
Chapter 3

Ground state of classical,
frustrated Heisenberg models

As stated before, the competition between exchange integrals does not lead
to ground state degeneracy as systematically as for the AF Ising model on
non bipartite lattices. In particular, on a Bravais lattice, it is always possible
to minimize the energy with a helical state, and this usually only gives rise
to a finite degeneracy obtained by applying the symmetry operators of the
point group to the pitch of the helix. Although there is no general theorem
to back this claim, it is believed that, even on non-Bravais lattices, the
energy can be minimized by helical configurations on sublattices.

Infinite degeneracy is known to occur however in a number of cases.
There is no known systematics, but a number of trends have emerged. It
is convenient in view of the thermal properties to be discussed later to
distinguish between cases where all ground states are periodic and cases
where they are not.

3.1 Periodic ground states

3.1.1 Helical ground state on Bravais lattices

Let’s consider a Bravais lattice, i.e. a lattice with one site per unit cell, and
classical spins of unit length. The energy of a configuration can be written:

E = 1
2�

i

��Rn

J �Rn
�S �Ri
⋅ �S �Ri+ �Rn
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There is a factor 1

2
because each bond appears twice in the sum. The problem

is to find the minimum under the constraint �� �S �Ri
��2 = 1 for all sites.

Let’s first perform Fourier transforms of the spins and of the coupling
constants:

�S�k = 1√
N
�
i

�Sie
−i�k⋅ �Ri �⇒ �Si = 1√

N
��k
�S�kei�k⋅ �Ri

J�k =��Rn

J �Rn
e−i�k⋅ �Rn �⇒ J �Rn

= 1
N
��k J�kei�k⋅ �Rn

In terms of these Fourier transforms, the energy takes the form:

E = 1
2��Ri

��Rn

1
N2

��k1�k2�k3

J�k1
�S�k2
⋅ �S�k3

ei(�k1⋅ �Rn+�k2⋅ �Ri+�k3⋅( �Ri+ �Rn))

The sums over �Ri and �Rn impose �k2 = −�k3 = �k1, and the energy can be
rewritten as:

E = 1
2��k J�k �S�k ⋅ �S−�k

It is not possible to minimize this problem directly because the contraints
on the length of the spins do not lead to a simple condition in Fourier space.
However one can solve the problem by proceeding in two steps:

• Solve the problem under the weaker constraint ∑i �� �Si��2 = N .

• Check if one can find a solution that satisfies the stronger constraint�� �Si��2 = 1 for all sites.

Since

�
i

�S2

i = 1
N
��k1�k2

�
i

ei(�k1+�k2)⋅ �Ri �S�k1
⋅ �S�k1

= ��k
�S�k ⋅ �S−�k

the weaker constraint takes the simple form

��k
�S�k ⋅ �S−�k = N
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in terms of the Fourier components of the spins. One must thus minimise

E = 1
2��k J�k �S�k ⋅ �S−�k

under the constraint ∑�k �S�k ⋅ �S−�k = N .
Let’s assume that J�k is minimal for �k = �k0. The minimum of the energy

is obtained i� �S�k = �0, �k ≠ �k0, −�k0 and �S�k0
⋅ �S−�k0

+ �S−�k0
⋅ �S�k0

= N .
In real space, the spins are then given by

�Si = 1√
N
� �S�k0

ei�k0⋅ �R + �S−�k0
e−i�k0⋅ �R�

Can one find �S�k0
and �S−�k0

such that:

• �S�k0
⋅ �S−�k0

= N

2

but also such that the local constraints:

• �Si réel

• �� �Si��2 = 1

are satisfied for all i? Yes! For example let’s consider:

�S�k0
= ����

√
N

2−i
√

N

2

0

����
�S−�k0
= ����

√
N

2

i
√

N

2

0

���� .

This choice leads to:

�Si = ���
cos ��k0 ⋅ �R�
sin ��k0 ⋅ �R�

0

���
One gets a helical structure of pitch vector �k0.

To summarize, one can minimize the classical energy with a helical struc-
ture whose wave vector is given by the minimum of J�k.

Example: J1 − J2 model on the square lattice

E = J1 �<i,j> �Si ⋅ �Sj + J2 �<<i,j>> �Si ⋅ �Sj =��k J�k �S�k ⋅ �S−�k
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Figure 3.1: Example of a 1D helix of wave vector �k0 = 2fi

12a
.

with

J�k = J1 �ei�k�x + e−i�k�x + ei�k�y + e−i�k�y�
+ J2 �ei�k(�x+�y) + ei�k(�x−�y) + e−i�k(�x+�y) + ei�k(−�x+�y)�
= 2J1 (cos(kx) + cos(ky)) + 2J2 (cos(kx + ky) + cos(kx − ky))= 2J1 (cos(kx) + cos(ky)) + 4J2 cos(kx) cos(ky)

The minimization leads to:

ˆJ

ˆkx

= −2J1 sin(kx) − 4J2 sin(kx) cos(ky) = 0

ˆJ

ˆky

= −2J1 sin(ky) − 4J2 sin(ky) cos(kx) = 0

These equations are satisfied by (kx = 0 or fi, ky = 0 or fi) or if

cos kx = cos ky = −J1

2J2

which is only possible if J1
2J2
< 1 → J1

2
< J2. Let’s now compare the value of

J�k for the various solutions:

kx = ky = 0→ J�k = 4J1 + 4J2

kx = 0, ky = fi → J�k = −4J2

kx = ky = fi → J�k = −4J1 + 4J2
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cos kx = cos kx = −J1
2J2

→ J�k = 2J1 �−2J1

2J2

� + 4J2

J2

1

4J2

2

= −2J2

1

J2

+ J2

1

J2

= −J2

1

J2

But if J1 < 2J2, −4J2 < −J
2
1

J2
. The ground state is thus reached for kx = 0, ky =

fi or kx = fi, ky = 0.

For J2
J1
= 1

2
, the minimum J�k = −2J1 is reached for

kx = fi, ky arbitrary or ky = fi, kx arbitrary

Finally, for J1 < 2J2, one can make a linear combination of two helices.
This leads to a continuous family of degenerate classical ground states (see
next section).

a

E indep. de a

+ comb. lin.

kx = ky = π

kx = 0, ky = 
kx = 

π
π , ky = 0

1/2
J2/J1

3.1.2 Linear combination of helices

Very often, there are only a few ground states. They are given by the helical
states that correspond to the di�erent values of �k that minimize J�k and that
are related by operations of the point group symmetry. However, even in
that case, it is sometimes possible to generate an infinite number of ground
states. Indeed, if two pitch vectors are such that their di�erence is half a
vector of the reciprocal lattice, one can make arbitrary linear combinations
with an appropriate choice of relative phase.

Indeed, suppose that two vectors �k0 and �k1 (�k1 ≠ �k0,−�k0) minimize J(�k).
Then the general solution of the problem with the weak constraint is given
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by
�S �R = 1√

N
( �S�k0

ei�k0. �R + �S−�k0
e−i�k0. �R + �S�k1

ei�k1. �R + �S−�k1
e−i�k1. �R)

For this solution to be acceptable however, it must satisfy the strong con-
straint of unit length at each site. Let’s assume that the helices are coplanar,
and let’s denote by u and v the amplitude of the �k0 and �k1 components:

�S �R = ���
u cos(�k0

�R + „0) + v cos(�k1
�R + „1)

u sin(�k0
�R + „0) + v sin(�k1

�R + „1)
0

��� (3.1)

The condition of unit length at site �R reads:

�S2�R = u2 + v2 + 2uv cos((�k0 − �k1) ⋅ �R + „0 − „1) = 1

This will be true if u2 + v2 = 1 and (�k0 − �k1) ⋅ �R + „0 − „1 = fi

2
[fi]. For this to

hold for any �R, (�k0 − �k1) ⋅ �R must be independent of �R modulo fi. This will
be true if �k0−�k1 = �K�2 where �K is a vector of the reciprocal lattice because,
in that case,

(�k0 − �k1) ⋅ �R = 0 [fi]
Then, if one chooses „0 − „1 = fi

2
, the condition is fulfilled.

Example: J1 − J2 model on the square lattice when J2 > J1�2.

3.1.3 Infinite number of helices

It can also happen that the number of pitch vectors that minimize J�k is
infinite. This is accidental in the sense that modifications of the coupling
constants will in general lift this degeneracy. This has been shown however
to be relevant for the physics of some spinels.

Simplest example: J1 − J2 model on the square lattice with J2 = J1�2.
For that ratio, (kx, fi) and (fi, ky) are all possible pitch vectors. This leads
to lines of pitch vectors.

2D example: J1 − J2 model on the honeycomb lattice with J2�J1 > 1

6
.

In that case, although there are two sites per unit cell, the Luttinger-Tisza
approach allows one to find helical ground states, and in this parameter
range there is a line of pitch vectors.
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3D example: J1 − J2 model on diamond lattice with J2�J1 > 1

8
. The

diamond lattice can be seen as the dual lattice of the pyrochlore lattice.
This case is very similar to the honeycomb lattice. The Luttinger-Tisza
approach leads to a 2D surface of pitch vectors.

3.2 Non periodic ground states

This discussion is far from exhausting the possibilities to reach an infinite
degeneracy. We saw for the Ising model that the ground state degener-
acy can be extensive, with local modifications that imply the presence of
non-periodic ground states. This is also possible for Heisenberg spins. By
analogy with the Ising case, this can be expected if one constructs the lat-
tice from units that have a degenerate ground state provided the constraints
from inter-units coupling are not numerous enough to fix the ground state,
in the spirit of geometrical frustration in general.

Let us consider systems composed of corner sharing units (simplices) of
q sites inside which all sites are coupled to each other, with energy:

E = J ��i,j� �Si ⋅ �Sj = J

2 �– � �L–�2 − J

2
Nq (3.2)

where the sum over – runs over all simplces, �L– is the sum of the spins inside
simplex –, and N is the number of simplices of the sample. To discuss the
degeneracy, it is convenient to use a Maxwell argument that consists in
counting the number of degrees of freedom and the number of constraints.

A configuration satisfies the local constraint as soon as �L– = �0 for each
unit. If we consider spins of length 1 with n components (n = 1 for Ising,
n = 2 for XY , n = 3 for Heisenberg), each unit imposes n constraints, and
the total number of constraints is equal to K = Nn.

Now, the number of degrees of freedom is n−1 per spin, and the number of
spins is Nq

2
, so that the total number of degrees of freedom is F = N(n−1)q�2.

Then, the maxwellian dimension of the ground state manifold is given by:

DM = F −K = N �(n − 1)q
2
− n� (3.3)

= N

2
[n(q − 2) − q] (3.4)

This will be extensive if n(q − 2) − q > 0. Let’s look at some specific
situations.
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Figure 3.2: Possible spin configurations on a tetrahedron satisfying the con-
straint that the total spin vanishes. Once two spins, say �S1 and �S2, have
been chosen, the other two, �S3 and �S4, have only one degree of freedom, the
angle of the plane in which they lie with respect to that of �S1 and �S2.

Pyrochlore and checkerboard These systems consist of corner sharing
tetrahedra, so q = 4. This implies that the maxwellian dimension will grow
with the system size if 2n−4 > 0, or → n > 2. So for Heisenberg spins (n = 3),
DM = N .

For the pyrochlore or the checherboard lattice, it is actually easy to
visualize how to construct them. This can be done as follows: The condition�L– = �0 in a tetrahedron leads to 5 degrees of freedom (2 per spin, i.e. 8,
minus 3 constraints). So, when 2 spins have been chosen, there remains one
and only one degree of freedom for the remaining 2. A convenient way to
visualise this is the following:

Once �S1 and �S2 have been chosen, the only freedom for �S3 and �S4 is
the angle „ of the plane in which they lie with respect to the plane in
which �S1 and �S2 lie. So, if one builds the pyrochlore layer by layer (or
the checherboard line by line), for all the tetrahedra connecting the last
layer to the next one, there is one degree of freedom, and this extra layer
is fixed. The process can continue, and there is one degree of freedom per
tetrahedron. So, if we fix the spins in one layer, the manifold of ground
states has dimension N .

Kagome For Heisenberg spins (n = 3), DM = 0. But we saw in the In-
troduction that the Heisenberg model on the kagome lattice has an infinite
number of ground states. Where is the problem? The constraints are not
independent because of closed loops.

More generally, DM is just a lower bound (provided there are states sat-
isfying the constraints). So this argument based on the Maxwell dimension
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is useful but it is not the definitive answer: If DM is macroscopic, there will
be a huge degeneracy, but if DM = 0, there may or may not be a macroscopic
degeneracy.
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