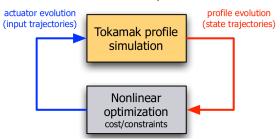
SwissPlasmaCenter

 École polytechnique fédérale de Lausanne

EPFL Outline

- Part I This talk
 - Introduction to RAPTOR
 - Equations, physics model and numerical method
 - RAPTOR code structure: directories, data objects, functions
 - Version management git (https://gitlab.epfl.ch/spc/raptor)
 - How to get started
 - License agreement
- Part II Try it for yourself
 - Work through the RAPTOR tutorials to familiarize yourself with options
 - Excercise


Swiss
Plasma
Center

Basics of RAPTOR

- RApid Plasma Transport simulatOR [Felici NF2011, Felici NF2018]
 - Fast transport code for time evolution of 1D tokamak plasma profiles
 - Designed for real-time and control-oriented use
- Initial conception:
 - Solve coupled, non-linear, 1D diffusion PDEs for poloidal flux ψ and T_e (now additionally: T_i and n_e)
 - Fixed MHD equilibrium, parametrized actuators and transport
- Numerics
 - Using cubic splines, boundary condition at any radius
 - Implicit numerical solver
 - Analytic Jacobians w.r.t. state and inputs and local linearization
 - Embedded in non-linear optimizer, w. analytic gradients
- Modular
 - Feedback controllers can be used for any actuator
 - Easy to add more physics or more functionality
- Language/versioning
 - Matlab (Simulink for real-time C code generation)
 - git for code version control (https://gitlab.epfl.ch/spc/raptor)

Swiss Plasma Center

Non-linear optimizer:

Extensions

- A hierarchy of models to evaluate turbulent transport:
 - Simple formula with tuning parameters [Felici PPCF 2012] and Bohm-gyroBohm model [Erba NF 1998]
 - Scaling-law-driven gradient-based model exploiting core profile stiffness [Teplukhina PPCF 2017]
 - Surrogate neural network of quasi-linear gyro-kinetic code QuaLiKiz [van de Plassche PoP 2020]
- PDEs for T_i and n_e have been added [<u>Felici NF 2018</u>]
- Time-varying equilibrium for transient phases: allows to model impact of changing geometry during l_p ramps [Teplukhina PPCF 2017]
- Stationary state solver, allowing to optimize flat-top operating point [Van Mulders NF 2021]
- On-line interpretative applications
 - Real-time state estimation [Piron FED2021] and kinetic equilibrium reconstruction [Carpanese NF2020]
 - Model predictive control [Maljaars NF 2017]
- Off-line predictive applications
 - Non-linear scenario optimization [Felici PPCF 2012, van Dongen PPCF 2014, Teplukhina PPCF 2017, Van Mulders NF 2021, Mitchell subm. FED2023]
 - Full-discharge modeling [Teplukhina PPCF 2017],
 - including 1st principles transport [Felici NF 2018] and impurity radiation [Maget PPCF 2022, Ostuni NF 2022]
- Outlook: uncertainty quantification, compatibility with IDS/IMAS, real-time q profile control, couple to fast NBI and ECH/ECCD models, impurity transport ...

Swiss
Plasma
Center

Equations solved by RAPTOR (1/4)

$$\sigma_{\parallel} \left(\left. \frac{\partial \psi}{\partial t} \right|_{\hat{\rho}} - \frac{\hat{\rho} \dot{\Phi}_b}{2\Phi_b} \frac{\partial \psi}{\partial \hat{\rho}} \right) = \frac{F^2}{16\pi^2 \mu_0 \Phi_b^2 \hat{\rho}} \frac{\partial}{\partial \hat{\rho}} \left[\frac{g_2 g_3}{\hat{\rho}} \frac{\partial \psi}{\partial \hat{\rho}} \right] - \frac{B_0}{2\Phi_b \hat{\rho}} V_{\hat{\rho}}' j_{ni}$$

- Flux-surface-averaged diffusion of poloidal flux
 - Neoclassical conductivity, bootstrap current
 - Current drive sources as sums of gaussians or manual profiles
 - Neumann boundary condition through total Ip

Swiss Plasma Center

Equations solved by RAPTOR (2/4)

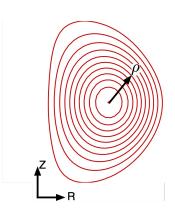
$$\frac{3}{2}(V_{\hat{\rho}}')^{-5/3}(\left.\frac{\partial}{\partial t}\right|_{\hat{\rho}} - \frac{\dot{\Phi}_b}{2\Phi_b}\frac{\partial}{\partial\hat{\rho}}\hat{\rho})[(V_{\hat{\rho}}')^{5/3}n_eT_e] + \frac{1}{V_{\hat{\rho}}'}\frac{\partial}{\partial\hat{\rho}}(-\frac{g_1}{V_{\hat{\rho}}'}n_e\chi_e\frac{\partial T_e}{\partial\hat{\rho}} + \frac{5}{2}T_e\Gamma_eg_0) = P_e$$

- Flux surface averaged temperature diffusion
 - Solve T_e (and optionally T_i), with boundary condition at arbitrary ρ
 - Heat sources as sums of gaussians or manually prescribed
 - Simple analytical models for heat sources and sinks
 - ADAS cooling factor data for impurity radiation
 - Ad-hoc model for thermal diffusivity with various transport models (previous slide)

Swiss
Plasma
Center

Equations solved by RAPTOR (3/4)

$$\frac{1}{V_{\hat{\rho}}'}(\left.\frac{\partial}{\partial t}\right|_{\hat{\rho}} - \frac{\dot{\Phi}_b}{2\Phi_b}\frac{\partial}{\partial\hat{\rho}}\hat{\rho})[(V_{\hat{\rho}}')n_s] + \frac{1}{V_{\hat{\rho}}'}\frac{\partial}{\partial\hat{\rho}}(-\frac{g_1}{V_{\hat{\rho}}'}D_s\frac{\partial n_s}{\partial\hat{\rho}} + g_0V_sn_s) = S_s$$


- Flux surface averaged particle diffusion
 - For choice of species, electrons, ions, up to 3 impurities, with boundary condition at arbitrary ρ
 - Non-simulated species can be set as fractions of other species, directly prescribed, or constrained by Zeff and quasi-neutrality
 - e.g. set trace W to match experimental radiated power

SwissPlasmaCenter

Equations solved by RAPTOR (4/4)

- Magnetic equilibrium terms (V',g₀,g₁,g₂,g₃,Φ♭)
 - No coupling to Grad-Shafranov solver
 - Time-dependent sequence can be interfaced
 - Post-processed to correct format from CHEASE output files

- Other physics (optional)
 - H-mode pedestal, e.g. setting BC at ρ =0.8 with scaling law
 - MHD: Sawteeth and NTM module

Swiss
Plasma
Center

Some background: spatial discretization of profiles

$$\psi(
ho,t) = \sum_{lpha=1}^{n_{sp}} \Lambda_{lpha}(
ho) \hat{\psi}_{lpha}(t) \quad ext{and} \quad T_e(
ho,t) = \sum_{lpha=1}^{n_{sp}} \Lambda_{lpha}(
ho) \hat{T}_{elpha}(t)$$

- Express profile as sum of spline basis functions (finite element method)
- Note: time and space dependent factor

SwissPlasmaCenter

q

From Continuous time PDE to Discrete-time matrix ODE

• Introducing the spline representation of $y(\rho,t)$ (e.g. ψ):

$$\sum_{lpha=1}^{n_{sp}} m rac{d\hat{y}_lpha(t)}{dt} \Lambda_lpha(
ho) = \sum_{lpha=1}^{n_{sp}} \hat{y}_lpha(t) rac{\partial}{\partial
ho} \left[g rac{\partial \Lambda_lpha(
ho)}{\partial
ho}
ight] + k j,$$

 Projecting onto the spline basis functions and integrating by parts, a set of ODEs for the time evolution of the spline coefficients is obtained:

$$\sum_{\alpha=1}^{n_{sp}} \frac{d\hat{y}_{\alpha}(t)}{dt} \underbrace{\int_{0}^{\rho_{e}} m\Lambda_{\beta}\Lambda_{\alpha} \, \mathrm{d}\rho}_{M_{\beta\alpha}(t)} = -\sum_{\alpha=1}^{n_{sp}} \hat{y}_{\alpha}(t) \underbrace{\left[\int_{0}^{\rho_{e}} g \frac{\partial \Lambda_{\beta}}{\partial \rho} \frac{\partial \Lambda_{\alpha}}{\partial \rho} \, \mathrm{d}\rho\right]}_{=D_{\beta\alpha}} \\ + \underbrace{\left[g\Lambda_{\beta} \frac{\partial y}{\partial \rho}\right]_{0}^{\rho_{e}}}_{=l_{\beta}} + \underbrace{\left[\int_{0}^{\rho_{e}} \Lambda_{\beta} k j \mathrm{d}\rho\right]}_{=s_{\beta}}.$$
Matrix-vector ODE:
$$\mathbf{M} \frac{d\hat{\mathbf{y}}}{dt} = -\mathbf{D}\hat{\mathbf{y}} + \mathbf{1} + \mathbf{s},$$
NB: M,D,l,s depend non-linearly on (y,u)

For the various eq. and compacting into non-linear state evolution equation:

$$f(\dot{x}(t), x(t), u(t)) = 0 \ \forall \ t$$

Swiss Plasma Center

Implicit time stepping

$$f(\dot{x}(t), x(t), u(t)) = 0 \ \forall \ t$$

• Temporal discretization (usually θ =1, fully implicit method):

$$\dot{x}(t_k) = (x_{k+1} - x_k)/\Delta t, \qquad x(t_k) = \theta x_{k+1} + (1 - \theta)x_k, \qquad u(t_k) = u_k.$$

Non-linear eq. at each time step:

$$\tilde{f}(x_{k+1}, x_k, u_k) = \tilde{f}_k = 0 \ \forall \ k$$

- At each time step, given state x_k , inputs u_k at time step k,
 - Take steps in Newton descent direction d:

$$\mathcal{J}_{k+1}^k d = \tilde{f}_k,$$

• Need Jacobian, obtained from analytical expression for all the derivatives (copious application of chain rule):

$$\mathcal{J}_{k+1}^k = \frac{\partial f_k}{\partial x_{k+1}}$$

- Iterate until residual fk < tolerance
- Go to next time step
- Store Jacobians at each time step

Swiss
Plasma
Center

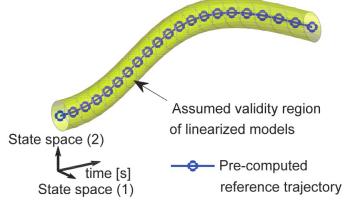
Parameter sensitivity of profile evolution

- Time evolution depends on model and input parameters
 - One example: a transport model parameter
 - Another example: a parameter defining the input trajectory
- Differentiating with respect to parameter p, we get the sensitivity equation

$$\tilde{f}(x_{k+1},x_k,u_k)=\tilde{f}_k=0\ orall\ k$$

$$0 = \frac{\mathrm{d}\tilde{f}_k}{\mathrm{d}p} = \frac{\partial \tilde{f}_k}{\partial x_{k+1}} \frac{\partial x_{k+1}}{\partial p} + \frac{\partial \tilde{f}_k}{\partial x_k} \frac{\partial x_k}{\partial p} + \frac{\partial \tilde{f}_k}{\partial u_k} \frac{\partial u_k}{\partial p} + \frac{\partial \tilde{f}_k}{\partial p}$$

- Linear ODE for dxk/dp, solve while evolving non-linear PDE:
 Forward sensitivity analysis
- Jacobians df_k/dx_k , df_k/dx_{k+1} are known from Newton iterations
- Computational cost proportional to p


Swiss
Plasma
Center

Local linearization and cost/constraint gradients

 dxi/dp gives the linearization of the state trajectories in the parameter space

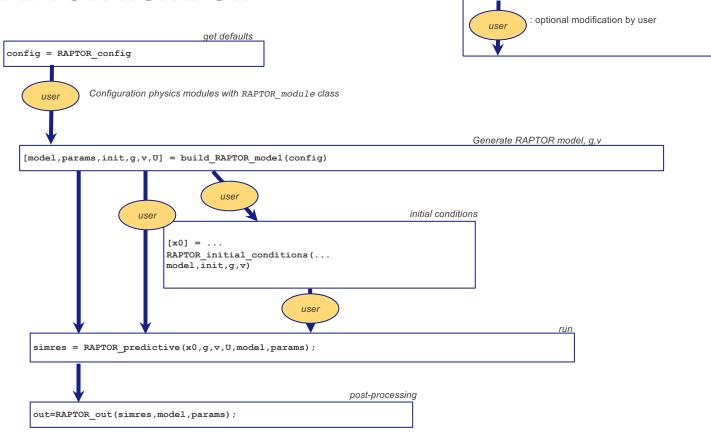
$$T_e(\rho, t)|_{p=p_0+\delta p} \approx T_e(\rho, t)_{p_0} + \frac{\partial T_e}{\partial x} \frac{\partial x}{\partial p} \delta p$$

With optimization variables p parametrizing an input trajectory,
 dxk/dp enables evaluation of analytical cost and constraint gradients

Swiss
Plasma
Center

RAPTOR data objects: structures

- config: configuration for generating model and parameter structures
 - Specify which equations are solved for, e.g. config.ne.method = 'state';
 - Specify equilibrium data
 - Physics modules specified though RAPTOR_module class e.g. config.echcd = RAPTORmodule('echcd_gaussian'); or config. chi_e = RAPTORmodule('chi_BgB');
 - Numerics (radial and temporal grid, spline order, solver tolerances, etc.)
 - Environment (paths etc.), run-time plot and display options
- model: pre-calculated data (matrices etc.), should not be changed manually
 - Spline basis matrices, radial grid, physics module config
- params: contains all parameters that can be tuned between runs
 - Time grid
 - Parameters for transport models, other physics modules
 - Numerics / debugging flags
- init: parameters for generating initial state x_0
- Swiss
 Plasma
 Center


RAPTOR data objects: time-varying vectors

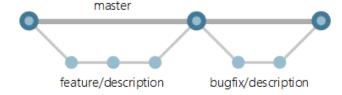
- x: state quantities which the code solves for
- v: pre-known (time-varying) kinetic profile quantities
- g: geometry-related quantities (calculated from equil config)
- u: actuator inputs
- In terms of these objects, a time step in the code solves
 - xk+1= f(xk,gk,vk,uk,model,params)

Swiss
Plasma
Center

RAPTOR workflow

Swiss
Plasma
Center

Directory structure


RAPTOR/

- code: core code files
- tests: tests to check that code runs correctly
- demos: demonstration files and tutorials
- doc: documentation
- equils: equilibrium files defining equilibrium profiles
- projects: projects that are built "on top of" RAPTOR
- optimization: tools for non-linear optimization
- data: store temporary data here (not versioned)
- personal: store personal scripts here (not versioned)
- license: license agreement
- RT: Real-time implementations (Simulink)

Swiss
Plasma
Center

Version control - git

- Web-based interface for the code repository: (https://gitlab.epfl.ch/spc/raptor)
- git: distributed version control system
- Protected branches: development and master
- Short-lived development branches per feature/bug, integrated to master via merge request
- Many tutorials exist for git

Swiss
Plasma
Center

Where to get help

- Getting started: tutorials and demo files
 - in the /demos directory, execute help demos and do the tutorials
 - Run some standard scenarios in /demos/standard_scenarios
- Explanations on the meaning various parameters:
 - As comments next to default value definition
 - RAPTOR_config (for general parameters)
 - Inside the module to which the parameter applies (for the rest)
- Physics and numerics
 - [Felici PPCF 2012, Felici PhD thesis, Felici NF 2018]
- Equation details
 - RAPTOR equation document in /doc directory

Swiss
Plasma
Center

User's license and conditions

EPFL-SPC Station 13 1015 Lausanne (Switzerland) Fax: +41 21 69 35176

Authorisation to use and apply

RAPTOR

at th	t the	(insert association name)
The computer code RAPTOR has been developed at the Swiss Plasma Center, Ecole Polytechnique Fédérale de Lausanne (EPFL-SPC), Switzerland.		
RAPTOR (RApid Plasma Transport Simulator) is a 1D tokamak transport code specially designed for rapid execution compatible with needs for real-time execution or for use in nonlinear optimization schemes. RAPTOR is an open-source code available only for noncommercial usage.		
The undersigned has received a copy of RAPTOR under the conditions that:		
1	The code does not change its name even if modified.	
2	Modifications of the code that are developed are made availa	ble to the SPC.
3	Results produced with the original or the modified versions of RAPTOR should appropriately reference the original publications:	
	For use of RAPTOR as a real-time interpretative code: F. Felici et al. Nuclear Fusion 51(8), 0.083052 (2011) For predictive simulations of poloidal flux and electron tenonlinear optimization routines: F. Felici et al. Plasma Physics and Controlled Fusion 54 For predictive multi-channel simulations including ion energe equations: F. Felici et al, Nuclear Fusion 58 p.096006 (2018)	I(2), p.025002 (2012)
4	 RAPTOR nor its progeny may be transferred or made ava groups without the written authorisation from the SPC-EPFL. 	ilable to other research
5	The user accepts that the code is provided on an as-is basis without any warranty or conditions of any kind. $ \\$	
Responsible person		
Name:		
email:		
Plac	Place and Date Signature	

Swiss **Plasma** Center

Code_transfer_RAPTOR, version July 2018