [Felici PPCFE 2012] and Bohm-gyroBohm model [Erba NF 1998]
+ Scaling-law-driven gradient-based model exploiting core profile stiffness [Teplukhina PPCF 2017]
+ Surrogate neural network of quasi-linear gyro-kinetic code QuaLiKiz [van de Plassche PoP 2020]

PDEs for T, and n, have been added [Felici NF 2018]

Time-varying equilibrium for transient phases: allows to model impact of changing
geometry during |, ramps [Teplukhina PPCF 2017]

Stationary state solver, allowing to optimize flat-top operating point [Van Mulders NF 2021]

On-line interpretative applications
* Real-time state estimation [Piron FED2021] and kinetic equilibrium reconstruction [Carpanese NF2020]
* Model predictive control [Maljaars NF 2017]

Off-line predictive applications

* Non-linear scenario optimization [Felici PPCE 2012, van Dongen PPCFE 2014, Teplukhina PPCF 2017,
Van Mulders NF 2021, Mitchell subm. FED2023]

+ Full-discharge modeling [Teplukhina PPCFE 2017],
. mgllé%iggﬂst principles transport [Felici NF 2018] and impurity radiation [Maget PPCF 2022, Ostuni

Outlook: uncertainty quantification, compatibility with IDS/IMAS, real-time q profile control,
couple to fast NBl and ECH/ECCD models, impurity transport ...

https://doi.org/10.1088/0741-3335/54/2/025002
https://dx.doi.org/10.1088/0029-5515/38/7/305
https://doi.org/10.1088/1361-6587/aa857e
https://doi.org/10.1063/1.5134126
https://doi.org/10.1088/1741-4326/aac8f0
https://doi.org/10.1088/1361-6587/aa857e
https://doi.org/%2010.1088/1741-4326/ac0d12
https://www.sciencedirect.com/science/article/pii/S0920379621002076
https://dx.doi.org/10.1088/1741-4326/ab81ac
https://dx.doi.org/10.1088/1741-4326/aa8c48
https://doi.org/10.1088/0741-3335/54/2/025002
https://doi.org/10.1088/0741-3335/56/12/125008
https://doi.org/10.1088/1361-6587/aa857e
https://doi.org/%2010.1088/1741-4326/ac0d12
https://doi.org/10.1088/1361-6587/aa857e
https://doi.org/10.1088/1741-4326/aac8f0
https://doi.org/10.1088/1361-6587/ac4b93
https://dx.doi.org/10.1088/1741-4326/ac8cd6
https://dx.doi.org/10.1088/1741-4326/ac8cd6

=PrL Equations solved by RAPTOR (1/4)

20, 9p

= — ===V
16m2u0®360p | p 0p) 204p *

p

pd, 8¢) B Y [9293 3¢] Bo ..

= Flux-surface-averaged diffusion of poloidal flux
» Neoclassical conductivity, bootstrap current
» Current drive sources as sums of gaussians or manual profiles
* Neumann boundary condition through total /p

M Swiss
Plasma
Center

- 5

=PrL Equations solved by RAPTOR (2/4)

§V~'

()_5,3(3 b, 0 10, o 0T 5
NP

——— SN B 5/3 =)
8t Qq)bapp)[(v) Ne e]+V,8A(V/ Ne eaA—{— T]__‘ego) P

= Flux surface averaged temperature diffusion

Solve Te (and optionally Ti), with boundary condition at arbitrary p
Heat sources as sums of gaussians or manually prescribed
Simple analytical models for heat sources and sinks

ADAS cooling factor data for impurity radiation

Ad-hoc model for thermal diffusivity with various transport models (previous
slide)

M Swiss
Plasma
Center

= 6

http://www.adas.ac.uk/

=PrL Equations solved by RAPTOR (3/4)

1 0 B &2“)[('[/2’ 1 0 g1

2 sl A s Gl (O
viiat|, 28,05 P T VI V]

By~
op

e gOVsns) = Ss

= Flux surface averaged particle diffusion
» For choice of species, electrons, ions, up to 3 impurities, with boundary
condition at arbitrary p
» Non-simulated species can be set as fractions of other species, directly
prescribed, or constrained by Zeffand quasi-neutrality

* e.g. set trace W to match experimental radiated power

M Swiss
Plasma
Center

= 7

=PrL

M Swiss
Plasma
Center

Equations solved by RAPTOR (4/4)

= Magnetic equilibrium terms (V’,go,g1,92,93 ®b)
* No coupling to Grad-Shafranov solver
» Time-dependent sequence can be interfaced
» Post-processed to correct format from CHEASE output files

= Other physics (optional)
* H-mode pedestal, e.g. setting BC at p=0.8 with scaling law
 MHD: Sawteeth and NTM module

=PrL

M Swiss
Plasma
Center

Some background: spatial discretization of profiles

Nsp Nsp

¢(P, t) = Z Aa(p)"za(t) and Te(pa t) = Z Aa(p)Tea(t)
a=1 a=1

= Express profile as sum of spline basis functions (finite element method)
= Note: time and space dependent factor

| Example of y(p) profile approximated by sum of cubic splines

0.3

0.2r

Corresbondiné q proﬁle and jlor ®)

j, () [MA/m’]

=PFL From Continuous time PDE to
Discrete-time matrix ODE

= Introducing the spline representation of y(p,t) (e.g. ¥):

= dfa(t) o 0 [9A4(p) :
Zm dt Aa(p) = zya(t)a—p [g 6p :| + kj,

Tsp

= Projecting onto the spline basis functions and integrating by parts, a set of
ODEts forthe time evolution of the spline coefficients is obtained:

Nsp ab () [Pe n. Pe OANg OA, - .
dygt() / mAshadp = — 3" fa(t) [/ 0% 8 - dp] Matrix-vector ODE:
a1 Jo P LJo p op) v
g -~ y R
""I:ﬁa(t) =D;’3u ME = _Dy + ! + Ss
oy Pe Pe .

- {QA,BBP] + [/0 Askjdp] . NB: M,D,l,s depend
— N ~ . non-linearly on (y,u)

=l3 =83

= For the various eq. and compacting into non-linear state evolution equation:
M Swi :
Plasma FlE@),z(t),u(t) =0Vt
Center

= 1
0

= Implicit time stepping
fl@(t),x(t),u(t)) =0Vt

= Temporal discretization (usually 6=1, fully implicit method):
E(tr) = (Ti+1 — 2k) /AL, z(tx) = Ozp1 + (1 — O)zg, u(te) = uk.

= Non-linear eq. at each time step:

f(mk+1,$k,U}c) = fk =0Vk

= At each time step, given state x«, inputs ux at time step k,
+ Take steps in Newton descent direction d: A N
jk+1d = fkv

* Need Jacobian, obtained from analytical expression for all the derivatives
(copious application of chain rule): o7
k

O0Tk41

koo
Tk1 =

* lterate until residual fx < tolerance
* Go to next time step

m swiss " Store Jacobians at each time step

Plasma
Center

- 1

=PFL Parameter sensitivity of profile evolution

= Time evolution depends on model and input parameters
* One example: a transport model parameter
« Another example: a parameter defining the input trajectory

= Differentiating with respect to parameter p, we get the sensitivity
equation

f($k+1,ka,uk) = fk =0VEk

dfk Bfk 8$k+1 (9fk BCL'k 6fk Buk n 6fk

0= dp - Ozk+1 Op Ozxr Op Our Op Op

* Linear ODE for dx«/dp, solve while evolving non-linear PDE:
Forward sensitivity analysis

« Jacobians dfw/dx., dfi/dx... are known from Newton iterations
« Computational cost proportional to p

M Swiss
Plasma
Center

= 1

=PFL Local linearization and cost/constraint gradients

= dx«/dp gives the linearization of the state trajectories in the parameter
space

Te(p,t) | p=po+op = Te(p,t)p, + ——0dp
(P)I.l Po+07 (p)]() ox ()p

Assumed validity region
of linearized models

State spa:e (2)

fime [s] —&— Pre-computed
State space (1) reference trajectory

= With optimization variables p parametrizing an input trajectory,
dxx/dp enables evaluation of analytical cost and constraint gradients

M Swiss
Plasma
Center

- 1

=F*L RAPTOR data objects: structures

» config: configuration for generating model and parameter structures

= Specify which equations are solved for,
e.g.config.ne.method = 'state’;

= Specify equilibrium data

» Physics modules specified though RAPTOR module class
e.g. config.echcd = RAPTORmodule('echcd gaussian’);
orconfig. chi e = RAPTORmodule('chi BgB');

= Numerics (radial and temporal grid, spline order, solver tolerances, etc.)
= Environment (paths etc.), run-time plot and display options
* model: pre-calculated data (matrices etc.), should not be changed manually
= Spline basis matrices, radial grid, physics module config
» params: contains all parameters that can be tuned between runs
= Time grid
= Parameters for transport models, other physics modules
= Numerics / debugging flags
« init: parameters for generating initial state x,

M Swiss
Plasma
Center

=P7L RAPTOR data objects: time-varying vectors

x: state quantities which the code solves for

v: pre-known (time-varying) kinetic profile quantities

g: geometry-related quantities (calculated from equil config)
u: actuator inputs

= In terms of these objects, a time step in the code solves
* xx+1= f(Xx,gk,Vk,uk,model,params)

M Swiss
Plasma
Center

= 1

=PrL

M Swiss
Plasma
Center

RAPTOR workflow

get defaults

config = RAPTOR config

o : optional modification by user

o Configuration physics modules with RAPTOR module class

Generate RAPTOR model, g,v

[model,params,init,g,v,U] = build RAPTOR model (config)

initial conditions

L =

[x0] = ...

model,init,g,v)

RAPTOR_initial conditions(...

A 4 A 4

run

simres = RAPTOR_predictive(x0,g,v,U,model, params) ;

post-processing

out=RAPTOR out (simres,model,params) ;

=P7L " Directory structure

= RAPTOR/
» code: core code files
* tests: tests to check that code runs correctly
» demos: demonstration files and tutorials
* doc: documentation
* equils: equilibrium files defining equilibrium profiles
» projects: projects that are built “on top of” RAPTOR
» optimization: tools for non-linear optimization
» data: store temporary data here (not versioned)
» personal: store personal scripts here (not versioned)
« license: license agreement
* RT: Real-time implementations (Simulink)

M Swiss
Plasma
Center

-

=P7L Version control - git

= \Web-based interface for the code repository:
(https://qitlab.epfl.ch/spc/raptor)

= git: distributed version control system
= Protected branches: development and master

= Short-lived development branches per feature/bug,
integrated to master via merge request

= Many tutorials exist for git

master

o o o

feature/description bugfix/description

M Swiss
Plasma
Center

= 1

https://gitlab.epfl.ch/spc/raptor

=PrL

M Swiss
Plasma
Center

Where to get help

= Getting started: tutorials and demo files
* in the /demos directory, execute help demos and do the tutorials
* Run some standard scenarios in /demos/standard scenarios

= Explanations on the meaning various parameters:
* As comments next to default value definition
= RAPTOR config (for general parameters)
» |Inside the module to which the parameter applies (for the rest)
= Physics and numerics
 [Felici PPCF 2012, Felici PhD thesis, Felici NF 2018]

= Equation details
« RAPTOR equation document in /doc directory

https://doi.org/10.1088/0741-3335/54/2/025002
https://infoscience.epfl.ch/record/168656
https://iopscience.iop.org/article/10.1088/1741-4326/aac8f0/meta

=PrL

M Swiss
Plasma
Center

User’s license and conditions

EPFL-SPC

Station 13

1015 Lausanne (Switzerland)
Fax: +41 21 69 35176

Authorisation to use and apply

RAPTOR

at the (insert jation name)

The computer code RAPTOR has been developed at the Swiss Plasma Center, Ecole
Polytechnique Fédérale de Lausanne (EPFL-SPC), Switzerland.

RAPTOR (RApid Plasma Transport Simulator) is a 1D tokamak transport code specially
designed for rapid execution compatible with needs for real-time execution or for use in
nonlinear optimization schemes. RAPTOR is an open-source code available only for non-
commercial usage.

The undersigned has received a copy of RAPTOR under the conditions that:

1.- The code does not change its name even if modified.

2.- Modifications of the code that are developed are made available to the SPC.

3.- Results produced with the original or the modified versions of RAPTOR should
appropriately reference the original publications:

For use of RAPTOR as a real-time interpretative code:

F. Felici et al. Nuclear Fusion 51(8), p.083052 (2011)
For predictive simulations of poloidal flux and electron temperature, or its use in
nonlinear optimization routines:

F. Felici et.al. Plasma Physics and Controlled Fusion 54(2), p.025002 (2012)
For predictive multi-channel simulations including ion energy and particle transport
equations:

F. Felici et al, Nuclear Fusion 58 p.096006 (2018)

4.- RAPTOR nor its progeny may be transferred or made available to other research
groups without the written authorisation from the SPC-EPFL.

5.- The user accepts that the code is provided on an as-is basis without any warranty or
conditions of any kind.

Responsible person

Name:

email:

Place and Date Signature

Code_transfer_RAPTOR, version July 2018

N

