
Chapter 5

Thermal fluctuations of
classical Heisenberg magnets

For Heisenberg models that possess long-range order at zero temperature,
thermal fluctuations tend to reduce magnetic order. In three dimensions,
long-range order is destroyed above a critical temperature Tc > 0, while
in two dimensions the Mermin-Wagner theorem shows that there cannot
be long-range order at any temperature T > 0. In these circumstances, one
might be tempted to believe that, in frustrated models for which the classical
ground is infinitely degenerate, hence disordered, thermal fluctuations can
only make things worse, and that such systems will remain disordered at
any temperature. This conclusion turns out to be completely wrong. Indeed,
Heisenberg systems have low-energy configurations around any ground state,
and thermal fluctuations induced by these low-energy configurations must
be taken into account when minimizing the free energy. But di�erent states
that have the same energy can have very di�erent low-energy configurations
surrounding them. As we shall see, this implies that a selection mechanism
can be induced by thermal fluctuations, potentially leading to some form
of order, an e�ect known as "order by disorder". In 3D, this can be true
long-range order persisting up to a critical temperature Tc > 0, as in non-
frustrated models whereas, for the 2D models that we will consider in this
chapter, long-range order will strictly speaking only emerge in the limit T →
0+. Still, if a selection mechanism operates, the low temperature properties
are expected to be similar to those of a non-frustrated Heisenberg model,
with a correlation that diverges exponentially with the inverse temperature.
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Figure 5.1: Definition of the local reference frame for a coplanar magnet.

5.1 Expansion around coplanar ground states
The basic idea to expand the energy around an ordered where the spin is
given by �Si at site i is to express the scalar products that enter the energy in
terms of spin components Sxi

i
, Syi

i
, Szi

i
in a local reference frame (x̂i, ŷi, ẑi)

such that �Si is parallel to ẑi, and to expand in the components perpendicular
to ẑi. For simplicity, let’s see how this works for coplanar states. One can
choose a common axis, say x̂i = x̂, and describe the ground state with local
axes ŷi and ẑi rotated by ◊i around x̂ (see Fig.5.1). Then, the spin at site i
can be expressed as �Si = Sx

i x̂ + Syi
i

ŷi + Szi
i

ẑi

and the scalar product takes the form
�Si. �Sj = Sx

i Sx
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or, since
ẑi = ẑ cos ◊i + ŷ sin ◊i, ŷi = −ẑ sin ◊i + ŷ cos ◊i,

the following form in terms of the angles ◊i,
�Si. �Sj = Sx

i Sx

j + (Syi
i

S
yj

j
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i
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j
) cos(◊i − ◊j) + (Syi
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j
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S
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j
) sin(◊i − ◊j).

Now, we want to describe fluctuations around a state where Szi
i
� 1. So we

write

�Si = ���
xi

yi�
1 − x2

i
− y2

i

��� (5.1)
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in the local basis, and we expand the square root in xi and yi:
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to get
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This expression contains a term linear in yi of the form yi sin(◊i − ◊j),
leading to linear terms in the energy of the form

yi�
j

Jij sin(◊i − ◊j).
Now, if we expand around a classical ground state, the energy has to be

minimal. But the energy is given by

E = 1
2�

i,j

Jij
�Si. �Sj = 1

2�
i,j

Jij cos(◊i − ◊j).
The minimisation of this energy with respect to the angles ◊j leads to

ˆE

ˆ◊i

= −1
2�

i,j

Jij sin(◊i − ◊j) = 0.

So the coe�cients of the linear terms vanishes, and up to order 2 we are left,
up to a constant, with a quadratic expression in xi and yi:

�Si. �Sj � Sx
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Let us look at two specific examples.
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5.1.1 Helical states
For a helical state of vector �Q, the energy can be written

E = 1
2�

i

��Rn

J �Rn
[Sx

i Sx

i+ �Rn
+ (Sy

i
Sy

i+ �Rn
+ Sz

i Sz

i+ �Rn
) cos �Q. �Rn]

or, after expanding it to second order in the transverse components of the
spins,

E = 1
2�

i
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2
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Let’s introduce Fourier transforms:

x�q = 1√
N
�
i

x�rie
i�q�ri , xi = 1√

N
��q e−i�q⋅�rix�q
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Then it is easy to show that
1
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where we have used cos �Q. �Rn = (ei �Q �Rn + e−i �Q �Rn)�2.
Finally, the energy can be written

E = N

2
J �Q + 1

2��q (–�q x�qx−�q + —�q y�qy−�q)
with

–�q = J�q − J �Q, —�q = J�q+ �Q + J�q− �Q
2

− J �Q

58



CHAPTER 5. THERMAL FLUCTUATIONS OF CLASSICAL
HEISENBERG MAGNETS

2

θ

J
J1

Figure 5.2: One of the ground states of the J1 − J2 model on the square
lattice when J2 > J1�2.

5.1.2 J1 − J2 model on the square lattice
In this section, we consider the J1 − J2 model on the square lattice for
J2 > J1�2. In this parameter range, two helical states with wave-vectors(fi, 0) and (fi, 0) minimize the classical energy, but one can combine them
because the pitch vectors di�er by half a vector of the reciprocal lattice,
leading to a continuous degeneracy defined by the angle ◊ between the two
J2 sublattices so that cos(◊i − ◊j) is equal to cos ◊ on horizontal J1 bonds,− cos ◊ on vertical J1 bonds, and −1 on J2 bonds (see Fig. 5.2). The resulting
energy in terms to xi and yi is periodic with one site per unit cell so that a
simple Fourier transform can be performed, leading after some algebra to a
similar expression

E = −2J2N + 1
2��q (–�q x�qx−�q + —�q y�qy−�q)

with

�–�q = 2J1(cos qx + cos qy) + 4J2 cos qx cos qy + 4J2

—�q = 2J1 cos qx cos ◊ − 2J1 cos qy cos ◊ − 4J2 cos qx cos qy + 4J2

5.1.3 Free energy
In the case where there are several helical states, or a continuous family of
states as for the J1−J2 model with J2 > J1�2, that minimize the ground state
energy, one needs to compare the free energies calculated from fluctuations
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around these states to find out which one is minimal. The free energy is
defined by F = −kBT ln Z, with

Z = � e−—E({xi,yi})�
i

dxidyi

= e−—E0 � �
i

dxie
−—

2 ∑�q –�q �x�q �2 � �
i

dyie
−—

2 ∑�q —�q �y�q �2

where E0 is the ground-state energy given by E0 = N

2
J �Q for helical states

and E0 = −2J2N for the J1 − J2 model.
To calculate these integrals, we need to change the variables of integra-

tion. Let’s concentrate on the integral over the xi variables for a moment.

Proposition

� �
i

dxie
−—

2 ∑�q –�q �x�q �2

= 2N�2� ��q
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dIm(y�q) e−—∑′�q –�qIm(x�q)2

where ∏�q ′ and ∑�q ′ correspond to products and sums over half the wave-
vectors so that, for two vectors �q1 and �q2 entering the product or the sum,�q1 ≠ −�q2.

Proof

Since xi is real, x−�q = x��q . So x�qx−�q = �x�q �2 = Re(x�q)2 + Im(x�q)2, xi can be
expanded as

xi = 1√
N
�
q

′ �xqe−i�q⋅�ri + c.c.� = 2√
N
�
q

′ [Re(xq) cos �q ⋅ �ri + Im(xq) sin �q ⋅ �ri]
and

Re(xq) = 1√
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which implies

ˆRe(xq)
ˆxi
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= 1√
N

sin �q ⋅ �ri.
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Now, if we have N sites, the sum ∑q

′ will contain N�2 terms. Let’s de-
note by �qj , j = 1, ..., N�2, these vectors. The jacobian of the transformation
is the absolute value of the determinant of the matrix A defined by

Ai,j =
�������������

1√
N

cos (�qj ⋅ �ri) if 1 ≤ j ≤ N�2
1√
N

sin ��qj−N�2 ⋅ �ri� if N�2 + 1 ≤ j ≤ N
(5.2)

In matrix form, we can write this matrix

A = 1√
N

���
cos �q1 ⋅ �r1 . . . cos �qN�2 ⋅ �r1 sin �q1 ⋅ �r1 . . . sin �qN�2 ⋅ �r1

cos �q1 ⋅ �r2 . . .⋮
��� (5.3)

and its transpose

At = 1√
N

����������

cos �q1 ⋅ �r1 cos �q1 ⋅ �r2 . . .⋮ ⋮
cos �qN�2 ⋅ �r1

sin �q1 ⋅ �r1⋮
sin �qN�2 ⋅ �r1

����������
(5.4)

so that

�AAt�
i,j
= 1

N
�
n=1 [cos �qn ⋅ �ri cos �qn ⋅ �rj + sin �qn ⋅ �ri sin �qn ⋅ �rj]

= 1
N

N�2�
n=1 cos [�qn ⋅ (�ri − �rj)]

= 1
2N
��q cos [�q ⋅ (�ri − �rj)] = 1

2
Re 1

N
��q ei�q⋅(�ri−�rj)

= 1
2

”ij ⇒ det �AAt� = �1
2
�N

Since det A = det At, this implies that the jacobian of the transformation is
given by

�det A� = 1
2N�2

Finally,

��q –�q �x�q �2 = 2��q
′
–�q �x�q �2 = 2��q

′
–�q[Re(x�q)2 + Im(x�q)2]
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which implies

e−—
2 ∑�q –�q �x�q �2 = e−—∑′�q –�qRe(x�q)2e−—∑′�q –�qIm(x�q)2 .

This completes the proof of the proposition.
So the calculation of the partition function reduces to the calculation of

gaussian integrals:

� dRe(x�q) e−—–�qRe(x�q)2 = � fi

—–�q �
1�2

The integral on the imaginary part gives the same result, and the integral
over the yi coordinates can be evaluated in the same way, leading to

Z = e−—E0 2N ��q
′ � fi

—–�q ��
fi

——�q �
The logarithm of the free energy is thus given by

ln Z = −—E0 +N ln(2fi) +N ln kBT − 1
2��q ln –�q − 1

2��q ln —�q

and the free energy by

F = E0 −NkBT ln(2fi) −NkBT ln kBT + 1
2

kBT��q ln –�q + 1
2

kBT��q ln —�q

or
F = E0 −NkBT ln(2fi) + 1

2
kBT��q �ln

–�q
kBT

+ ln
—�q

kBT
�

In frustrated magnets, if the ground state is infinitely degenerate, E0 is
the same for all ground states, but not the –�q and —�q in general. This leads
us to the fundamental result of this chapter: Thermal fluctuations lift the
degeneracy in favour of the state that minimizes ∑�q(ln –�q + ln —�q).
5.1.4 Order by disorder

Let us use the results of the previous sections to discuss two cases of order
by disorder for the J1 − J2 model on the square lattice.
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Figure 5.3: Integral of ln —�q as a function of ◊ for J2 = J1 = 1.

Selection of the helical states for J2 > J1�2
For J2 > J1�2, there is a one parameter family of ground states defined by
the angle ◊ between the two sublattices. –�q is independent of ◊, but not
—�q. It turns out that ∑�q ln —�q is minimal for ◊ = 0 and ◊ = fi (see Fig.5.3).
These two states correspond to the two helices with pitch vectors (0, fi) and(fi, 0) respectively. This result is an example of a general trend: Thermal
fluctuations tend to favour the most collinear configurations.

The presence of two helical states is expected to lead to an Ising tran-
sition at finite temperature, a prediction that has been verified by classical
Monte Carlo simulations. One can actually simply define an Ising variable
on the dual lattice by

‡i = sign[( �S1i − �S3i).( �S2i − �S4i)]
where the spins �S1i, �S2i, �S3i, �S4i are the four spins around the plaquette i
going clockwise from top left to bottom left. This Ising variables is equal to+1 in the helical state of pitch vector (0, fi) and to −1 in the helical state of
pitch vector (fi, 0) (see Fig. 5.4).

Selection of the collinear helices for J2 = J1�2
For J2 = J1�2, all helical states defined by pitch vectors �Q of the form (kx, fi)
and (fi, ky), i.e. on the boundary of the first Brillouin zone, are ground
states of the Heisenberg model. Since J �Q is the same for all the ground
states, –�q = J�q − J �Q is independent of �Q, and the selection is again due to
—�q = (J�q+ �Q + J�q− �Q)�2 − J �Q. It turns out that ∑�q ln —�q is minimal for three
pitch vectors: (0, fi), (fi, 0) and (fi, fi). Interestingly enough, the collinear
states are again selected by thermal fluctuations.
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Figure 5.4: Definition of the Ising variable for the J1−J2 model on the square
lattice ‡ = sign[( �S1 − �S3).( �S2 − �S4)] for the two helical states stabilized by
thermal fluctuations when J2 > J1�2.

Note that the degeneracy between the helical states (0, fi) and (fi, 0)
and the Néel state (fi, fi) is not protected by symmetry since the states are
di�erent, and treating fluctuations beyond the harmonic level is expected
to lift the degeneracy, in agreement with Monte Carlo simulations, which
found that the Néel state is actually favoured over the helical states (0, fi)
and (fi, 0).
5.2 Models with non-coplanar ground states
What about more complicated systems with an infinite number of non-
coplanar ground states? Let us look at the kagome antiferromagnet. For
that system, the degeneracy is very high, and the ground state manifold in-
cludes many non-coplanar configurations. It also contains an infinite number
of coplanar configurations. Indeed, the energy is minimized if the sum of
the spins on each triangle is equal to zero. For coplanar configurations, up
to a global rotation, each spin has 3 possibilities, and the degeneracy in this
submanifold is the same as for the 3-state Potts model, which is known to
have a residual entropy. Let us study fluctuations around these states.

In all these states, the angles between a spin and its neighbours are all
equal to 2fi

3
. So the expansion of the energy is independent of the state. Up

to second order, it is given by:

E = J

2 �
i,j

[(3”ij −Mij)xixj − 2Mijyiyj] (5.5)

with

Mij =
���������������

1 if i = j

1
2

if �i − j� = 1

0 otherwise

(5.6)
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The fact that it is independent of the state leads to the first important result:
Harmonic fluctuations do not select among the coplanar states.

To go further, we need to take into account the fact that there are 3
sublattices. If we define the Fourier transform of the matrix M by

(M(�q))
–—
=��Ri

e−i�q� �Ri+�r–− �Rj−�r—�M �Ri+�r–, �Rj+�r—
(5.7)

where �Ri is the position of the unit cell, and �r– is the position inside the
unit cell, one finds:

M(�q) = ���
1 cos(qx) cos(qy)

cos(qx) 1 cos(qx − qy)
cos(qy) cos(qx − qy) 1

��� (5.8)

The energy can be rewritten

E = J

2 �q ��yt−�q (3I −M�q) �y�q + �xt−�qMq�x�q� (5.9)

where �x�q = (x�q(�r1), x�q(�r2), x�q(�r3))t is the vector of the x components inside
a unit cell. The eigenvalues of M�q are given by:

⁄0 = 0, ⁄±(�q) = 3
2
�1 ±�1 −A�q� (5.10)

with

A�q = 8
9
[1 − cos(qx) cos(qy) cos(qx − qy)] . (5.11)

There is a branch of zero modes for the y fluctuations. This is because, for
a certain type of displacement perpendicular to the plane, the coe�cient of
the quadratic term in the expansion vanishes. The consequences of these
zero modes are far reaching:

1. When a mode is quadratic, it gives a contribution −1

2
kBT ln T to the

free energy. Indeed,

Z ∝ � +∞
−∞ e−—Ax

2
dx = —−1�2� +∞

−∞ e−Au
2
du

so that
F = −kBT ln Z = −1

2
kBT ln T + ...

65



Lecture notes on frustrated magnetism - Frédéric Mila

This first term is the dominant one at low temperature.
By the same argument, when a mode is quartic, it gives a contribution−1

4
kBT ln T to the free energy. Indeed,

Z ∝ � +∞
−∞ e−—Ax

4
dx = —−1�4� +∞

−∞ e−Au
4
du

so that
F = −kBT ln Z = −1

4
kBT ln T + ...

Since, at low temperature,

−1
4

kBT ln T < −1
2

kBT ln T

configurations with zero modes are favoured at low temperature.

2. For the Heisenberg model on kagome, one can prove that no non-
coplanar state has as many zero modes as coplanar states. This sug-
gests that coplanar states are selected by thermal fluctuations, a con-
clusion backed by numerical simulations. This implies that the system
can be seen as a fluctuating nematic state since, in a coplanar state,
there is long range order in the operator �Si × �Sj , where sites i and j
are nearest neighbours.

3. Furthermore, for the kagome model, one can safely assume that the
next order for a zero mode is quartic. Indeed:
- There can be no term y3 in the expansion. Otherwise one would not
be expanding around the ground state.
- Terms of the form xy2 give, after a gaussian integration over x,
another contribution O(y4) since

� +∞
−∞ e− 1

2 Ax
2+jxdx = �2fi

A
�1�2

e
j2
2A

4. The presence of zero modes has direct consequences for the low tem-
perature specific heat. Indeed, since the specific heat is related to the
free energy by

C = −T
ˆ2F

ˆT 2
,

the low-temperature contribution of a quadratic mode is 1

2
kB, and

that of a quartic mode is 1

4
kB. For the kagome, 1�3 of the y modes
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are quartic, i.e. 1�6 of the total number of modes. Since there are two
modes per site, the specific heat per site is given by

C

N
= 2�5

6
× 1

2
kB + 1

6
× 1

4
kB� = 11

12
kB,

in excellent agreement with Monte Carlo simulations.
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