
Chapter 7

Gapped frustrated quantum
magnets

When quantum fluctuations are strong enough to destroy long-range mag-
netic order, one natural possibility is that spin-spin correlations decay expo-
nentially. In that case, the excitations can be expected to ressemble those of
a finite system of dimension ›D, where › is the correlation length and D the
dimensionality. Now, in finite systems, the spectrum is quantized, and the
spectrum has a gap of order v2fi�L, where v is the typical velocity and L the
linear size of the system. So a disordered antiferromagnet can be expected
to have a gap of order � ∝ Ja�›, where J is a typical coupling constant
and a the lattice parameter. This can be demonstrated explicitly in the
case of dimerized models, where strong antiferromagnetic bonds lead to a
ground state that is essentially a product of singlets on these bonds. What
is specific to frustrated magnets is that the formation of local singlets can be
spontaneous, the dimerization then implying the breaking of the translation
symmetry.

7.1 Dimerized square lattice

A simple example to demonstrate that quantum fluctuations can lead to a
spin gap is the dimerized antiferromagnetic Heisenberg model on the square
lattice, where the coupling constant is equal to J on a set of dimers in
columnar geometry such that each site belongs to one and only one dimer,
and is reduced to J ′ < J on the other bonds (see Fig. 7.1). As long as J and
J ′ are both positive, it is clear that the classical ground state is still the Néel
configuration since it fully satisfies all bonds. However, in the limit J ′ → 0,
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Figure 7.1: Dimerized square lattice. Left: Definition of the intra-dimer
coupling constants J and of the inter-dimer coupling constants J ′. Right:
Arrows defining the convention of the singlets, and hopping amplitudes for
one triplet.

the spectrum becomes very soft, and the correction to the magnetization
diverges in that limit.

To study the excitation spectrum in that limit, let us start from the case
J ′ = and treat J ′ as a perturbation. When J ′ = 0, the system is a collection
of independent dimers coupled by J . The spectrum of a dimer has two
eigenstates, a singlet and a triplet. Indeed,

J �S1 ⋅
�S2 =

J

2
[( �S1 +

�S2)
2
− �S2

1 −
�S2

2] =
J

2
�S2

tot −
3
4

J

where �Stot =
�S1 +

�S2 is the total spin. Now, from the theory of the addition
of angular momenta, we known that

1
2
⊗

1
2
= 0⊕ 1

implying that �S2
tot takes two values of the form Stot(Stot + 1) with Stot = 0

or 1. The eigenvalues of the singlet (Stot = 0) and of the triplet (Stot = 1)
are thus given by

Es = −
3
4

J, Et =
1
4

J.

Let us denote by �S� the singlet wave-function, and by �T−1�, �T0� and
�T1� those of the three triplets with Sz

tot = −1, 0 and 1 respectively. They are
given by

�S� =
� ↑↓� − � ↓↑�
√

2
and

�T−1� = � ↓↓�, �T0� =
� ↑↓� + � ↓↑�
√

2
, �T1� = � ↑↑�.
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When necessary, we will add indices referring to the sites of the lattice:
�S�ij = (� ↑i↓j� − � ↓i↑j�)�

√
2, etc.

The unperturbed ground state can be written as

�GS� = �S�⊗ �S�⊗ ...⊗ �S�,

where the product runs over all dimers of the lattice. Its energy is given by
E0 = −

3

4
J N

2

The first excited state is obtained by promoting one singlet into a triplet.
Its energy equal to E0 + J , and its degeneracy is equal to 3 × N

2
, where N

2

is the number of dimers, and the factor 3 keeps track of the three possible
values of Sz

tot, −1, 0 or 1.
Let us now treat J ′ as as perturbation. Since the ground state is non

degenerate, we can calculate the first order correction as �GS�H(J ′)�GS�,
where H(J ′) is the Hamiltonian describing the inter-dimer coupling. H(J ′)
is a sum of terms that couple two dimers. Let’s consider two singlets �S�12

and �S�34 such that sites 2 and 3 are nearest neighbours. The operator
J ′ �S2 ⋅

�S3 can be written as

J ′ �S2 ⋅
�S3 = J ′[Sz

2Sz

3 +
1
2
(S+2 S−3 + S−2 S+3 )].

Now,
Sz

2 �S�12 =
1

2
√

2
(−� ↑1↓2� − � ↓1↑2�) = −

1
2
�T0�12,

S+2 �S�12 =
1
√

2
� ↑1↑2� =

1
√

2
�T1�12, S−2 �S�12 =

1
√

2
(−� ↓1↓2�) = −

1
√

2
�T−1�12.

So, by applying any term of J ′ �S2 ⋅
�S3 to �S�12, we transform it into a triplet.

The scalar product of the resulting state with �GS�, which is a product of
singlets, will thus vanish. The first order correction to the ground state
energy therefore vanishes: E(1)

0
= 0.

Let us now turn to the first excited state. Since it is degenerate, we have
to turn to degenerate perturbation theory. Since Sz

tot commutes with the
Hamiltonian, we can do this calculation separately in the sectors Sz

tot = −1,
0 or 1. Let us do it for Sz

tot = 1. A basis of the degenerate subspace is given
by

�n� = �S�⊗ ...�T1�⊗ ...⊗ �S�

where n is the position of the only dimer that is not a singlet but a �T1�. To
solve the problem to first order, we need to calculate �n�H(J ′)�m� and to
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diagonalize this matrix. Let us choose a specific J ′ bond. It can only couple
the states with triplets connected to this bond. So let us calculate

�T1�12 ⊗ �S�34 J ′ �S2 ⋅
�S3 �S�12 ⊗ �T1�34.

We have already calculated the e�ect of S+
2

, S−
2

and Sz

2
on �S�12. Let us

calculate the e�ect of the components of �S3 on �T1�34:

Sz

3 �T1�34 =
1
2
�T1�34, S+3 �T1�34 = 0,

S−3 �T1�34 = � ↓3↑2� =
1
√

2
(−�S�34 + �T0�34).

This implies that

�S2 ⋅
�S3 �S�12 ⊗ �T1�34 = −

1
2
�T0�12 ⊗ �T1�34 +

1
2

1
√

2
�T1�12 ⊗

1
√

2
(−�S�34 + �T0�34)

leading to

�T1�12 ⊗ �S�34 J ′ �S2 ⋅
�S3 �S�12 ⊗ �T1�34 = −

J ′
4

.

So the e�ect of the perturbation is to let the �T1� hop with amplitude −J ′�4.
The only subtlety is the sign of the hopping. It is easy to check that if

we had considered �S2 ⋅
�S4, the sign would be opposite, as well as for �S1 ⋅

�S3,
while it would be the same for �S1 ⋅

�S4. So, if dimers are coupled by two
bonds with total operator J ′( �S2 ⋅

�S3 +
�S1 ⋅
�S4), the total hopping amplitude

will be −J ′�2, while they are coupled by J ′( �S1 ⋅
�S3 +

�S2 ⋅
�S4), it will be J ′�2.

Let us come back to the square lattice. To keep track of the sign conven-
tion for the singlets, we draw an arrow going from site i to site j to represent
�Sij� (see Fig. 7.1). For the columnar state, the horizontal hoppings have
amplitude −J ′�4, while the vertical hoppings have amplitude J ′�2. The ef-
fective Hamiltonian to first order with matrix elements �n�H(J ′)�m� thus
corresponds to a tight binding problem defined on the lattice of the centers
of the bonds, with lattice parameters 2a resp. a horizontally and vertically,
with dispersion

‘�k = −
J ′
2

cos(2kxa) + J ′ cos(kya).

The bottom of the band is reached at kx = 0, ky = fi, with energy −3

2
J ′.

Finally, to first order in perturbation, the lowest energy in the branch
of the first excited state is equal to J − 3

2
J ′. Therefore, this theory predicts

that there is a gap as long as J ′ < 2

3
J . At that point, the gap closes, and
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the system must then develop long-range Néel order with gapless spin-wave
excitations.

This conclusion is qualitatively confirmed by Quantum Monte Carlo sim-
ulations, which have shown that the transition takes place at J ′�J � 0.5237.

7.2 Frustration and dimer singlets
Let us now see under which conditions frustration leads to ground states
built with dimer singlets. We will mostly discuss spin-1/2 systems.

7.2.1 Spin-1�2 triangle

H =
J

2
� �S2

tot −�

i

�S2

i � (7.1)

The ground state minimize �S2

Tot
. For 3 spin 1�2, the basics of angular

momentum addition leads to:
1
2
⊗

1
2
= 0⊕ 1 (7.2)

1
2
⊗ �

1
2
⊗

1
2
� =

1
2
⊗ 0⊕ 1

2
⊗ 1 = 1

2
⊕

1
2
⊕

3
2

(7.3)

There are two doublets (spin 1�2 states), hence 4 states that minimize the
energy. The ground state energy is

E0 =
J

2
�
3
4
− 3 × 3

4
� = −

3
4

J (7.4)

Let’s determine the ground state wave-function. It is actually easy to con-
struct ground state wave-functions. Indeed, consider the state

�Â� = �‡�
1
⊗
�↑↓� − �↓↑�
√

2
(7.5)

= �‡�
1
⊗ �S�

23
(7.6)

Since spins 2 and 3 form a singlet,

�S1 ⋅ �
�S2 +

�S3� �Â� = �S1 ⋅
�S23 �Â� = 0 (7.7)

This is most simply shown as follow:

�S1 ⋅ �
�S2 +

�S3� = Sz

1 (S
z

2 + Sz

3) +
1
2
[S+1 (S−2 + S−3 ) + S−1 (S+2 + S+3 )] (7.8)

87



Lecture notes on frustrated magnetism - Frédéric Mila

where all terms gives 0 when applied to �S�
23

.
Finally,

H �Â� = J �S2 ⋅
�S3 �Â� = −

3
4

J �Â� (7.9)

Now, one can construct 6 such states:

�‡i�⊗ �S�jk
, j ≠ k, j, k ≠ i, ‡i = ↑ or ↓

But there are only 4 ground states! Where is the problem? These states are
not orthogonal. Indeed,

�↑1�⊗ �S�23
+ �↑2�⊗ �S�31

+ �↑3�⊗ �S�12

=
1
√

2
(�↑↑↓� − �↑↓↑� + �↓↑↑� − �↑↑↓� + �↑↓↑� − �↓↑↑�) = 0

To construct the 4 ground states, one can choose states that correspond
to the two-dimensional representation of the C3 group (rotation by 2fi�3
around the z axis):

�L, ↑� =
1
√

3
��↑↑↓� + Ê �↑↓↑� + Ê2

�↓↑↑��

�R, ↑� =
1
√

3
��↑↑↓� + Ê2

�↑↓↑� + Ê �↓↑↑��

�L, ↓� =
1
√

3
��↓↓↑� + Ê �↓↑↓� + Ê2

�↑↓↓��

�R, ↓� =
1
√

3
��↓↓↑� + Ê2

�↓↑↓� + Ê �↓↑↑��

with Ê = e2ifi�3, and L, R stand for left and right.
So, for the spin 1�2 triangle, there is a clear tendency to form singlets in

the ground state.

Triangles with S > 1�2

The rules of the addition of angular momenta lead to:

S ⊗ S = 0⊕ 1⊕ ⋅ ⋅ ⋅ ⊕ 2S, S ⊗ (S ⊗ S) =?

If S is half-integer, S − 1

2
and S + 1

2
appear in the sequence 0, 1, . . . , 2S and

they both yield a doublet (a spin-1/2) when coupled to S in S ⊗ (S ⊗ S).
So the ground state is a 2-fold degenerate doublet.
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If S is integer, S appears in the sequence 0, 1, . . . , 2S, and it gives rise
to a unique singlet in S ⊗ (S ⊗ S). So the ground state in a non-degenerate
singlet.

However, the ground state is no longer a simple product state if S ≥ 1.
A state �‡1� ⊗ �S�23

is still an eigenstate, but its energy is that of a singlet
built out of two spins, −JS(S + 1). The ground state energy of the triangle
is, however, given by the minimum of �S2

tot:

J

2
� �S2

tot − 3S(S + 1)� =

�
�����
�
�����
�

J

2
�
3
4
− 3S(S + 1)� for half-integer spin

− J
3
2

S(S + 1) for integer spin

For integer spin, it is clear that the ground state energy is smaller that of
the product state �‡1�⊗ �S�23

. For half-integer spin,

EProduct −EGS =
J

2
�S(S + 1) − 3

4
�

�
����
�
����
�

= 0 for S =
1
2

> 0 for S >
1
2

The tendency to form dimer singlets on equilateral triangles is thus lim-
ited to spins 1/2.

7.2.2 J1 − J2 chain

Consider the spin-1/2 J1 − J2 chain, also known as the zigzag chain (see
Fig.7.2), defined by the Hamiltonian

H�
i

(J1
�Si ⋅
�Si+1 + J2

�Si ⋅
�Si+2)

Proposition

At the Majumdar-Ghosh point J1 = 2J2, the two states with a singlet on
every other J1 bond

�Âeven� = �

i even

�S�i i+1 and �Âodd� = �

i odd

�S�i i+1

are degenerate ground states.
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Figure 7.2: J1−J2 chain. Left: Representation as a zigzag chain. Thick lines:
J1 bonds; thin lines: J2 bonds. Right panels: Alternative representations at
the Majumdar-Ghosh point J1 = 2J2. Pairs of parallel J2 bonds connecting
the same points correspond to a J1 bond. Top right: Representation as
a sum of Hamiltonians centered on every other J1 bond. Bottom right:
representation as a sum of triangles with J2 bonds.

Proof

We will proceed in two steps: i) Prove that they are eigenstates; ii) Prove
that they minimize the energy.

Since the Hamiltonian is translationally invariant, and since one state
can be obtained form the other one by a translation by one lattice site, it
will have the same properties, and it is su�cient to prove these properties
for one state, say �Âeven�.

To prove i), and taking into account the fact that J1 = 2J2, it is conve-
nient to split the Hamiltonian as (see Fig.7.2, top right panel):

H = �
i even

hi, hi = 2J2
�Si ⋅
�Si+1 + J2

�Si−1 ⋅ (
�Si +
�Si+1) + J2

�Si+2 ⋅ (
�Si +
�Si+1).

Then, since in �Âeven� the spins �Si and �Si+1 are in a singlet state for i even,
the last two terms of all hi give zero, as in the triangle, and the first terms
are diagonal with energy −(3�4)2J2. So �Âeven� is an eigenstate of H with
energy −(3�4)J2N .

To prove ii), it is more convenient to write the Hamiltonian as a sum
over triangles (see Fig.7.2, bottom right panel):

H =�
i

h�(i), h�(i) = J2(
�Si ⋅
�Si+1 +

�Si ⋅
�Si+2 +

�Si+1 ⋅
�Si+1). (7.10)
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J

JD

Figure 7.3: Shastry-Sutherland model. The Hamiltonian can be seen as
a collection of square plaquettes with diagonal bonds (top right) or as a
collection of isosceles triangles with two bonds of strength J and one bond
of strength JD�2.

The ground state energy of h�(i) is −(3�4)J2. The variational principle
implies that

�H� ≥�
i

min�h�(i)� = −
3
4

J2N

Since �Âeven� is an eigenstate of H with energy −(3�4)J2N , it is a ground
state. And, as noticed above, �Âodd� must also be a ground state.

So, at the Majumdar-Ghosh point, the J1 − J2 chain has two degener-
ate ground states that are exact products of singlets. In these states, the
correlation length is equal to zero (spin-spin correlations do not extend be-
yond first neighbors), and one can expect the spectrum to be gapped. This
is true, but the proof is more subtle than one could naively imagine be-
cause the elementary excitations are domain walls between the two possible
ground states, not just a triplet moving in a sea of singlets. These exci-
tations carry a spin-1/2 and are often referred to as spinons. They must
be created in pairs, but they are deconfined, and the spectrum is a two-
spinon continuum. Still it can be shown that the dispersion of these spinons
is gapped, and accordingly the spectrum of the Majumdar-Ghosh chain is
gapped. More generally, the spin-1/2 J1 − J2 chain has been shown to be
dimerized with a gapped spectrum for J2�J1 > 0.2411...

For larger spins, the products of singlets are still eigenstates when J1 =

2J2, but there are not ground states, a consequence of the fact that for S ≥ 1,
the ground state of an equilateral triangle is not a product state involving
a dimer singlet.
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7.2.3 Shastry-Sutherland model

In 1981, Shastry and Sutherland have generalized this construction to two-
dimensions. The model is defined for arbitrary spin S, but for simplicity we
will concentrate on S = 1�2. It can be seen as a square lattice with some
diagonal bonds (see Fig.7.3).

Proposition

If we denote by D the set of diagonal bonds, the wave-function

�Âdimer� = �(ij)∈D
�S�ij

is an eigenstate.

Proof

If one denotes by J the couplings that build the square lattice, and by JD the
diagonals couplings, the Hamiltonian can be rewritten as a sum of plaquette
Hamiltonians defined on each plaquette with a diagonal bond JD and square
bonds J (see Fig.7.3, top right). Then, if the spins coupled by the diagonal
bond form a singlet, the other interactions give zero because they couple
a spin to a singlet, and the diagonal term contributes −S(S + 1)JD to the
energy. So, for spin-1/2, �Âdimer� is an eigenstate of energy −(3�4)JDN�2.

This energy does not depend on J . So clearly it cannot be the lowest
energy for any J . Indeed, if JD = 0, the ground state is the Néel state with
a negative ground state energy proportional to J while this state has zero
energy. However, if J = 0, the product of singlets �Âdimer� is clearly the
ground state. In our quest for ground states built out of dimer singlets, the
relevant question is the value of the ratio J�JD up to which �Âdimer� is the
ground state. Shastry and Sutherland found a lower bound to this critical
ratio using a simple variational argument. To this end, they have noticed
that the Hamiltonian can also be written as a sum of N isosceles triangles
with two bonds of strength J and one bond of strength JD�2 (see Fig.7.3,
bottom right). Since the triangle is no longer equilateral, a product state
involving a dimer singlet can minimize the energy. Indeed, denoting by 1
the site coupled to the other two by J and the other two sites by 2 and 3,
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the Hamiltonian of such a triangle can be written

h� =
J

2
� �S2

tot −
�S2

1 −
�S2

23
� +

JD

4
� �S2

23 −
�S2

2 −
�S2

3
�

=
J

2
�S2

tot + �
JD

4
−

J

2
� �S2

23 −
J

2
�S2

1 −
JD

4
� �S2

2 +
�S2

3
�

where �S23 =
�S2 +

�S3. The ground state energy will be reached when the
spins �S2 and �S3 form a singlet as long as the coe�cient of �S2

23
is positive,

i.e. as long as JD > 2J , or equivalently as long as J < JD�2. If that is the
case, the ground state energy of each triangle is equal to −(3�4)JD�2, and
since there are N triangles, the variational principle implies that the ground
state energy of H is bounded from below by −(3�4)JDN�2. This bound is
saturated by �Âdimer�, which shows that this wave function is a ground state
at least as long as J < JD�2. Numerical investigations of this model have
shown that �Âdimer�, which is always an eigenstate of H, actually remains
the ground state as long as J�JD < 0.675.

The variational argument has been extended by Shastry and Sutherland
to arbitrary spin S, leading to the conclusion that the product of singlets
on the diagonal bonds is the ground state as long as JD > 2(S + 1)J , or
equivalently J < JD�[2(S + 1)].

In that case, the ground state is unique. Elementary excitations are
thus constructed as in the dimerized Heisenberg model by promoting a local
singlet into a triplet, and the spectrum remains gapped as long as the ground
state is a product of singlets, as has been shown by numerical investigations
of the model.

7.3 Resonance between valence-bond singlets

In situations where several dimer coverings are in competition, the energy is
sometimes minimized by a resonance between products of dimer singlets. In
this section, we demonstrate this mechanism in the case of four spins. The
possibility to stabilize resonating valence-bond (RVB) phases is discussed in
the next chapter.

7.3.1 Tetrahetron

Let us start by deriving the ground state of a tetrahedron, or equivalently
of a square plaquette with diagonal bonds of equal strength (see Fig. 7.4).
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Since this is a complete graph, the Hamiltonian can be written:

H =
J

2
�S2

tot −
J

2

4

�

i=1
�S2

i

Let us first discuss the general case of spins S. Since S⊗S = 0⊕1⊕⋅ ⋅ ⋅⊕2S,
(S⊗S)⊗(S⊗S) contains 2S+1 singlets. The ground state is thus a (2S+1)-
fold degenerate singlet.

It is easy to construct ground states. For instance, the product of two
dimer singlets constructed out of di�erent pairs is a singlet, hence a ground
state. This leads in general to three ground states since there are three ways
of partitioning four sites into two pairs.

For S = 1

2
, since there are 21

2
+ 1 = 2 singlet states, these three states

cannot be independent. And indeed,

�S�
23
⊗ �S�

14
+ �S�

12
⊗ �S�

43
− �S�

13
⊗ �S�

24
(7.11)

=
1
2
[�↑↑↓↓� + �↓↓↑↑� − �↑↓↑↓� − �↓↑↓↑� (7.12)

+ �↑↓↑↓� + �↓↑↓↑� − �↑↓↓↑� − �↓↑↑↓� (7.13)
− �↑↑↓↓� − �↓↓↑↑� + �↑↓↓↑� + �↓↑↑↓� ] = 0 (7.14)

So the ground state manifold of a spin-1/2 tetrahedron is spanned by
two products of dimer singlets.

7.3.2 Square plaquette

This situation with degenerate products of singlet wave functions in the
ground state should be contrasted to less frustrated situations. For this, let
us consider the spin-1/2 J1 − J2 plaquette (see Fig. 7.4):

H =J1 �
�S13 ⋅

�S24� +
J2

2
� �S2

24 −
�S2

2 −
�S2

4
� +

J2

2
� �S2

13 −
�S2

1 −
�S2

3
�

=
J1

2
� �S2

tot −
�S2

13 −
�S2

24
� +

J2

2
� �S2

24 −
�S2

2 −
�S2

4
� +

J2

2
� �S2

13 −
�S2

1 −
�S2

3
�

=
J1

2
�S2

tot +
J2 − J1

2
� �S2

13 +
�S2

24
� −

J2

2 �
i

�S2

i

The ground state always has Stot = 0, but depending on the sign of
J2 − J1, S13 and S24 will be minimal or maximal:

• J2 < J1: S13 = S24 = 1
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3

1 21

4

2

34

Figure 7.4: Left: Square plaquette with diagonal couplings equal to the side
ones. It is equivalent to a tetrahedron and is thus a complete graph (all
sites are coupled to each other). Right: Square plaquette with side bonds
J1 (solid lines) and diagonal bonds J2 (dashed lines). The numbering of the
sites corresponds to that used in the main text.

• J2 > J1: S13 = S24 = 0

• J2 = J1: S13 = S24 = 0 or 1

For the simple square plaquette (J2 = 0), the Hamiltonian reduces to

H =
J1

2
[ �S2

tot −
�S2

13 −
�S2

24]

The ground state is obtained for S13 = S24 = 1, and its energy is equal to
−2J .

Now, to construct a singlet of two spins 1, one can start from the state
�S = 2, Sz

= 2� = �11� and apply S−tot to get �S = 2, Sz
= 1� ∝ �10� + �01� and

�S = 2, Sz
= 0� ∝ �1 − 1� + � − 11� + 2�00�. In the sector Sz

tot = 1, the state
orthogonal to �S = 2, Sz

= 1� is �S = 1, Sz
= 1� ∝ �10� − �01�, from which we

obtain �S = 1, Sz
= 0� ∝ �1 − 1� − � − 11� by application of S−tot. Finally, the

singlet is the state orthogonal to �S = 2, Sz
= 0� and �S = 1, Sz

= 0� in the
sector Sz

tot = 0. It is given by �S = 0, Sz
= 0�∝ �1 − 1� + � − 11� − �00�.

So the ground state of the square plaquette is, up to a normalization
constant,

� ↑↑↓↓� + � ↓↓↑↑� −
1
2
(� ↑↓↑↓� + � ↑↓↓↑� + � ↓↑↑↓� + � ↓↑↓↑�.

It is easy to check, by expanding the corresponding singlets, that this wave
function is equal, up to an overall factor, to

�S�12 ⊗ �S�34 + �S�14 ⊗ �S�23.

So the ground state can be thought of as a resonance between dimer singlet
coverings. Note that the ground state energy, −2J , is smaller than that of

95



Lecture notes on frustrated magnetism - Frédéric Mila

each component, which is the sum of the energies of two singlets and is equal
of −(3�2)J . There is an energy gain due to the resonance.

It has been suggested in 1973 by Anderson and Fazekas that this con-
struction can be generalized to more complicated lattices, and that some
systems might have a ground state that corresponds to a resonance between
dimer singlet coverings, a state they named a resonating valence bond (RVB)
state. This possibility is explored in the next chapter in the context of sim-
pler models known as Quantum Dimer Models.
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