
Chapter 10

Magnetization plateaus

A standard way to probe magnetic systems is to measure their response to a
magnetic field. In gapped magnets, and more generally in frustrated quan-
tum magnets, it is very instructive to keep track of the full magnetization
curve up to the saturation field (if at all possible!), and not just of the slope
at zero field, the magnetic susceptibility. At zero temperature, all gapped
antiferromagnets have a plateau at zero magnetization up to the field that
brings one of the triplets below the singlet, the prominent example being
the spin-1 chain. When frustration is present, other magnetization plateaus
can appear at fractional values of the magnetization, even if the system is
gapless at zero field, as e.g. the triangular lattice Heisenberg model. In this
chapter, I review the two main mechanisms that have been identified, the
stabilization of a collinear classical ground state in a field range by an order

by disorder mechanism, and the stabilization of Wigner crystals of magnetic
excitations in dimer based frustrated magnets.

10.1 Introduction
The Hamiltonian of a Heisenberg magnet in a uniform field �H is given by

H = �(i,j)
Jij
�Si ⋅
�Sj −

�H.�
i

�Si (10.1)

where the g-factor and the Bohr magneton µB have been incorporated in
the field �H. Very often it will be useful to choose a quantization axis. The
natural choice is to choose that of the field. Without loss of generality, the
field can be chosen along z, �H =Hẑ, and the Hamiltonian reads

H = �(i,j)
Jij
�Si ⋅
�Sj −H�

i

Sz

i . (10.2)
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When the intensity of the field is large enough, larger than a critical field
known as the saturation field Hsat, all spins point along �H, and the ground
state is a simple product state. Below that field, the configuration is the
result of a compromise between exchange interactions, which tend to align
spins anti-parallel to each other if they are antiferromagnetic, and the mag-
netic field, which tends to align spins parallel to itself. The outcome of this
competition depends dramatically on many parameters (nature of the spins,
classical or quantum, value of S for quantum spins, topology of the lattice,
temperature), with a magnetization curve that is simply linear for many
classical systems at zero temperature but can develop several anomalies for
highly frustrated quantum systems.

10.2 Semi-classical plateaus: Triangular lattice

Certain plateaus correspond to classical configurations of spin. The promi-
nent example is the 1�3 plateau of the triangular lattice. In that case,
thermal fluctuations or quantum fluctuations have been shown to stabilize a
plateau at 1�3 of the magnetization. Let us see the underlying mechanism.

To start, let us discuss the classical ground state. For that purpose, it is
useful to rewrite the energy as a sum over triangles:

E =�
i

Ei

with
Ei =

J

2
( �Si1 . �Si2 +

�Si2 . �Si3 +
�Si3 . �Si1) −

1
6
�H.( �Si1 +

�Si2 +
�Si3)

where the sum over i runs over all triangles, and where i1, i2 and i3 are
the corners of triangle i. The coupling constant J appears with a factor 1�2
because each bond belongs to 2 triangles, and the field with a factor 1�6
because each spin belongs to 6 triangles.

Ei can be rewritten in terms of the total spin as

Ei =
J

4
�( �Si1 +

�Si2 +
�Si3)

2
− 3� − 1

6
�H.( �Si1 +

�Si2 +
�Si3)

=
J

4
� �Stot(i)

2
−

2 �H
3J

. �Stot(i)� −
3J

4

=
J

4
� �Stot(i) −

�H

3J
�

2
−

J

4
H2

9J2 −
3J

4
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The energy of a triangle will thus be minimal as soon as �Stot(i) −
�H

3J
,

a condition that can be fulfilled up to H = 9J since �Stot(i) is the sum of
three spins of length 1. This condition can then be satisfied in many ways,
for instance in an umbrella state or a coplanar state (see Fig. 10.1), and
this condition can be simultaneously satisfied in all triangles by adopting a
three-sublattice structure.

θ

(a) (d)(c)(b)

Figure 10.1: Some classical ground states of the triangular lattice Heisenberg
antiferromagnet in a field. (a) An umbrella configuration; (b) Coplanar
ground state for H < Hsat�3; (c) Collinear ground state for H = Hsat�3; (d)
Coplanar ground state for H >Hsat�3.

H

1

H =9J
sat

m

Figure 10.2: Zero-temperature magnetization of the classical triangular lat-
tice antiferromagnet.

So, at zero temperature, the magnetization per spin is given by �m =�H
9J

. This is valid up to the saturation field Hsat = 9J beyond which �m =
�H�H. The classical magnetization thus grows linearly with the field at zero
temperature (see Fig. 10.2).
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Figure 10.3: Temperature-field phase diagram of the classical triangular
lattice antiferromagnet (after Kawamura and Miyashita, 1985).

However, the fact that the condition �Stot(i) =
�H

3J
leads to a huge de-

generacy suggests that we are in a situation where thermal or quantum
fluctuations might pick one type of configuration and change the physics.
And indeed, the coplanar configuration is stabilized over the non-coplanar
configurations. However, this is not the whole story. At �H = �Hsat�3, the
configuration is collinear, with two spins along the field and one spin oppo-
site to the field. One can expect this configuration to be stabilized over a
certain field range.

10.2.1 Thermal fluctuations

This has been verified with Monte Carlo simulations by Kawamura and
Miyashita, who found numerically that, at finite temperature, the collinear
structure is indeed stabilized in a finite field range (see Fig. 10.3).

10.2.2 Quantum fluctuations

As usual, one expects the same to be true with quantum fluctuations. The
argument is more subtle however than with degenerate ground states be-
cause, if a plateau is stabilized, it means that a type of order is stabilized in
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Figure 10.4: Magnetization curve of the S = 1/2 Heisenberg antiferromagnet
on the triangular lattice. The thin dashed and solid line are for N = 27
and N = 36 sites, respectively. The bold line is an extrapolation to the
thermodynamic limit (after Honecker et al, 2004).

a region where the classical order is unstable.
How is this possible? Obviously, this requires to push the spin-wave

expansion to higher-order, a rather cumbersome task. Fortunately, the sta-
bilization of the 1�3 plateau can be understood qualitatively in a simple
way. The starting point is that, in helical systems, where the structure de-
pends on a parameter (here the magnetic field) the structure is influenced
by quantum fluctuations. In the present case, the angle ◊ of the structure
below Hsat�3 (see Fig.10.1) is not the same for classical spins and for finite
S. So the critical field Hc1 where it becomes collinear will have 1�S correc-
tions. The same is true coming from above, and the critical field Hc2 where
it becomes collinear does not need to be equal to Hc1 .

Now, a simple argument suggests that Hc1 < Hc < Hc2 . Indeed, for a
given field H < Hc, the coplanar classical ground state is defined by ◊cl,
which satisfies the minimality condition:

ˆEcl
ˆ◊
�
◊=◊cl

= 0 (10.3)

As H → Hc =
Hsat

3 , ◊cl → 0. But quantum corrections favour small angles.
So, ◊quan < ◊cl, and one can expect Hc1 < Hc. The same reasoning leads
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to Hc2 > Hc. Pushing the 1�S expansion to higher order, Chubukov has
actually calculated these critical fields, and he found:

�
����
�
����
�

Hc1 =Hc(1 −
0.084

S
)

Hc2 =Hc(1 +
0.215

S
)

(10.4)

This prediction of a 1/3-plateau for the triangular lattice has been confirmed
for spins-1/2 by exact diagonalizations of finite clusters (see Fig. 10.4).

10.3 Quantum plateaux
The simplest example of a quantum plateau is the plateau that occurs in
all gapped antiferromagnets. If we denote by � the gap to the first triplet
excitation, the relative energy of the triplet with Sz

tot = 1 with respect to the
singlet ground state is given by E(Sz

tot = 1, H) −EGS = � −H. This energy
vanishes at Hc = �, signalling a phase transition into a phase with a finite
magnetization. Up to that field, the ground state is una�ected by the field,
and the magnetization is strictly equal to 0. This behaviour is not specific
to frustrated magnets. It occurs for instance in the spin-1 chain, with its
famous Haldane gap, in spin-1/2 ladders, or more generally in dimerized
Heisenberg models.

However, when frustration is present in a dimer based model, the motion
of the triplet can be severely a�ected, and the reduction of the kinetic energy
combined with the repulsion between triplets due to the antiferromagnetic
interactions can lead to incompressible phases at intermediate magnetization
analogous to the Mott insulating phases of strongly correlated electrons. In
the rest of this chapter, we will treat in some detail the case of the frustrated
ladder, and we will discuss briefly the case of the Shastry-Sutherland model,
where this simple mechanism explains some of the plateaus.

10.3.1 Isolated dimer

Let us start by the trivial but instructive case of an isolated spin-1/2 dimer
in a field described by the Hamiltonian

H = J �S1 ⋅ �S2 −H(Sz

1 + Sz

2)

The eigenstates of that problem are the singlet �S�, of energy ES=0 = −3J�4,
and the triplets: �T1�, of energy E1 = J�4 −H, �T0�, of energy E0 = J�4, and
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Figure 10.5: Left: Energy levels of a spin-1/2 dimer in a field. Right:
Magnetization curve of a spin-1/2 dimer in a field.

J

J
J

Figure 10.6: Sketch of the frustrated ladder.

�T−1�, of energy E−1 = J�4 +H (see Fig. 10.5, left panel). There is a phase
transition at H = J , and the magnetization per site jumps from 0 to 1 in
units of the magnetization per site at saturation (see Fig. 10.5, right panel).

10.3.2 Frustrated ladder

The spin-1/2 ladder is arguably the simplest example of a gapped quantum
magnet. In the strong-rung limit, the calculation performed for the dimer-
ized square lattice can be extended to that case and shows that the gap is
of the order of the rung coupling up to a small correction due to the leg
coupling. By contrast to the case of the dimerized square lattice however,
field theory arguments show that the gap persists down to infinitesimal rung
coupling.

In this section, we look at the e�ect of frustration by considering the
frustrated ladder with rung coupling J⊥ > 0, and two types of inter-rung
couplings between nearest-neighboring rungs, J∥ > 0 between sites belonging
to the same leg, and J� > 0 between sites belonging to di�erent legs, as shown
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in Fig. 10.6. This model is defined by the Hamiltonian:

H = J⊥�
i

�Si,1 ⋅ �Si,2+J∥�
i,l

�Si,l ⋅
�Si+1,l+J��

i

( �Si,1 ⋅ �Si+1,2+ �Si+1,1 ⋅ �Si,2)−H�
i,l

Sz

i,l
,

where i keeps track of the position of the rung, l = 1 or 2 denotes the leg,
and �Si,l stands fot the spin that belongs to rung i and leg l. The presence
of J� introduces odd loops, hence frustration.

Fully frustrated ladder

Let’s start with the case of the fully frustrated ladder defined by J∥ = J� ≡ J .
In that case, the model can be rewritten in terms of the total spins of the
rungs �Ti =

�Si,1 + �Si,2 as

H = J�
i

�Ti ⋅
�Ti+1 −H�

i

T z

i +
J⊥
2 �

i

( �T 2
i −

3
2
).

The Hilbert space can be decomposed into 2L sectors, where L is the number
of rungs, according to the value of the total spin of each rung, which can be
in a singlet or in a triplet state.

By arguments similar to those used in chapter 7 on gapped magnets, it is
clear that the product of singlets on the rungs is an eigenstate, and that for
large enough J⊥�J , it will be the ground state in zero field. Upon reducing
this ratio, there is a strong first order transition in zero field where all rungs
become triplets. The contribution of the J term to the ground state energy
is the ground state energy of the spin 1 chain, −1.401484...J per spin, and
the transition occurs at J⊥�J = 1.401484....

We assume from now on that J⊥�J is large enough for the product of
singlets to be the ground state. The e�ect of the magnetic field can be simply
understood in terms of the isolated dimer case. Indeed, the state where one
rung is in a triplet state is still an eigenstate because it is coupled to singlets
on both sides, and its energy will become lower than that of the singlet when
H = J⊥. However the state with only one triplet is not the ground state for
H > J⊥. Indeed, energy can be gained by turning other singlets into triplets
as long as triplets are surrounded by singlets. The maximal energy will
be gained when the maximal number of triplets surrounded by singlets is
created, i.e. when every other rung is in a triplet state. There are two such
states, with triplets occupying even or odd rungs, and their magnetization
per site is equal to m = 1�2. The energy of that state as compared to the
singlet state is given by

Em=1�2 −EStot=0 = (J⊥ −H)
L

2
.

126



CHAPTER 10. MAGNETIZATION PLATEAUS

1/2

m

H
H  = J

c1
H  = J + 2J

c2

1

Figure 10.7: Magnetization curve of the fully frustrated ladder.

So there is a critical field Hc1 = J⊥ where the magnetization jumps from 0
to half the saturation value.

Now, for large enough field, the ground state will be the fully polarized
state with magnetization per site m = 1, and with energy

Em=1 −EStot=0 = (J⊥ −H)L + JL

where the second term comes from the exchange term J . This energy will
be the ground state down to the field where it will be more advantageous
to convert one triplet into a singlet surrounded by two triplets. But then,
one will gain more energy by converting as many triplets as possible as long
as the singlets are surrounded by two triplets, leading again to one of the
two states with alternating singlets and triplets. The transition thus occurs
when Em=1�2 = Em=1, leading to a critical field Hc2 = J⊥ + 2J . At that field,
the magnetization jumps from half the saturation value to full saturation
(see Fig. 10.7).

To summarize, the magnetization consists of a plateau at m = 0 up to
Hc1 = J⊥, a plateau at m = 1�2 between Hc1 and Hc2 = J⊥+2J , and a plateau
at saturation m = 1 above Hc2. The width of the plateau is equal to twice
the inter-rung coupling and vanishes in the limit of isolated dimers, as it
should.
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Figure 10.8: Magnetization curve of the frustrated ladder with J∥�J⊥ = 0.55
and J��J⊥ = 0.7 obtained with density matrix renormalization group (after
Fouet et al, 2006).

Partially frustrated ladder

How frustrated should the ladder be to support a 1�2 plateau? A simple
answer can be given in the limit J∥, J� � J⊥. In that limit, the hopping
of a triplet can be calculated using first-order perturbation theory, as we
did in chapter 7 for the dimerized Heisenberg model on the square lattice.
If we choose the same orientation for all rung singlets, say from leg l = 1
to leg l = 2, each cross couplings between two rungs leads to a hopping
amplitudes −J��4, adding to −J��2, while each leg couplings leads to a
hopping amplitude J∥�4, adding to J∥�2. So, in tight-binding language with
hopping amplitude t, the triplet hopping is given by t = (J∥ − J�)�2.

Now, triplets experience repulsion when they sit on neighboring sites
because they have to pay the exchange energy of the antiferromagnetic cou-
plings. Each exchange contributes with a factor 1�4, leading to an e�ective
repulsion v = (J� + J∥)�2 between nearest neighbors.

Finally, the chemical potential is given by µ = H − J⊥ since the energy
of a triplet with respect to a singlet is equal to J⊥ −H, and by definition of
the chemical potential this energy is equal to −µ.

So the Hamiltonian describing the triplets can be reformulated as a spin-
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less fermion Hamiltonian given by

H = t�
i

(c†
i
c

i+1 + c†
i+1c

i
) + v�

i

nini+1 − µ�
i

ni

where ni = c†
i
c

i
, with t = (J∥ − J�)�2, v = (J� + J∥)�2 and µ = H − J⊥. Now,

this model has a Bethe ansatz solution, and there is a phase transition at
v = 2t. Beyond that value, a gap opens at half-filling, and the ground state
is a charge density wave of period 2. The condition v = 2t translates into
J� = J∥�3. So, in the limit of strong rungs, there will be a plateau at m = 1�2
if J��J∥ > 1�3. In other words, it takes a finite level of frustration to develop
a 1/2-plateau.

On the basis of these arguments, one could expect the generic curve
of the frustrated ladder for 1�3 < J��J∥ < 1 to have 4 critical fields: the
field where the plateau at m = 0 ends, the beginning of the 1/2-plateau,
the end of the 1/2-plateau, and the saturation field. In the limit J��J∥ →
1�3, the 1/2-plateau disappears, and one is left with two critical fields, the
end of the plateau at m = 0, and the saturation field. In the opposite
limit J��J∥ → 1, the intermediate regions between m = 0 and m = 1�2 and
between m = 1�2 and m = 1 shrink to 0, and we are again left with only
two critical fields at which the magnetization jumps. The actual situation
is slightly more complicated (see Fig. 10.8). The fermionic model only
describes singlets and triplets T1. But in a ladder, there are also T0 and
T−1. It turns out that, when coming from saturation, and for some sets
of parameters, it is more favourable to first create T0 triplets, resulting in
another critical field between the end of the 1/2-plateau and saturation at
which the magnetization jumps. Below this critical field, the ground state
essentially consists of singlets and triplets T1 while above it, it is built out
of T0 and T1 triplets.

10.3.3 Shastry-Sutherland model
The magnetization curve of the Shastry-Sutherland model is the richest
observed so far in a frustrated quantum magnet, with plateaus at 1/8, 2/15,
1/6, 1/4, 1/3, 2/5 and 1/2 for a ratio of inter- to intra-dimer coupling of
0.63 according to steady and pulsed field experiments performed on a very
accurate realization of that model in a spin-1/2 cuprate, SrCu2(BO3)2. The
plateaus at 1/4, 1/3, 2/5 and 1/2 are crystals of triplets, and they can
be understood as the result of a very small kinetic energy and long range
repulsion between triplets. The lower magnetization plateaus however have
another structure. Because of correlated hopping, a spin-2 bound state is
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stabilized in zero field, and it has been predicted that it is the crystallization
of such bound states that stabilizes the plateaus at 1/8, 2/15 and 1/6.
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