
Chapter 2

Ground state degeneracy of
Ising and related models

In this chapter, we will discuss the ground state degeneracy of discrete mod-
els. We will start with an exact calculation of the residual entropy of the
antiferromagnetic Ising model on the triangular lattice using a pfa�an tech-
nique. We will then turn to models where there is no exact result, and we will
show that surprisingly accurate estimates can be obtained by an approach
invented by Pauling in the context of water ice, with direct consequences for
spin ice, the magnetic analog of water ice.

2.1 Ising model on the triangular lattice

Quite amazingly, it is possible to calculate exactly the residual entropy of the
Ising antiferromagnet on the triangular lattice. This remarkable result has
first been derived by Wannier directly in the Ising language. Here we will
take a slightly di�erent path. We will first map the ground state manifold
of the Ising model onto dimer coverings of its dual lattice, the honeycomb
lattice. Then we will formulate the counting of these dimer coverings in
terms of a pfa�an. This formulation is very useful because it allows one
to discuss qualitatively the nature of the correlations in the ground state
manifold of Ising models very simply in terms of Grassman variables, and
also because it leads to deep insight into the properties of quantum dimer
models which have been introduced to describe a class of quantum spin
liquids.
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Figure 2.1: Mapping of a ground state of the Ising antiferromagnet onto a
dimer covering of the honeycomb lattice.

2.1.1 Mapping onto dimer coverings of the honeycomb lat-
tice

Consider a ground state of the Ising antiferromagnet. In each triangle, there
are two bonds with antiparallel spins and minimal energy, and one with
parallel spins and maximal energy. This bond is said to be frustrated. If we
draw a line across the frustrated bonds joining the centers of the triangles
adjacent to this bond, we define a dimer covering of the honeycomb lattice.
Since there is only one frustrated bond per triangle, dimers never share a
site.

Conversely, given a dimer covering of the honeycomb lattice, one can
reconstruct a ground state of the Ising model by choosing the orientation of
one spin, and by following the rule that two spins on a bond crossed by a
dimer are parallel. Since the first spin can be up or down, one can actually
associate two ground states of the Ising model to a dimer covering. They
are related by a global reversal of the spins.

2.1.2 Pfa�an technique to count dimers

The number of dimer coverings corresponds to the number of ways of group-
ing pairs of adjacent (nearest-neighbor) sites. This can be expressed as a
sum of permutations between sites with the help on an adjacency matrix:

Z = 1
�N

2
�!2N�2 �

p

b(p1, p2)b(p3, p4) . . . b(pN−1, pN) (2.1)
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where the sum over P = {p1, . . . , pN} runs over the permutations of 1, . . . , N ,
and where the adjacency matrix is defined by

b(i, j) = � 1 if i, j adjacent
0 otherwise. (2.2)

The sum has to be divided by (N�2)! to correct fot multiple couting because
of permutations between pairs, and by 2N�2 to correct for multiple counting
because of permutations within pairs.

This sum is not a standard object, but under certain circumstances it
can be expressed as the pfa�an of a matrix, which is itself related to its
determinant and can thus be evaluated using standard linear algebra tech-
niques.

Definition: If one superimposes two dimer coverings, the result is a tran-

sition graph that consists of loops containing an even number of sites.
Theorem: Assume that it is possible to attach to each adjacent pair

an arrow such that, around each loop that belongs to a possible transition
graph between dimer coverings, the number of arrows in each direction is
odd. Let us further define the Kasteleyn matrix:

a(i, j) =
���������

1 if i, j ajdacent and i→ j−1 if i, j ajdacent and i← j
0 otherwise.

(2.3)

Then,

Z = �����������
1

�N

2
�!2N�2 �

p

Á(p)a(p1, p2) . . . a(pN−1, pN)
����������� (2.4)

where Á(p) is the sign of the permutation.
Proof: This will be clearly true is, for all permutations, i.e. for all dimer

coverings, the sign of Á(p)a(p1, p2) . . . a(pN−1, pN) is the same. Now, let us
consider two dimer coverings C and C′ corresponding to two permutations
p and p′ and calculate the product Á(p)a(p1, p2) ⋅ ⋅ ⋅ × Á(p′)a(p′

1
, p′

2
) . . . . To

go from one to the other, one just has to shift sites around loops of the
transition graph. This implies that

Á(p′) = Á(p)�
l

Á(l)⇒ Á(p)Á(p′) =�
l

Á(l)
where the product over l runs over the loops of the transition graph, and
Á(l) is the signature of the cyclic permutation around the loop. Now, for
the sites belonging to a given loop, the product of the matrix elements of
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Figure 2.2: Arrow configuration of the Kasteleyn matrix for the honeycomb
lattice. With this choice, the number of arrows that go anticlockwise is odd
for all loops belonging to a transition graph. These loops are of even length
and must encompass an even number of sites.

the matrix a of C and C′ will be negative because the number of arrows in
each directions is odd, and the sign of the cyclic permutation around this
loop is negative because the number of sites is even1. So, for each loop, the
final sign entering the product is positive, implying that the overall sign of
the product is positive, hence that the terms in the sum have the same sign
for all configurations.

Now,
Pf a = 1

�N

2
�!2N�2 �

p

Á(p)a(p1, p2) . . . a(pN−1, pN) (2.5)

is an object known as the pfa�an of the skew-symmetric matrix a(i, j), and
its square is equal to the determinant of a. So finally,

Z =√det a (2.6)

On a periodic lattice, the matrix a can be interpreted as a (non-hermitian)
tight-binding problem, and the determinant is the product of the eigenvalues
of a, which can readily be calculated using Bloch theorem.

2.1.3 Entropy of dimer coverings on the honeycomb lattice

For the honeycomb lattice, it is indeed possible to find an arrow configuration
that satisfies the condition of the lemma. An example can be found in
Fig.2.2.

1The cyclic permutation of n objects can be decomposed into the product of n − 1
transpositions, implying that its sign is (−1)n−1.
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To find the eigenvalues of a(i, j), let us formulate the problem as a tight-
binding problem. To each site i we associate a ket �i�. The objective is to
diagonalize the operator

Ô =�
i,j

a(i, j)�i��j�
On the honeycomb lattice, there are two sites per unit cell, defining two sub-
lattices A and B. Let’s define the Fourier transforms on the two sublattices:

��k�A = 1√
Nu

�
i∈A ei�k. �Ri �i�⇒ �i� = 1√

Nu

��k e−i�k. �Ri ��k�A for i ∈ A

and

��k�B = 1√
Nu

�
i∈B ei�k. �Ri �i�⇒ �i� = 1√

Nu

��k e−i�k. �Ri ��k�B for i ∈ B

where Nu is the number of unit cells. The operator Ô can be written

Ô = �
i∈A��· (a(i, i + �·)�i��i + �· � + a(i + �· , i)�i + �·��i�)

= �
i∈A��·

1
Nu

��k1,�k2

(e−i(�k1−�k2). �Riei�k2.�· a(i, i + �·)��k1�A��k2�B
+ei(�k1−�k2). �Rie−i�k2.�· a(i + �· , i)��k2�B��k1�A)

where �· are the vectors going from one site to its nearest neighbors. Since

1
Nu

�
i∈A e−i(�k1−�k2). �Ri = ”�k1�k2

the operator Ô can be rewritten

Ô =��k Ô(�k)
with

Ô(�k) =��· ei�k.�· a(i, i + �·)��k�A��k�B +��· e−i�k.�· a(i + �· , i)��k�B��k�A
Since the set of kets ��k�A and ��k�B form and orthonormal basis of the full
Hilbert space, the eigenvalues of the operators Ô(�k) obtained by diagonal-
izing each of them in the subspace spanned by ��k�A, ��k�B will be eigenvalues
of Ô.

19



Lecture notes on frustrated magnetism - Frédéric Mila
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Figure 2.3: Definition of the basis vectors of the honeycomb lattice �u and �v,
and of the vectors �a, �b and �c going from one site to its nearest neighbours.

For the honeycomb lattice, there are three vectors �· , say �a, �b and �c. If we
choose the basis vectors �u, �v according to Fig. 2.3, they satisfy �a + �b + �c = �0,�a−�c = �u and �b−�a = �v, leading to �a = (�u− �v)�3, �b = (�u+2�v)�3, �c = (−2�u− �v)�3.
If we write the vector as �k = x�u∗ + y�v∗, then, from the definition of the
reciprocal lattice, one gets: �k.�a = (2fix − 2fiy)�3, �k.�b = (2fix + 4fiy)�3 and�k.�c = (−4fix − 2fiy)�3. Besides, with the arrow convention of Fig. 2.2, the
matrix elements are given by a(i, i+�a) = +1, a(i, i+�b) = +1 and a(i, i+�c) = −1,
leading to

f(�k) ≡��· ei�k.�· a(i, i + �·) = ei(2fix−2fiy)�3(1 + e2fiiy − e2fiix)
With this definition, we need to diagonalize the operator

Ô(�k) = f(�k)��k�A��k�B − f(�k)∗��k�B��k�A
in the subspace spanned by ��k�A, ��k�B, i.e. we look for –, — and ⁄ such that

Ô(�k)(–��k�A + —��k�B) = ⁄(–��k�A + —��k�B).
This leads to ⁄— = −–f(�k)∗ and ⁄– = —f(�k). We deduce from these equa-
tions that the eigenvalues satisfy

⁄2 = −�f(�k)�2 ⇒ ⁄±(�k) = ±i�f(�k)�
They are complex conjugate, and their product is given by

⁄+(�k)⁄−(�k) = �f(�k)�2 = 3 + 2 cos(2fiy) − 2 cos(2fix) − 2 cos(2fi(x + y)).
The determinant of the matrix a(i, j), which is the equal to the product of
its eigenvalues, is thus given by

det a =��k �f(
�k)�2
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Coming back to the counting of dimers, the number of coverings is given
by Z =√det a, and the entropy per site by

s = 1
N

ln Z = 1
N

1
2��k ln �f(�k)�2,

where N is the number of sites. In the thermodynamic limit, one can replace
the sum by an integral, according to

1
Nu

��k → � d�k
Since there are two sites per unit cell, N = 2Nu, and the entropy per site of
dimer coverings on the honeycomb lattice is given by

sdimer

hc = 1
4 �

1

0

dx� 1

0

dy ln[3 + 2 cos(2fiy) − 2 cos(2fix)2 cos(2fi(x + y)]
= 0.161532...

2.1.4 Residual entropy of the Ising antiferromagnet on the
triangular lattice

Since each dimer configuration on the honeycomb lattice gives rise to two
ground states of the Ising model, the number of ground states of the Ising
antiferromagnet on the triangular is given by � = 2Z. The residual entropy
per site is thus given by

sIsing

tri
= 1

Nt

ln Z + ln 2
Nt

In the thermodynamic limit, the second term is negligible, and, since the
number of sites of the triangular lattice is half that of its dual honeycomb
lattice, the residual entropy is twice that of dimer coverings on the honey-
comb lattice:

sIsing

tri
= 1

4 �
1

0

dx� 1

0

dy ln[3 + 2 cos(2fiy) − 2 cos(2fix)2 cos(2fi(x + y)]
= 0.323065...
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J>0 J’<0

Figure 2.4: Left: Villain fully frustrated model on the square lattice. Right:
Arrow configuration of the Kasteleyn matrix on the square lattice.

2.2 Other Ising models

2.2.1 Fully frustrated Ising model on the square lattice

The square lattice is a bipartite lattice, but if the number of antiferromag-
netic bonds around each square plaquette is odd, then it is impossible to
satisfy all bonds. This can be easily implemented by imposing that the
bonds on every other vertical line are ferromagnetic while all other bonds
are antiferromagnetic (Villain model). Then on each plaquette one can sat-
isfy at most 3 bonds. This can be achieved in an infinite number of ways.
To see this, one can again map the problem onto a dimer covering problem
on the dual lattice, which is also a square lattice, by drawing a dimer across
the unsatisfied bond of every plaquette.

This dimer covering has again a pfa�an solution. An arrow configuration
that fulfills the condition of the theorem is given by horizontal arrows going
right on each bond, and vertical arrows alternating between up and down
on every other line. This defines a periodic problem with a two-site unit
cell. However sites of a given sublattice are not only coupled to sites of the
other sublattice, so it is better to write the operator Ô as:

Ô =�
i∈A��· a(i, i + �·)�i��i + �· � +�

i∈B��· a(i, i + �·)�i��i + �· �
After Fourier transform, Ô = ∑�k Ô(�k), where Ô(�k) is of the form

Ô(�k) = gA(�k)��k�A��k�A + f(�k)��k�A��k�B − f(�k)∗��k�B��k�A + gB(�k)��k�B��k�B
For the square lattice, f(�k) = 2i sin(fix), gA(�k) = 2i sin(2fiy) and gB(�k) =−2i sin(2fiy). The product of the eigenvalues is the determinant of the ma-
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J>0

J’<0

Figure 2.5: Left: Fully frustrated model on the honeycomb lattice. Right:
Arrow configuration of the Kasteleyn matrix on the triangular lattice.

trix

���
gA(�k) f(�k)
−f(�k)∗ gB(�k)

���
and is given by 4 sin2(2fiy) + 4 sin2(fix), leading to a residual entropy per
site

sdimer

sq = sIsing

FFsq
= 1

4 �
1

0

dx� 1

0

dy ln[4 sin2(2fiy)) + 4 sin2(fix))] = 0.291561...

This is both the residual entropy of dimer coverings on the square lattice
and of the fully frustrated Ising model on the square since the dual lattice
is the same as the original lattice with the same number of sites.

2.2.2 Fully frustrated Ising model on the honeycomb lattice

Similarly, one can define the fully frustrated Ising model on the honeycomb
lattice by imposing an odd number of antiferromagnetic bonds around the
hexagons. This can be achieved by imposing that half the vertical bonds are
ferromagnetic (see Fig). This problem can be mapped onto the problem of
dimer coverings on the triangular lattice, the dual lattice of the honeycomb
lattice. The arrow configuration that satisfies the condition for the pfa�an
calculation again defines a periodic problem with a two site unit cell (see
Fig), and the matrix to be diagonalized for each �k has the same form as
for the square lattice with gA(�k) = 2i sin(2fiy), gB(�k) = −2i sin(2fiy), and
f(�k) = 2i sin(fix)−2 cos(fix+2fiy). Its determinant is given by 4 sin2(2fiy)+
4 sin2(fix) + 4 cos2(fix + 2fiy), leading to an entropy per site for the dimer
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covering problem

sdimer

tri = 1
4 �

1

0

dx� 1

0

dy ln[4 sin2(2fiy) + 4 sin2(fix) + 4 cos2(fix + 2fiy)]
= 0.428595...

Since the number of sites of the honeycomb lattice is twice that of the
dual triangular lattice, the residual entropy per site of the fully frustrated
Ising model on the honeycomb lattice is given by

sIsing

FFhc
= 1

8 �
1

0

dx� 1

0

dy ln[4 sin2(2fiy) + 4 sin2(fix) + 4 cos2(fix + 2fiy)]
= 0.214297...

2.2.3 Ising model on kagome lattice
It is not always possible to map the ground state manifold of a frustrated
Ising model onto a dimer covering problem that one can solve exactly. Then
counting the number of ground states exactly is not possible, and reliable
estimates can only be obtained with some kind of numerical approach (e.g.
graph expansions, finite-size scaling of exact counting on small clusters, or
tensor networks). However, there is a simple approach due to Pauling that
often gives excellent results. Let’s illustrate it on the Ising kagome anti-
ferromagnet. The kagome lattice can be seen as a lattice of corner-sharing
triangles. On each triangle, the energy is minimized by configurations with
two spins up and one spin down, or two spins down and one spin up. There
are 6 such configurations out of a total of 23 = 8 configurations. Pauling’s
idea is to use this constraint to reduce the total number of Ising configu-
rations on the kagome lattice. If we denote by N the number of sites, the
number of configurations is 2N . Now, including up and down triangles, the
number of triangles is equal to 2N�3. So Pauling’s approach consists in cor-
recting the number of configurations by a factor (6�8)2N�3, leading to the
following estimates for the number of ground states on N sites:

� = 2N × �6
8
�2N�3

,

and for the residual entropy

s = 1
N

ln � = ln 2 + 2
3

ln(3�4) � 0.501359...
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This should be compared to the numerical estimate s � 0.5018... (Nagle).
The agreement is remarkably good.

Note that this entropy is much larger than on the triangular lattice: the
number of ground states grows as � � (1.6517)N . As we shall see when
discussing correlations, this is reflected into very di�erent behaviours for
the two lattices (algebraic correlations for the triangular lattice, exponential
correlations for the kagome lattice).

Pauling’s approach would be exact on a Bethe lattice, and it works well
for the kagome because the triangles are only connected by loops of length
6. For the triangular lattice, which is very di�erent from a Bethe lattice,
it leads to the estimate s = ln(3�2) = 0.4054..., significantly larger than the
exact result s = 0.3230... derived in the previous section.

2.3 Spin ice

The ground state degeneracy of a classical system has been measured in two
pyrochlore compounds that realize what is known as spin ice: Dy2Ti2O7

and Ho2Ti2O7. In these compounds, the total momentz J = L + S of Dy
and Ho is very large (15/2 and 8, respectively), and they sit at the vertices
of a pyrochlore lattice. The crystal field forces each moment to lie along the
direction that joins the centers of the two tetrahedra to which it belongs. In
addition, the exchange interaction is ferromagnetic, and on each tetrahedon
the energy is minimized when two spins point toward the center and two
spins away from the center, or 2 spins in and 2 spins out. This problem
can be mapped to that of ice water. Indeed, at low temperature water
crystallizes into a structure where the oxygen atoms sit on the dual lattice
of the pyrochlore lattice (i.e. there is one oxygen at the center of each
tetrahedron), and the hydrogen atoms sit on the bonds connecting nearest-
neighbor oxygens, but on each tetrahedron two of them are closer to the
central oxygen to build a water molecule (spin in), and the two others are
further apart from it (spin out), closer to neighboring oxygen atoms.

With 2 in, 2 out, the number of allowed configurations per tetraheron is
equal to 6 while the total number of states is equal 24 = 16. This led Pauling
(1943) to estimate the number of configurations as

� � 2N � 6
16
�Ntetra = �3

2
�N�2

since the number of tetrahedra Ntetra = 2N�4 = N�2 is half the number of
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Figure 2.6: 2 spins: one in, one out. → best situation: 2 in, 2 out. Similar
to water: 0 at the center of tetrahedra, H make water molecules → 2 in, 2
out.

sites, and the residual entropy per site as

s = 1
2

ln(3�2) = 0.2027...,

very close to the numerical estimate s � 0.2050.... This entropy has been
measured in water by Giauque (1943), and much more recently in spin ice by
Ramirez et al (1999). The measurement is indirect. It relies on measuring
the specific heat, and on extracting the entropy from it according to:

S(T ) − S(T0) = � T

T0

CdT

T
(2.7)

When T → +∞, the entropy per site must go to ln 2. So if there is a residual
entropy per site s at T = 0, the di�erence [S(T ) − S(T0)]�N must tend to
ln 2 − s when T0 → 0+ and T → +∞. The residual entropy s appears as a
missing entropy as compared to high temperature expectation ln 2. This is
quite accurately what has been measured by Ramirez et al in zero field.
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In Fig. 2a inset we show xdc(T ) from 2 to 20 K, illustrating
the small ferromagnetic, FM, intercept, corresponding to a Weiss
constant vw < 0:5 K, where 1=x ¼ const:=ðT 2 v

w
Þ. The C(T)/T data,

which extend down to lower temperatures (Fig. 2a), show a much
broader peak than usually seen for an antiferromagnetic, AF,
transition. The lack of a clear ordering feature in C(T) is consistent
with a picture where the spins ‘freeze’ in a random configuration as
a result of geometrical frustration. The absence of magnetic order in
a system with no structural disorder is by itself unusual. The first
reported example of such a system is another pyrochlore com-
pound, Y2Mo2O7, where despite the absence of any measured
structural disorder, long-range magnetic order is not observed10—
instead, spin glass freezing among Heisenberg-like Mo4+ ions sets in
at T < 0:3vw < 15 K. But existing susceptibility measurements11 on
Dy2Ti2O7 do not show the sharp cusp expected for a spin glass, but
rather a broad feature peaked at T < 0:7 K, indicating a different
type of frozen spin state for this Ising-type spin system.

The most surprising aspect of our data, however, is found when
integrating C(T)/T from 0.2 to 12 K to obtain the total spin entropy
(Fig. 2b). This temperature range incorporates all appreciable
observed contributions to C(T)/T. We obtain DSð0:2; 12Þ ¼
ð0:67 6 0:04ÞRln2, that is, a shortfall of ,1/3 of the total spin
entropy. It has been previously noted, based on measurements of
C(T) only up to 1.5 K and a numerical extrapolation to higher
temperatures, that the peak height is consistent with reduced
entropy11: but it was suggested that the extrapolation was too
simple, and that the missing entropy would be found for
T . 1:5 K. We see no evidence for missing entropy for T . 1:5 K

and, although it is possible that additional entropy is developed
below 0.2 K, we think it unlikely for the following reasons. First,
C(T)/T drops by almost two orders of magnitude from 1 to 0.5 K
indicating near-complete spin freezing, and second, there is no
structural reason to assume a bimodal distribution of entropy-loss
processes, for example, due to two different exchange interactions.
In addition, our Monte Carlo simulation reproduces the observed
C(T)/T peak height and shape (Fig. 2a). (The Monte Carlo simu-
lation was performed on a sample of size 8 3 8 3 8 tetrahedra
(2,048 spins) and ,104 Monte Carlo steps per spin. The spin–spin
interaction was assumed to be purely dipole–dipole but with a
g-factor reduced by 25% from the J ¼ 15=2 Lande value. This is
most likely the result of the compensating effect of a small
admixture of superexchange interaction. Justification for this,
and further details, will be given elsewhere (A.P.R. et al., manu-
script in preparation).

The comparison of the measured entropy with the prediction of
Pauling for ice Ih, Rðln2 2 ð1=2Þlnð3=2ÞÞ, is shown in Fig. 2b. To test
the idea that there exists a contribution to ground-state entropy
from a different energetically unfavoured state, we applied a small
magnetic field, H, to reduce the energy barriers for spin reorienta-
tion. As shown in Fig 2a and b, an applied field of 0.5 T results not
only in a shift of C(T)/T to higher temperatures, but also in an
increase of the integrated entropy, DS(0.2, 12), from 0.67Rln2 to
0.85Rln2. The increase of temperature where C(T)/T is appreciable
is expected, because Zeeman splitting increases with field. The
increase of total DS, however, underscores the existence of addi-
tional entropy beyond that contained in the H ¼ 0 peak. The

0

1

2

a

T (K)

 H = 0
 H = 0.5 T

C/
T 

(J
 m

ol
–1

K–2
)

0 2 4 6 8 10 120

2

4

b

Rln2
R(ln2 - 1/2ln3/2)

S 
(J

 m
ol

–1
K–2

)

 H = 0
 H = 0.5 T

T (K)

0 5 10 15 200.0

0.5

1.0

1.5

 1
/c

 (m
ol

 D
y 

pe
r e

.m
.u

.)

Figure 2 Specific heat and entropy of the spin-ice compound Dy2Ti2O7

showing agreement with Pauling’s prediction for the entropy of water ice Ih,

Rðln2 2 ð1=2Þlnð3=2ÞÞ. a, Specific heat divided by temperature of Dy2Ti2O7 in H ¼ 0

and 0.5T. The dashed line is a Monte Carlo simulation of the zero-field C(T)/T, as

discussed in the text. b, Entropy of Dy2Ti2O7 found by integrating C/T from 0.2 to

14K. The value of Rðln2 2 ð1=2Þlnð3=2ÞÞ is that found for ice Ih and Rln2 is the full spin

entropy. Inset, susceptibility (M/H) of Dy2Ti2O7 in a field of 0.02T.
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Figure 3 Specific heat versus temperature for various values of applied field. The

broad H ¼ 0 feature is suppressed on increasing H and replaced by three sharp

features at 0.34, 0.47 and 1.12K. The left inset shows the constancy of these

transition temperatures with field; the right inset shows the results of finite-field

Monte Carlo (MC) simulations of C/T.

Figure 2.7: a) Specific heat of Dy2Ti2O7; b) Entropy obtained by integrating
C�T from very low temperature. In zero field, the missing entropy is very
close to Pauling’s estimate of the residual entropy. (After Ramirez et al,
Nature 1999.)
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