Chapter 4

Ground state correlations of
Ising models

If the ground state of the Ising model on a given lattice is degenerate, the
ground state correlations must be calculated by averaging over all ground
states. As a consequence, the spin-spin correlation is given by the average
over the configurations C' belonging to the ground state manifold:

(O'iO'j) = Z (O‘idj)c
CeGS
This is the average of numbers that can be positive or negative, and whether
the system possesses long-range or short-range correlations, i.e. the behavior
of (URiURj) in the limit ||R; - R;|| - +oo, is a non-trivial issue. In fact, four
different behaviours have been identified:

e Long-range order. This is the case of the 3-state Potts model on the
dice lattice (the dual lattice of the kagome lattice).

e Algebraic order: the correlations decay as a power law. This is realized
in the AF Ising model on the triangular lattice or on the fully frustrated
Villain model on the square lattice.

o Dipolar correlations: the correlations decay as the interaction between
dipoles. This is the case of the AF Ising model on the checkerboard
and pyrochlore model.

e Exponential decay of correlations. This is the case of the AF Ising
model on the kagome lattice or on the fully furstrated model on the
honeycomb lattice.
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In this chapter, we will come up with arguments in favour of the last three
behaviours. They are based on two approaches:

Mapping on dimer models If the Ising model can be mapped onto a
dimer model that can be solved by Kasteleyn’s method, then it is possible
to predict the nature of the long-distance correlations just by studying the
eigenvalues of the Kasteleyn matrix:

o If there is no gap between positive and negative eigenvalues, as for
dimer coverings on the honeycomb lattice or on the square lattice, in
which case the Kasteleyn matrix has a Dirac spectrum, the correlations
decay as a power law.

o If there is a gap between positive and negative eigenvalues, as for
dimer coverings on the triangular lattice, the correlations decay expo-
nentially.

Mapping on height models If a mapping on a height model is possible,
then algebraic correlations are predicted if the height model is in the rough
phase, and the precise form of the correlations depend on the connection
between the spins and the height variables:

e Purely algebraic if the spin is directly connected to the height variable,
as in the Ising model on the triangular lattice.

e Dipolar if the spin is related to the gradient of the height field, as in
the Ising model on the checkerboard lattice.

4.1 Ground state correlations functions of dimer
models

The Pfaffian of a skew-symmetric matrix A;; can be expressed as

Pf(A)=/Hdaiexp(%Za¢Aijaj) (4.1)
i 1,7

where a; are Grassman variables:
e a;aj = —aja;

] (,7/2:0
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L] fdai:O

e [da; a; =1, and when calculating multiple integrals, the a;’s have to
arranged to be in contact with their corresponding da;.

In the following, we will consider the case where the matrix A;; is the
matrix a(7,j) of Chapter 2, and we will use the notation Z = Pf(A).

Proposition The dimer-dimer correlation functions

(n12n34 ... Nap-1M2n) (4.2)

where (1,2),(3,4),...,(2n — 1,2n) are pairs of nearest-neighbor sites, can
be expressed as

1 1
(a1asasayq...) = - f H da; (aras...as,)exp (5 ZaiAijaj) (4.3)
1 2%)

Proof The mean value (njisnsg...no,-1n2,) is equal to the number of

configurations where nis = ngq = --- = nop_1No, = 1, divided by Z. But the
number of configurations where nio = ngq = -+ = nop_1n92, = 1 is the Pfaffian
of A deprived from the lines and columns 1,2,...,2n. Now,

exp (Z CLiAZ'jCLj) = H exp (CLiAZ'jCL]’) = H (1 + aiAijaj) (44)

i<j i<j i<j

The first equality comes from the fact that terms containing pairs of Grass-

man variables commute, and the second one from the property a? =0.

All factors containing a1, aso, ... or as, will only contribute to a 1 to
/ Hdai (alag...agn)exp(Z aiAijaj) (4.5)
% i<j

which is thus equal to

f H dai exp Z aiAijaj (4.6)

i#1,2,... i<j
t,j#1,2,...

This is just the Pfaffian of the matrix A deprived from lines and columns
1,2,...,2n. QED
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Figure 4.1: Spectrum of the Kasteleyn matrix for three lattices: honeycomb
(top left), square (top right), triangular (bottom).

Now, a correlation function of the form (ajasasay . .. ) can be decomposed
using Wick’s theorem, which stipulates that it is equal to the sum of all
the terms that consist of products of two-variable averages (all called a
Green’s function) obtained by pairing Grassman variables in all possible
ways, and affected by the sing of the permutation that leads to this pairing.
For instance,

<n12npq> = (alazapaq) = G12qu - GlpGgq + quGgp (4.7)
where the Green’s function G;; is defined by
Gij = (aiaj) . (4.8)

This is nothing but a Gaussian integral over Grassman variables, and it can
be shown that

(aiaj) = (A_l)ij . (49)

So the nature of the long distance decay (exponential or algebraic) or any
correlation function will be controlled by that of (A‘l)i . Now, for a dimer
covering problem, A is block diagonal after Fourier transform, with blocks
of size n x n, where n is the number of sites per unit cell in the Kasteleyn
lattice (the lattice with arrows). Let’s call such an n x n block A(k), and
A~Y(k) the inverse matrix. If i € a sublattice and j € 3 sublattice, then

(A7), = [ﬁ Ak (A7) e R (4.10)
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(Ri, j: position of unit cells where 7, j are located). This implies that, if
(4

they decay algebraically. One can easily show that this condition is equiv-
alent to [\i(k)|>D >0,i=1,...n Vk, where the Ai(E), i=1,...,n, are the
eigenvalues of the Kasteleyn matrix A(k).

In other words, the correlations are expected to decay algebraically if
the spectrum of the Kasteleyn matrix is gapless, and exponentially if it has
a gap between negative and positive eigenvalues. The spectra of the Kaste-
leyn matrices for dimer coverings on the honeycomb, square and triangular
lattice are shown in Fig. 4.1. The spectrum is gapless for the honeycomb
and square lattices, implying algebraic correlations, and gapped for the tri-
angular lattice, implying exponential correlations.

)a 5 (l::)| < C >0 VE, the correlations decay exponentially, otherwise,

Implications for Ising models If an Ising model can be mapped onto
a dimer covering problem, then the product of two spin variables can be
expressed in terms of dimer variables. Indeed, for a pair (i,7) of nearest
neighbour sites,

00 :2nij—1. (411)

For a pair of sites that are not nearest neighbors, one should first find a path
connecting them through nearest neighbors, e.g. a set of sites 1,...,n such
that (i,1),(1,2),...,(n—-1,n),(n,j) are nearest nearest neighbours. Then

0i0j = 0;01 0102 ...0p-10, 0p0j = (2n;1 —1)(2n12-1) ... (2ny,; - 1) (4.12)

where the first equality comes from the property 0,% = 1, and the second
from the expression of o0y in terms of the dimer variables ny; for nearest
neighbors.

As a consequence, the nature of the long-distance decay of the spin-spin
correlation is similar to that of the dimer-dimer correlation and can be read
off from the spectrum of the Kasteleyn matrix. This simple argument thus
predicts that the Ising model on the triangular lattice and on the fully frus-
trated square lattice have algebraic correlations, while the Ising model on the
fully frustrated honeycomb lattice has exponentially decaying correlations.

4.2 Mapping on height models

The presence of algebraic correlations can also be seen as the consequence of
yet another mapping, this time onto height models. Such models represent
the fluctuations of the surface of a solid by assigning to each point a height.
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Figure 4.2: Example of height configurations for the Ising model on the
triangular lattice. The blue numbers correspond to the local height variables
z(7), the red ones to the coarse-grained variables h(7). Left: Flat surface
corresponding to a maximally flippable configuration. All the spins sitting
at the center of a green or pink hexagon can be flipped without leaving
the ground state manifold. Right: A random configuration generating a
non-uniform height configuration.

They describe the roughening transition of a solid between a flat surface,
where the height difference is bounded from above, and a rough surface,
where height differences correlations diverge logarithmically. There is no
general recipe to map an Ising model onto a height model. This is actually
not always possible. It is only possible if there is a local rule that leads to a
consistent mapping. In this section, we will discuss two such mappings: for
the triangular lattice, and for the checkerboard lattice

4.2.1 Antiferromagnetic Ising model on the triangular lattice

The mapping onto a height model proceeds in two steps. First, one defines
local height variables on the original lattice. The recipe depends on the
lattice. For the triangular lattice, one associates to each dimer covering on
the dual lattice a local height configuration z(7) according to the following
prescriptions:
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1. Choose the height of one site

2. Going clockwise around an up triangle, the height difference between
neighbouring sites is given by:

e 2 if one crosses a dimer

e —1 if one does not cross a dimer

With this prescription, the height differences around up triangles add up to
zero, and the signs are opposite when going clockwise around down triangles.
This implies that the height differences around all triangles (v or A) are
equal to zero, hence that the assignment is consistent. What makes this
mapping possible is the local rule that, for each plaquette }; o; = £1, never
3 or -3.

Then, from the local variables z(7), one defines coarse-grained height
variables h(7) on the dual lattice by

W) = Sa(7) + 2(2) + 2(75)]

For a general configuration, the height variables can take any integer
value. There is however one special configuration that leads to a flat surface,
i.e. a surface where h(7) is constant. This configuration is illustrated in
Fig.4.2. In this configuration, two of the three honeycomb sublattices that
can be obtained by depleting the triangular lattice by one third of the sites
(as done to find a lower bound of the residual entropy in the introduction)
have Néel order. This implies that all spins inside the hexagons of the two
sublattices, 2/3 of the spins in total, can be flipped. Since on each triangle
one spin cannot be flipped to stay in the ground state, one cannot do better.
This configuration is said to be maximally flippable.

Being maximally flippable, this configuration is connected to a large
number of configurations that differ from it only by flipping a few spins.
These configurations are entropically favored. This leads to the idea of de-
scribing the ground state manifold in terms of height variables as fluctuations
around the flat surface. The simplest assumption is to assume a gaussian
weight that penalizes height configurations according to their gradient. Go-
ing to a continuous height variable, one thus assumes that the weight of a
configuration is given by exp(-F[h(Z)]), where F[h(Z)] is a functional of
h(Z) of the form:

Fin@)] = [ ael [9h@)f = ¥ 5 e )l (4.13)
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For a mode h(§), the mean value of h(§)? is given by:

_J dhh?exp (-5¢°h?)
[ dhexp (—%QOQ)

(In(@)) (4.14)

The denominator is a gaussian integral, and the numerator is proportional
to its derivative with respect to K, leading to:

1
B2 = ——
(h@P) = 2
Going back to real space,

(I + B) - n(R)*) = 3 h(a)h(ga) e Fe®-R (s - 1) (¢ - 1)

G1,G2

which implies that
1 s D 5|2 (2 iq.F
=Y (IpG+ By - n(B)) =2 (W@ - €97,
N & a
R q
Now, (‘h(? +R) - h(]%)f) must be independent of R. This implies that

1 1 r
— In— when 7r— +o00
K¢ 27K «

% (1) - h(O)F) = [ da(1-e7)

where a is the lattice parameter. Up to constant, the left hand side is equal
to the height correlation (h(#)h(0)). At large distance, it diverges logarith-
mically. This behaviour is typical of the rough phase. This phase is not
always stable however. For K > /2, it can be shown using renormalization
group arguments that a periodic potential is a relevant perturbation, and
that it will lock the surface into a flat configuration where (‘h(?) - h(ﬁ)‘2> is
bounded. So this description in terms of the rough phase of a height model
is only possible if K < /2.

Let us now see how spin variables are related to height variables. For
that purpose, let us start from a spin configuration on a triangle and flip
spins around the triangle one after the other without breaking the rule of
two spins up and one spin down or two spins downs and one spin up (see
Fig.4.3). The height h of the first and last configurations differ by 6, but
they correspond to the same spin configuration. Therefore the spins have to
be periodic functions of the height h of period 6, a logical conclusion since
there are only 6 possible spin configurations on a triangle whereas the height
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Figure 4.3: Illustration of the periodicity of the spin variables with the
height. The configurations are obtained by flipping spins one after the other
while respecting the ground state rule. The last configuration is the same
as the first one, but the height has increased by 6.

variables can take arbitrary integer values. This implies that a spin variable
can be expanded in Fourier series as:

o(7;) = Z OGeiGh(F)
G+0

with G = —7r x n, n integer. Now, since this is a gaussian theory, the corre-
lation functlon of a Fourier component of the height field is given by

<€iGh(F)e—iGh(ﬁ)> _ 6—%02(\h(f)-h(6)|2)

So the slowest decay will be given by the Fourier component with the small-
est value of G, namely %”.

The long distance behaviour of the correlation function of the spin is
thus given by

(0(P)o(0)) = ( L GIE h(O)) (4.15)
_ R ERRE) ) (4.16)
- o (4.17)
mr\ 6 =
_ (_) (4.18)
a

or ,
(o(7)o(0)) o (ﬂ) oK
a
Now, it is known from the exact solution that

1

(a(’F)a(@)) ocr 2

[N
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This suggests that the Ising model on the triangular lattice can be mapped
on a height model in the rough phase with K = §. This value of K is smaller
than the critical valued of K, 7, beyond which the rough phase is unstable
to a periodic potential, so this mapping is fully consistent.

4.2.2 Antiferromagnetic Ising model on checkerboard lattice

The checkerboard lattice is not a planar graph (bonds are crossing), and
Kasteleyn’s approach cannot be implemented. The height mapping is in
that case very useful because it still offers a simple way to get analytical
insight into the nature of the correlations, and, as we shall see, it brings an
unexpected new features of the correlation.

The Ising model on the checkerboard lattice can be rewritten as a sum
over crossed plaquettes (plaquettes with diagonal bonds) as

E:Ze
X

e:%[(z@)Q-zag] =%(Zai)2—2

1€X 1€X 1€R

with

The energy is minimal as soon as Y ;.z0; = 0 on each crossed plaquette.
Thanks to this local rule, a height mapping can be constructed as follows.

First, we note that there are two sites per unit cell. This defines two
sublattices. If one chooses the z and y directions such that the diagonal
bonds the crossed plaquettes are along x or y, then one can choose the
two sublattices 1 and 2 such that o1 (7) is between two neighboring empty
plaquettes along = and o9(7) between two neighboring empty plaquettes
along y. One then defines local height variables z(7) at the center of the
empty plaquettes to which the spins are related by:

o=y _ (_1\2+y

- s
0" (1) = (1) Ayz
where x and y are the integer coordinates of the centers of the empty pla-
quettes, Ayz = z(x +1,y) — 2(x,y) and Ayz = 2(x,y + 1) — z(x,y). This can
be visualized as follows (see Fig. 4.4): the spins are given by the height
difference between neighboring plaquettes affected by a sign that depends
on whether the bond linking the height is consistent (+) or inconsistant (-)
with the arrows in the crossed plaquettes, which alternate between clockwise
and counterclockwise.
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Figure 4.4: Example of height configurations for the Ising model on the
checkerboard lattice. The blue numbers correspond to the spins, the red
numbers to the local height variables z(7), the green ones to the coarse-
grained variables h(7). The Néel order is realized on the upper left four
crossed plaquettes, and the surface is locally flat, with a constant height
variable.

As for the Ising model, there is a special configuration that will lead to
a flat surface. This is the Néel state of the underlying square lattice (see
Fig.4.4). In this state, one can flip the spins around every empty plaquette,
making it the maximally flippable configuration. In this configuration, the
local height varialbles alernate between 0 and 1. If one defines coarse-grained
height variables by

ha= 3 #0),
i(R)

where the sites i(®) are the centers of the empty plaquettes adjacent to a
crossed plaquette, then the Néel state corresponds to a flat surface.

Turning to a field description, the spins are related to the height field
by:

o (7F) = (-1)*Y3,,h+e™ + .. (4.20)

with ¢ =,2, 1 = x and x5 = y. The first term comes from the fact that the
spins are related to lattice differences of the local field, and the second term
is the first non-zero Fourier component of with G = 27/2 = 7 since the spin
variable is periodic in the height variable with period 2, as illustrated in Fig.
4.5.
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Figure 4.5: Hlustration of the periodicity of the spin variables with the height
for the checkerboard lattice.

The correlations coming from the first term take the form:
(o (7)o (0)) = (—1)7*V8,,0,,C(7) (4.21)

where C(7) = 3(|h(7) - h(@)‘z) is the correlation function of the height field.
Using the properties

29242 2
OO0z Inr = %, 0,0y Inr = —%, (4.22)
r T
this leads to
N o (_1)a:+y (71'7“) (_1)x+y 7"252']' - 2.7}7;.7}]'
! 7(0)) = O0p.O0p. In| — ) = 4.23
<U (M)a’( )) onK Tt . « oK rd ( )

These correlations have a dipolar form.

The next term in the expansion of the spin operators gives a power law,
as for the Ising model on the triangular lattice, with a decay r~™/2% since the
first Fourier component is given by G = w. As for the triangular Ising model,
the value of K must be extracted by comparing with other approaches. The
exact solution of the six-vertex model, to which this model is equivalent,
shows that K = /4, leading to a decay 1/r2.

Structure factor Experimentally, one can use neutron diffraction to mea-
sure the structure factor, the Fourier transform of these correlations. In the
present case, with two sites per unit cell, it is defined by

S(q) = Yo" ()’ (-))
2¥)

The dipolar contribution gives rise to a very peculiar pattern in Fourier
space that is most simply derived by going back to the definition of the spin

50



CHAPTER 4. GROUND STATE CORRELATIONS OF ISING MODELS

operators in terms of height. Indeed,

o () = (1) V00, h = 97 (~0) Y i N () (4.24)

leading to
o'(q) = (=1)(G+Q)ih(G+Q), 07 (=) = (=) (=G +Q);h(-G+ Q) (4.25)

where @ is defined by i@ = (=1)™Y. Tt is the corner of the first Brillouin
zone, and 2@ is a vector of the reciprocal lattice, so 07 (—¢) can be written

! (=9) = (=) (=G - Q)jh(-G - Q) (4.26)
leading to
(0" (D)o’ (=0)) = =G+ Q)i((d + Q);(h(G+ Q)h(~G - Q))
If we measure ¢ fforri the Brillouin zone corner by defining the relative wavec
vector k by § = Q + k, we get:

1 kik;

() (-F)) = =27

These correlations vanish and change sign each time we cross the x or y axis,
giving rise to a characteristic pattern known as pinch points.

The other contribution to the correlation function, which decays as 1/r2
in real space, gives rise to a logarithmic divergence at the zone center.

4.3 Mapping of 3D Ising models on gauge theories

In 3D, a local constraint leads to similar physics. However, the effective
model is not a height model, but a gauge theory. To understand why, it is
convenient to start by discussing mappings of dimer models.

4.3.1 Dimers on square and cubic lattices

Let us define vectors 7i(Z) in dimension D = 2 or 3 of components n;(Z),
1=1,...,D by

1 if bond between Z and Z + é; occupied by a dimer,

0 otherwise. (4.27)

ni(T) Z{

o1



Lecture notes on frustrated magnetism - Frédéric Mila

This will define a dimer covering if the following closed pack, hard core
constraint is satisfied:

Z[nz(:i)+nz(:i—éz)] =1 (4.28)

i

where {é;} are the vectors defining the lattice.

Let us also take advantage of the fact that the square and cubic lattices
are bipartite and define the sign of site Z by oz = +1 on one sublattice and
oz = —1 on the other sublattice.

Next, let us define a field variable on the links by:

1
Bi(%) = 0z [ni(.fc) - —] (4.29)
z
where z is the coordinance of the lattice. The lattice divergence of this field

satisfies:
Z [Bi(Z) - Bi(7 - &;)]

- ZZ: (Uf [”i(f) - %] —Oz-¢, [ni(ff —-&) - %])
=U:7;Z[ni(5?) +ni (2 -¢&;) - %] (4.30)

i
=0z (Z [nl(i) + nl(i - él)] - 1) =0
i
It is thus possible to define a field whose lattice divergence vanishes identi-
cally, hence the notation B;(Z) by analogy with the magnetic field.

Solution in 2D: height field In 2D, and or a field defined in the contin-
uum, the solution of the equation divB = 0 is given by B = V x h, where h is
the scalar field, or, more explicitly:

0B, 8B
ox Gy

oh

=0=>B=Vxhs= (%gh) (4.31)
"oz

By analogy, the solution in the discrete case is given by

This defines a height field on the dual lattice h (9% + %1 + %2)

92



CHAPTER 4. GROUND STATE CORRELATIONS OF ISING MODELS

Solution in 3D: gauge field In 3D, the solution of the equation divB = 0
is given by

0Ay  9A.
~ R ~ 0z o
B=VxA=|%:_2% (4.33)
Tz 0z
0A; _ 04y
oy ox

In the discrete case, the solution is defined on the dual lattice (the centers
of the cube), and the components of the B field are related to those of the
A field by

Bl(f):Ag(f-‘f-%Zéi)—Ag(f-i-%Zéi—ég)
R T
—[Ag(x+526¢)—A3(1’+§Z€i—€2):|

and similar relations for By and Bj3. Unlike the height field in 2D, the gauge
field A is not uniquely defined

(4.34)

4.3.2 Antiferromagnetic Ising model on the pyrochlore lat-
tice

Let us consider Ising spins on the pyrochlore with antiferromagnetic cou-
pling. In the ground state

>, 0i=0 (4.35)

The dual lattice of the pyrochlore lattice is the diamond lattice, a bipartite
lattice. Let us divide it into two sublattices A and B and on each bond &
let us define a unit vector &, from A to B.

Next, let us define a field on the sites of the original lattice, hence on
the bond of the diamond lattice, by:

—

By = 04é (4.36)
The integral of the divergence around a site of the diamond lattice is

> Bués= Y 0.=0 (4.37)
K(Z) K(Z)
Hence, one can look in the continuum for a field with zero divergence.
Upon coarse graining, the configurations with small coarse grained field

B are favoured. Indeed, to go from one ground state to the other one
must flip the spins along aloop of alternating spins to fulfill the constraint
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Y g 0i =0. Along such loops, the sum of the field B, =0. So, configurations
with a very small B will have small loops of B, and will be very flippable.
So, one can postulate a weight

S(B(#)) = exp [—gfd?’ff?(ff] (4.38)

Since divB = 0, one can choose a vector potential A such that B = ¥ x A.
With the gauge divA =0, ||§ x A(§)|]? = ¢* ¥; A:(§)?, leading to:

(|[4s()P) = KL (4.39)

— (4;(7)A4,(0)) = 47rKT (4.40)

~ (Bi(7)B;(0)) = Kl (4.41)
 (a(P)os(0)) = 11 3<ea.r><éﬁ-f5)—<éa.éﬂ>r2 (4.42)

where a, 3 refer to the position of the spin in the unit cell. So the correlations
are again of dipolar form. Note that only gauge invariant quantities are
physical. So, unlike in the case of the height field in 2D, which is unique
up to a constant, and which gives rise to additional contributions to spin
operators, the spins are simply related to the B field by o, = By..éx.

In Fourier space, B(q) = —ig x A(q), leading to

(Bi(@) B (-) = (5 - L2

As for the checkerboard model in 2D, we expect to find pinch points in
neutron scattering experiments.
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