
Chapter 6

Spin waves and quantum
fluctuations in Heisenberg
magnets

For quantum spins, it is well known that, except in the very special case of
ferromagnetic order, there are fluctuations even at zero temperature. When
the classical ground state is unique, these fluctuations reduce the order pa-
rameter but rarely destroy it altogether in non-frustrated systems except
in one dimension. In the presence of frustration, these fluctuations play a
much more important role. First of all, they often select among the classical
ground states through the zero-point energy, an e�ect analogous to that of
thermal fluctuations and known as quantum order by disorder. Secondly,
the reduction of the order parameter is in general significantly enhanced by
the competition between exchange channels, often leading to the destruction
of the order parameter even in two and three dimensional models, opening
the way to quantum spin liquids.

6.1 Holstein-Primako� expansion

For quantum spins, the components of �Si are operators that satisfy the
SU(2) algebra:

�Sx

i , Sy

i
� = iSz

i (�h = 1) (6.1)

and the other two commutation relations obtained by circular permutations
of x, y and z. The magnitude S of the spin fixes the value of �S2 according
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Figure 6.1: Definition of the local reference frame.

to:
�S2
= S(S + 1).

S can take all half-integer and integer values S = 1�2, 1, 3�2, etc.
The Hamiltonian can be written as:

H = �(i,j)
Jij
�Si ⋅
�Sj = �(i,j)

Jij �S
x

i Sx

j + Sy

i
Sy

j
+ Sz

i Sz

j � (6.2)

or
H = �(i,j)

Jij �
1
2
�S+i S−j + S−i S+j � + Sz

i Sz

j �

with S+
i
= Sx

i
+ iSy

i
and S−

i
= Sx

i
− iSy

i
. These ladder operators increase or

decrease the quantum number along z by 1 according to

S+�S, m� =
�

S(S + 1) −m(m + 1) �S, m + 1�
S−�S, m� =

�

S(S + 1) −m(m − 1) �S, m − 1�,

where �S, m� is the eigenstate of Sz of eigenvalue m.
If a classical ground state is obtained with the spins �Si parallel to ẑi , a

natural guess for the quantum ground state is the state:

�„1�⊗ �„2�⊗ ⋅ ⋅ ⋅ ⊗ . . . (6.3)

where �„i� is an eigenstate of �Si ⋅ ẑi with maximal eigenvalue:

�Si ⋅ ẑi �„i� = S �„i� . (6.4)
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However, this state is in general not an eigenstate of H. Indeed, let us
consider 2 spins �Si and �Sj , and let us take the y and z component in the
plane of the two spins (see Fig. 6.1). The scalar product takes the form

�Si. �Sj = Sx

i Sx

j + Syi
i

S
yj

j
ŷi.ŷj + Szi

i
S

zj

j
ẑi.ẑj + Syi

i
S

zj

j
ŷi.ẑj + Szi

i
S

yj

j
ẑi.ŷj

or, defining the angle ◊i by

ẑi = ẑ cos ◊i + ŷ sin ◊i, ŷi = −ẑ sin ◊i + ŷ cos ◊i,

the following form:

�Si. �Sj = Sx

i Sx

j + (S
yi
i

S
yj

j
+ Szi

i
S

zj

j
) cos(◊i − ◊j) + (S

yi
i

S
zj

j
− Szi

i
S

yj

j
) sin(◊i − ◊j).

The state �„i� ⊗ �„j� is not an eigenstate of �Si. �Sj because of the ladder
operators. The only exception is the ferromagnetic case ◊i = ◊j . In that
case, the last term drops, and the scalar product takes the usual form
�Si. �Sj =

1

2
�S+

i
S−

j
+ S−

i
S+

j
� + Sz

i
Sz

j
. Since the projection of the spin along

the quantization axis is maximum in �„i� and �„j�, S+
i
�„i� = S+

j
�„j� = 0,

and the ladder operators do not a�ect the states. In all other cases, ladder
operators couple �„i�⊗ �„j� to other states.

For simplicity, let us concentrate on coplanar ground states and let us
assume that the spins lie in the plane perpendicular to x. As discussed in
the previous chapter, the angles ◊i must satisfy the minimization condition

�

i,j

Jij sin(◊i − ◊j)

for the configuration defined by the ◊i’s to be a ground state. Since we want
to discuss fluctuations around a state where the projection of the spin �Si

along zi is maximal and equal to S, we can write Szi
i
= S − ”Szi

i
and assume

that ”Szi
i

is small. The last term of �Si. �Sj given by the S contribution to Szi
i

drops because of the minimization condition when summing over the lattice,
leading to

H � �(i,j)
Jij[S

x

i Sx

j + (S
yi
i

S
yj

j
+ Szi

i
S

zj

j
) cos(◊i − ◊j)]. (6.5)

This form of the Hamiltonian is a convenient starting point to treat quantum
fluctuations around coplanar, non-collinear ground states. We will just have
to check that the terms that we have dropped are indeed negligible.
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To treat quantum fluctuations, we perform a 1�S expansion starting from
the Holstein-Primako� representation of spins:

�
�������
�
�������
�

Szi
i
= S − a†

i
ai

S+
i
=
√

2S

�

1 − a
†
i ai

2S
ai

S−
i
=
√

2Sa†

i

�

1 − a
†
i ai

2S

(6.6)

where ai, a†

i
are bosonic operators. Note that the operators S+

i
and S−

i
are

defined with respect to the local axis: S+
i
= Sx

i
+ iSyi

i
and S−

i
= Sx

i
− iSyi

i
.

The first non trivial terms in an expansion in 1�S are proportional to
S. Indeed, the terms we have dropped when deriving Eq. 6.5 are only
O(S1�2

), and the other terms are O(1). The terms proportional to S can be
simply obtained by dropping the square roots and only keeping the terms
proportional to S in Szi

i
S

zj

j
. This leads to a quadratic Hamiltonian in terms

of bosonic operators. Indeed, to this order,

Sx

i Sx

j =
1
4
(S+i + S−i )(S+j + S−j ) = S

2
(a†

i
aj + a†

j
ai + aiaj + a†

i
a†

j
),

Syi
i

S
yj

j
=

1
4
(S+i − S−j )(S+i − S−j ) = S

2
(a†

i
aj + a†

j
ai − aiaj − a†

i
a†

j
)

and

Szi
i

S
zj

j
= S2

− S(a†

i
ai + a†

j
aj)

leading to the Hamiltonian:

H = �(i,j)
Jij[S

2 cos(◊i − ◊j) − S(a†

i
ai + a†

j
aj) cos(◊i − ◊j)

+
S

2
(a†

i
aj + a†

j
ai)(1 + cos(◊i − ◊j)) +

S

2
(aiaj + a†

i
a†

j
)(1 − cos(◊i − ◊j)].

The diagonalization of this Hamiltonian can be done explicitly if it can
be decoupled into a sum of independent terms after a Fourier transform.
Before we proceed with the diagonalization, let us look at two interesting
examples where this is the case.
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Helical states

In that case, the Hamiltonian takes the form

H =
1
2�

i

��Rn

J �Rn
[S2 cos( �Q. �Rn) − S(a†

i
ai + a†

i+ �Rn
a

i+ �Rn
) cos( �Q. �Rn)

+
S

2
(a†

i
a

i+ �Rn
+ a†

i+ �Rn
ai)(1 + cos( �Q. �Rn))

+
S

2
(aiai+ �Rn

+ a†

i
a†

i+ �Rn
)(1 − cos( �Q. �Rn)].

Replacing cos( �Q. �Rn) by [exp(i �Q. �Rn) + exp(−i �Q. �Rn)]�2 and introducing
Fourier transforms of the bosonic operators:

a†�k =
1
√

N
��k

ei�k⋅�ria†

i
, a†

i
=

1
√

N
��k

ei�k⋅�ria†�k, (6.7)

this Hamiltonian can be rewritten after some algebra as

H =
NS2

2
J �Q +��k

�B�ka†�ka�k +
1
2

A�k �a†�ka†

−�k + a�ka−�k��

with
�
�����
�
�����
�

A�k =
S

2
�J�k −

1
2
(J�k+ �Q + J�k− �Q)�

B�k =
S

2
�J�k +

1
2
(J�k+ �Q + J�k− �Q) − 2J �Q�

J1 − J2 model on square lattice

For the J1 − J2 model on the square lattice, as we saw earlier, there is a
continuous degeneracy defined by the angle ◊ between the two Néel ordered
J2 sublattices so that cos(◊i − ◊j) is equal to cos ◊ on horizontal J1 bonds,
− cos ◊ on vertical J1 bonds, and −1 on J2 bonds. The Hamiltonian of Eq.
6.5 can thus be written into a form that keeps the periodicity of the square
lattice:

H =�

i

[
J1

2 ��·x

Sx

i Sx

i+�·x
+ cos ◊(Sy

i
Sy

i+�·x
+ Sz

i Sz

i+�·x
)

+
J1

2 ��·y

Sx

i Sx

i+�·y
− cos ◊(Sy

i
Sy

i+�·y
+ Sz

i Sz

i+�·y
)

+
J2

2 ��·2

(Sx

i Sx

i+�·2 − Sy

i
Sy

i+�·2
− Sz

i Sz

i+�·2)],
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where the sums over �·x, �·y and �·2 run over vectors joining horizontal first
neighbours, vertical first neighbours, and second neighbours respectively,
and where we have dropped the explicit reference to the local axis in Sy

i
and

Sz

i
for clarity.
Expressing the operators in terms of Holstein-Primako� bosons, keeping

terms of order S only, and performing a Fourier transform, this Hamiltonian
takes the form

H = −2NS2J2 +��k
�B�ka†�ka�k +

1
2

A�k �a†�ka†

−�k + a�ka−�k��

with
�
�����
�
�����
�

A�k = S �−2J1(cos2 ◊

2
cos kx + sin2 ◊

2
cos ky) − 4J2 cos kx cos ky�

B�k = S �2J1(sin2 ◊

2
cos kx + cos2 ◊

2
cos ky) + 4J2�

Summary

Quite generally, if the fluctuations can be described with one site per unit
cell, after a Fourier transform the Hamiltonian is of the form:

H = EclassS
2
+��k

�B�ka†�ka�k +
1
2

A�k �a†�ka†

−�k + a�ka−�k��

where the classical energy Eclass is the ground state energy for spins of length
1, and where the coe�cients B�k and A�k are of order S.

6.2 Bogoliubov transformation

If a bosonic Hamiltonian is diagonal, H = ∑�k Ê�kb†�kb�k, it satisfies

�H, b�k� = Ê�k �b†�kb�k, b�k� = −Ê�kb�k. (6.8)

So, to diagonalize a Hamiltonian of the form

H = EclassS
2
+��k

�B�ka†�ka�k +
1
2

A�k �a†�ka†

−�k + a�ka−�k��

we look for operators –�k = u�ka�k + v�ka†

−�k satisfying the equation

�H, –�k� = −Ê�k–�k. (6.9)
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Now
�H, a�k� = −

1
2
(A�k +A−�k)a†

−�k −B�ka�k
and

[H, a†

−�k] =
1
2
�A�k +A−�k�a�k +B�ka†

−�k
so that

�H, –�k� = u�k �−A�ka†

−�k −B�ka�k� + v�k �A�ka�k +B�ka†

−�k�
leading to the equation

u�k �−A�ka†

−�k −B�ka�k� + v�k �A�ka�k +B�ka†

−�k� = −Ê�k �u�ka�k + v�ka†

−�k� .

To satisfy this equation, the coe�cients of a�k resp. a†

−�k must be the same
on both sides, leading to:

�
−B�ku�k +A�kv�k = −Ê�ku�k
−A�ku�k +B�kv�k = −Ê�kv�k ⇒ �

�−B�k + Ê�k�u�k +A�kv�k = 0
−A�ku�k + �B�k + Ê�k� v�k = 0 (6.10)

(6.11)

This homogeneous system has a non-zero solution if its determinant van-
ishes, leading to

Ê2�k −B2�k +A2�k = 0⇒ Ê�k = ±
�

B2�k −A2�k.

For the operators –�k, –†�k to be bosonic, they must satisfy [–�k, –†�k] = 1, which
implies u2�k − v2�k = 1. But

u2�k − v2�k = u2�k
2Ê�k

B�k + Ê�k
Now, B�k must be positive. Otherwise the spectrum would not be bounded
from below. Then, since �Ê�k� < B�k , the frequency Ê�k must be positive, and
the final solution is given by

Ê�k =
�

B2�k −A2�k.

The coe�cient u�k and v�k, which are only defined up to a sign, can be chosen
as

u�k =
�

�
��

B�k + Ê�k
2Ê�k

, v�k = sign(A�k)
�

�
��

B�k − Ê�k
2Ê�k

.
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The final form of the Hamiltonian, including the constant, can be obtained
by expressing the original operator a�k, a†�k in terms of the new ones:

�
��
�
��
�

a�k = u�k–�k − v�k–†

−�k
a†

−�k = u�k–†

−�k − v�k–�k
and by injecting these expressions into the original Hamiltonian. After some
algebra, the final result is:

H = EclassS
2
−

1
2��k

B�k +
1
2��k

Ê�k +��k
Ê�k–†�k–�k

Now, −1

2
∑�k B�k = EclassS. This can be shown for instance by calculating the

expectation value of the Hamiltonian before and after the Fourier transform
in a state with one boson of each wave-vector. In such a state, �a†�ka�k� = 1
and �a†

i
aj� = ”ij . In the expectation value in real space, the expression is

the same as that of the classical energy with the coe�cient S2 replaced by
S2
− 2S while in Fourier space the expectation value is EclassS

2
+∑�k B�k.

Finally, the result can be put into the form:

H = EclassS(S + 1) +��k
Ê�k �–†�k–�k +

1
2
� .

The operators –†�k, –�k are called Bogoliubov operators, and the excitations
are called spin-waves or magnons.

Helical state

For a helical state of pitch vector �Q, the Hamiltonian takes the specific form

H =
NJ �Q

2
S(S + 1) +��k

Ê�k �–†�k–�k +
1
2
� .

and the dispersion relation of the spin waves is given by

Ê�k = S

�

(J�k − J �Q) �
1
2
(J�k+ �Q + J�k− �Q) − J �Q�.

It vanishes at �k = 0 and �k = �Q.
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6.3 Order by disorder

Since the frequencies Ê�k are positive, the ground state corresponds to the
vacuum of –�k, and the ground state energy is given by:

E0 = EclassS(S + 1) + 1
2��k

Ê�k

If the ground state is degenerate, the first term is the same for all ground
states, but not the second one. Indeed the spin-wave spectrum depends
on the ground state around which fluctuations take place. This second
term, which is always positive, is often referred to as the zero-point energy.
Note that the total correction to the classical energy, which is given by
−

1

2
∑�k B�k + 1

2
∑�k Ê�k, is negative, as it should since quite generally quantum

fluctuations reduce the energy.
Minimizing the zero point energy can thus be expected, in close analogy

to thermal fluctuations, to select among the ground states, an e�ect also
known as quantum order by disorder.

Connection to thermal fluctuations

Quantum fluctuations and thermal fluctuations are related but not strictly
equivalent. In the case of coplanar states, the coe�cients entering the clas-
sical and quantum expansions are related by:

A�k =
S

2
(—�k − –�k), B�k =

S

2
(—�k + –�k)

so that

B2�k −A2�k =
S2

2
–�k—�k

implying that

��k
ln Ê�k =

1
2

N(2 ln S − ln 2) + 1
2��k
(ln –�k + ln —�k).

So, thermal order by disorder corresponds to minimizing ∑�k ln Ê�k while
quantum order by disorder corresponds to minimizing ∑�k Ê�k. Since the
logarithm is an increasing function, the same state is often selected, but this
does not need to be the case. A counter example is provided by SU(3) spins
on the square lattice.

77



Lecture notes on frustrated magnetism - Frédéric Mila

J1 − J2 model

For the J1 − J2 model on the square lattice for J2 > J1�2, ∑�k Ê�k is minimal
for ◊ = 0 and fi: the two helical states are selected, as for thermal order by
disorder.

6.4 Order parameter
The other important e�ect of quantum fluctuations is to reduce the local
magnetization in the ẑi direction from the value S. Indeed, except for ferro-
magnets, the ground state has components with smaller values of �Si ⋅ ẑi. In
a system where all sites are equivalent, this is easily quantified by defining
an order parameter related to the local magnetization by:

m =
1
N
�

i

�Szi
i
� = S −

1
N
�

i

�a†

i
ai� = S −

1
N
��k
�a†�ka�k�

Now,

a†�ka�k = �u�k–†�k − v�k–−�k��u�k–�k − v�k–†

−�k�
= u2�k–†�k–�k + v2�k–†

−�k–−�k + v2�k − u�kv�k �–†�k–†

−�k + –−�k–�k� .

In the ground state, �–†�k–†

−�k� = �–−�k–�k� = �–†�k–�k� = 0, leading to the following
expressions for the expectation value

�a†�ka�k� = v2�k =
B�k − Ê�k

2Ê�k
and for the order parameter:

m = S −
1
N
��k

B�k − Ê�k
2Ê�k

.

The last term may be approximated by an integral:

1
N
��k

B�k − Ê�k
2Ê�k

�
1
(2fi)2

� dkx� dky

B�k − Ê�k
2Ê�k

The persistence of magnetic order depends on the magnitude of this integral.
If it is larger than S, the basic assumption of the theory, the presence of
magnetic order with fluctuations around that order, breaks down, and the
ground state must be of a completely di�erent nature.
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Quite generally, the dispersion Ê�k vanishes linearly at one or several
points in the Brillouin zone, as shown e.g. by the dispersion in a helical
state. In one dimension, the integral giving the correction to the magneti-
zation diverges logarithmically, and there can be no magnetic order at zero
temperature (except of course ferromagnetic order since there are no fluctua-
tions in that case). As we will see in the next chapters, the zero-temperature
properties are radically di�erent from those of ordered magnets and depend
dramatically on the value of the spin S. For half-integer spins, the cor-
relations decay algebraically, and the excitation spectrum is gapless, but
elementary excitations are domain walls and not spin waves. For integer
spins, the correlations decay exponentially and the spectrum is gapped.

In two and thee dimensions, the integral is convergent as long as the
dispersion only vanishes at isolated points. However, because of frustration,
it can happen that the spectrum becomes soft along lines or surfaces. This
can for instance be expected if there is an infinite number of helical ground
states with pitch vectors forming a line in the Brillouin zone: Fluctuations
from one helical state with a wave-vector equal to the pitch vector of another
ground state should occur at zero energy.

6.4.1 J1 − J2 model on the square lattice
As long as J2 < J1�2, the ground state is the Néel state with pitch vector
(fi, fi). However, for J2 = J1�2, we saw that there is an infinite number of
ground states with pitch vectors of the form (kx, fi), 0 ≤ kx ≤ fi, or (fi, ky),
0 ≤ ky ≤ fi. So we expect the spectrum in the Néel phase to become soft
along these lines when J2 → J1�2. Indeed, using the general formula for the
dispersion in a helical magnet, the spectrum can be easily shown to be given
by:

Ê�k = S
�

[4(J1 − J2) + 4J2 cos kx cos ky]
2 − [2J1(cos kx + cos ky)]

2

For J2 = J1�2, this reduces to

Ê�k = 2J1S
�

(1 + cos kx)(1 + cos ky)(1 − cos kx)(1 − cos ky),

or, more simply,
Ê�k = 2J1S � sin kx� � sin ky �.

The spectrum indeed vanishes along the lines kx = fi and ky = fi, as expected.
It also vanishes along the lines kx = 0 and ky = 0, but this is somewhat
accidental. It is a consequence of the symmetry Ê �Q−�k = Ê�k when the pitch
vector �Q is equal to (fi, fi).
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Figure 6.2: Phase diagram of the J1 − J2 model on the square lattice ac-
cording to spin-wave theory (after Chandra and Douçot, 1988). The region
above the lines is predicted to be disordered. – stands for the ratio J2�J1.

In any case, the presence of a line of zeroes implies that the integral giving
the quantum correction to the order parameter diverges in two-dimensions,
destroying the order whatever the value of S. Starting from the standard an-
tiferromagnetic model with J2 = 0, and increasing J2, the spectrum becomes
progressively softer upon approaching the point J2 = J1�2. Accordingly, the
correction to the magnetization increases, and for any value of S there will
be a critical value of J2�J1 at which the correction to the magnetization
is equal to S. Beyond that ratio, this theory predicts that long-range or-
der is destroyed by quantum fluctuations. The situation is the same when
approaching the point J2 = J1�2 from above. The dispersion in the two
degenerate helical states of wave vectors (0, fi) and (fi, 0) only has zeroes
at four points, (0, 0), (0, fi), (fi, 0) and (fi, fi), and the correction to the
order parameter remains finite as long as J2 > J1�2. But again it diverges
in the limit J2 → J1�2. As a consequence, in the plane (1�S, J2�J1), there
is a region encompassing all ratios J2�J1 when 1�S is large, and extending
to the point J2 = J1�2 when 1�S → 0, where quantum fluctuations destroy
long-range order. For any physical value of S, this theory thus predicts
that there is a parameter range around J2 = J1�2 where long-range order is
destroyed (see Fig. 6.2).
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6.4.2 Kagome
For the planar configurations, one can show that there are three branches
of spin waves given by:

Ê1(
�k) = 0 (6.12)

Ê2,3(
�k) = JS

√

2 �sin2 �k ⋅ �u1 + sin2 �k ⋅ �u2 + sin2 �k ⋅ �u3�
1�2 (6.13)

where �u1 is along x, while �u2 and �u3 are obtained from �u1 by a rotation
around z by 2fi�3 and 4fi�3 respectively.

The presence of a zero mode that extends over the entire Brillouin zone
again leads to a divergence of the correction to the order parameter. This
harmonic theory thus predicts that the kagome antiferromagnet on the
kagome lattice is disordered for any spin S.

6.4.3 Beyond the quadratic theory
The theory developed in this chapter is based on the first relevant order
in a 1�S expansion which leads to a simple quadratic bosonic Hamiltonian
that can be diagonalized using a Bogoliubov transformation. As long as the
order is only reduced but not destroyed by these harmonic fluctuations, one
can expect this theory to be valid. When however this theory predicts that
magnetic order is destroyed, one needs to go beyond this approach.

One obvious thing to try is to push the expansion to higher order in 1�S.
This is very cumbersome and will not be presented here. The main outcome
in cases where this has been carried out is that the region where quantum
fluctuations destroy long-range order is modified, sometimes reduced, but
usually not suppressed altogether. For instance, for kagome, the spin-1/2
case is predicted to remain disordered, but long-range order is restored for
large spins.

However, the example of one dimension suggests that more radical things
could occur. This raises the main question of frustrated quantum mag-
netism: Which kind of ground state can replace magnetic long-range order?
On pure logical grounds, one can distinguish three possibilities:

1. The SU(2) rotational symmetry is broken, but there is no magnetic
order. In that case, one generally talks of spin nematic order since the
order parameter is a tensor of higher order, as in liquid crystals.

2. SU(2) is not broken. By analogy with the classical correlations, and
bearing in mind the one-dimensional case, one can think a priori of
two possibilities:
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• Correlations are algebraic, and the spectrum is gapless.
• Correlations decay exponentially, and the spectrum is gapped.

All possibilities have been actively studied. They are discussed in the next
chapters.
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