Chapter 9
Algebraic spin liquids

The possibility for a quantum magnet to support algebraic correlations, a
situation intermediate between long-range order and exponentially decay-
ing correlations, is well documented for half-integer spins in 1D. This can
be most easily demonstrated in the case of the spin-1/2 XY chain by map-
ping the problem onto free fermions using the Jordan-Wigner transforma-
tion. The extension to 2D requires another mapping of spin operators onto
fermions known as Abrikosov fermions, and the resulting problem can be
solved with mean-field theory, leading in some cases to a Dirac spectrum
with algebraic correlations.

9.1 The spin-1/2 XY chain

In this section, we consider the simplest example of a quantum magnet for
which correlations can be proven to be algebraic, the spin-1/2 XY chain
described by the Hamiltonian

H = 5785+ 818%,) = 5 (7 S + 57 S0

()

This Hamiltonian can be diagonalized exactly by mapping it onto free fermions.

9.1.1 Jordan-Wigner transformation

In 1D, spin-1/2 operators can be represented in terms of spinless fermions
with a non-local transformation known as the Jordan-Wigner transformation
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and defined by:

Sh= c;r exp(im ¥ c;r.cj) = cz(—l)zaﬁ' "
S = exp(=im e clheg) ¢ = (~1) T 9.1)
S;=clei-3
with n; = c}cj.
It is easy to check that these operators satisfy the SU(2) algebra. Indeed,

since c;r and ¢; commute with (-1)%i<i™ | one can write

[S,S7] = cgci - Cic;[ = cl.Lci -(1- c;.fci) = QCICZ‘ -1=257
and
(87,57 = [elei, el (-1) %] = [eler, e]](-1) B = ef(-1) i = 57

Now, although the relation between spins and fermions is non local, the
Hamiltonian keeps a local form in fermionic language. This is due to the
remarkable property:

SiSiq =cle,,,.

Indeed, using the identity (-1)™ =1 - 2n,; for a fermion operator, one gets

Sy S = CI(—l)niCiﬂ = CZ‘(l = 2n;)ciy1 = C:L‘rci+1'

The Hamiltonian in fermionic language is thus just a simple tight-binding
model:

H = g Z(c}cﬂl +H.c.).

1

It is readily diagonalized by a Fourier transform:

H = ZJcosk chk.
k

The ground state is defined by

(T ) = 1 for Jcosk <0
k=Y 0 for Jcosk >0

If J <0, the ground state is thus given by a half-filled Fermi sea:
[wo)= T < 10).
—-[2<k<m[2

For J > 0, the ground state would be obtained by filling the other states.
But the physical properties are the same as for J < 0 since the two cases are
related by a canonical transformation, namely a rotation by 7 around z of
every other spin. So we will continue assuming J < 0.
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9.1.2 Spin-spin correlations

The calculation of the spin-spin correlation function is very simple for the
z component because the correspondence between spin and fermionic oper-
ators is purely local. So let’s concentrate on the correlation function

1 1 1 1 1
{(n; - 5)(7%' - 5)) = (ninj) - 5("%') - 5( i)+ 7

(5757)

where the expectation values are calculated in the ground state.
In Fourier space, the operator n; is given by

1 i(kr—k2)i 1
ni= 7 Y et Chy Chy»
k1,k2
where L is the number of sites, and its ground state expectation value is

given by
1 (k1 —ks)i
(ni) = —kz]; ¢!k 2)’(021%2).
1,R2

Now, <Cchle:2> = (w0|6210k2|¢0) =0 except if k1 = k2 and ks is occupied. So,
1 N 1
md=7 & 1°T 73
ko occ.
because N, the number of fermions in the ground state, has to be equal to
L/2 since the system is half-filled. The result that (n;) = 1/2 is of course
expected since the system is translationally invariant, so that (n;) is inde-
pendent of i, and since N = (}; n;) = L/2.
Let’s turn to the two-point correlation function. In Fourier space, the
expectation value is given by

1 ei(k1*k2)iei(k3*k4)j< T T ).

(ninj) = 7 Chy Chy Chis
k1,k2,k3,kq

In the ground state, (cLlckQC;Lgck‘l) = 0 except if (k1 = ko and ks = ky4), or

(k‘l = ]{?4 and ]{32 = ]433)

First case: k1 = ko and k3 =ky

The contribution of this case is given by
1 N? 1
roa T

ko,k4 occ.
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Second case: ki = ks and ko = k3

The contribution of this case is given by

- e—ikgr.

1 i(ka—ks)(i-j) _ 1
: Z eika=k3)(i=j) _ =

k4 occ. k3 empty L k4 occ. k3 empty

where we have put ¢ — j = r. The first factor is given by

1 L1 rm2 1
— Z e = — f e*rdr = — sin Er,
L k occ. 21 J-x/2 mr 2

and the second one by

1 ) 1 /2 . ™ ; 1
L Z e—zkr _ / 6_Zkrd7“ + [ e_lkrdr = —[sin Tr — sin ET]
L k 2T - /2 r 2

empty
Putting all contributions together, the correlation function is given by

1 T T

(S7S7.,) = g sin 5 [sin7r — sin 57“]

Since r is integer, sinwr = 0, and this simplifies to

. 9T
<SZZSZZ+T’> = _;T_Q s 57"7
leading to
—L 5 ifr odd
(S5 S5) =

0 if r even

So the longitudinal correlation function decays as 1/r2. The transverse
correlations require a more sophisticated approach because of the string that
appears between the fermionic operators due to the non-local correspondence
between S;” and S; and the fermionic operators. This can for instance be
achieved with bosonization, with the result that the transverse correlation
function (S;S;,.) decays as 1/r'/2. For the antiferromagnetic Heisenberg

K3 1+7r
model, both correlations decay as 1/r.
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9.2 Algebraic spin liquids in 2D

As shown by the example of the XY chain, the fermionic representation of
spins is ver well adapted to the description of algebraic correlations. How-
ever, the Jordan-Wigner transformation does not lead to free fermions in
higher dimension. Indeed, it is not possible any more for all pairs of nearest-
neighbour sites to correspond to consecutive integers in a numbering of the
sites from 1 to IV, and several of the spin-spin interactions between nearest
neighbour would appear as a fermionic hopping with a phase factor that
depends on the number of fermions along some path. So to describe spins
as fermions in dimension larger than 1, it is more convenient to use another
representation.

9.2.1 Abrikosov fermions

This representation, which goes under the name of Abrikosov fermions, relies
on two types of fermions with an internal spin degree of freedom 1 and |
according to:

S:' = C;-rTCN

(2

S7 = 3 (nir —nqy)

(2

ST = c;rlc“

with the constraint n;; + n;, = 1. Without the constraint, these fermionic
operators would simply represent a spin-1/2 particle.

This representation of the spin algebra leads to the following fermionic
form of the S = % Heisenberg Hamiltonian:

1 1 1
H = 5 ZZJ: Jij [5 (CITCNC;%CJ'T + h.C.) + Z (CITQ;T - CLCN) (C}TCJ'T - C;r.lel)]

All terms are quartic in fermionic opertors. It is thus impossible to di-
agonalize the Hamiltonian with the standard approach for quadratic Hamil-
tonians (Fourier transform and, if necessary, Bogoliubov transformation).
To get a tractable model, one has to perfrom a mean-field decoupling of
the quartic terms using quadratic operators. In the present context, a very
useful quadratic operator is given by:

. T
Xij = CjyCit + €641

Indeed, in terms of this operator, the scalar product of two spin operators

can be written as:
1 1
iP5 = Z - §Xinz‘j

113



Lecture notes on frustrated magnetism - Frédéric Mila

Proof

T At T T (I
XijXij = (CjTCZT T Cli) (CiTCJT + Ciicﬂ)
) T T T T T T T
_CchiTciTCjT + CchiTciLcjl + ij,cilcichT + cjlcucucjl
_ 97— 978 +of
=cjycit —marngt = 5557 = 5557 + ¢jyci — niyngy.

Using the identity

1 1

SZZSJZ + anj = 5 (niTan + nunﬂ)
and the fact that n; = nj +n;; = 1, one gets

] soe L + Q- - q+ 3. Q 1

Xinij = nj — 251- Sj — 5711‘713' - Sj Si - Sj Si = —2Si . Sj + 5

So, up to a constant, and for a model with nearest-neighbor interactions
of magnitude J, the Hamiltonian is given by

-2 3 s
igAL]
2 (i)

H =

If we define the order parameter of the mean-field decoupling by
0
Xij = {xi5)
the mean-field decoupling corresponds to the approximation:

T i

o0 0% 02
Xij Xig = Xig Xij ¥ Xij Xig — |Xij| .

As usual, the term that has been left out is the product of the fluctuations:
0 0
(Xij - Xij)(Xj‘-j - Xi;)'
In the next two sections, we discuss two mean-field solutions for the
square lattice antiferromagnet with nearest-neighbour interactions.

9.2.2 Dimerized solution

Let us suppose that X?j =" real on a dimer covering of the square lattice,
and 0 otherwise. For a bond that belongs to the dimer covering, the mean-
field Hamiltonian is given, up to a constant, by:
Jx°
H(Z]) = —T (C:L!.O'ng + C;UCZ'U) .

g
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With the help of the operators

1
CL(T,:—((:Jr +cf

1
; ) ay = —= (Cio + Cjor)
V2Nt e V2

5 (e

it takes the diagonal form

bl

H=-— Z (a:r,a(, - bj,bg)

(e

In terms of these operators, the constraint is given by: >, (aj,ag + bgba) =2.

Let’s suppose that x” > 0. Then, in the ground state

(a];aT> = (aIcu) =1 and (bibT) = (bIm) =0,

and the order parameter is given by

0 = (xij) = (c;rTCjT + ch) = <% [(CLJTr + b]TL) (ar —b1) + (alr + blr) (a;-b i)])

1
= 5((a1a¢ + aIal)) =1.

This is consistent with the hypothesis x° > 0.

Besides, for pairs of sites that do not correspond to a dimer of the dimer
covering, the expectation value vanishes because each term of the Hamilto-
nian changes the fermionic occupancy of the two dimer bonds to which the
sites belong.

So, this solution is self-consistent. It is thus a valid mean-field solution.
It is highly degenerate because all dimer coverings lead to the same energy
since the total energy is just the sum of the bond energies. This solution is
not the lowest energy solution for the simple square lattice antiferromagnet,
but a solution of this type can be stabilized for frustrated models, as sug-
gested for the intermediate phase of the J; — J» model. This solution is also
competitive when the spin operators are replaced by SU(N) operators with
the fundamental representation on one sublattice and the anti-fundamental
representation on the other sublattice in the large N limit. Note also that,
when going beyond mean-field, one generates an effective Hamiltonian in the
subspace of the dimer coverings that takes the form of a Quantum Dimer
Model.
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Figure 9.1: w-flux state. Each hopping term has a phase 7/4 in the direction
of the arrow of the left panel. The vectors used in the solution of the resulting
tight-binding problem are defined in the right panel.

9.2.3 Flux phase

These fermionic mean-field theories are particularly attractive to describe
exotic, gapless ground states. One of the first cases ever discussed is the
m-flux state, a mean-field solution investigated by Affleck and Marston. It
corresponds to the choice

’ng‘ = xo on all bonds, (9.2)
0;5 = % according to the arrows on Fig. 9.1 (9.3)

If one interprets the phase as the circulation of a vector potential, the flux
through each plaquette is equal to m, hence the name 7-flux state.

The kinetic term of the mean field Hamiltonian corresponds to a tight-
binding problem with two sites per unit cell. If we denote by @ and b the
unit vectors according to the right panel of Fig. 9.1, and by k; and ks the
components of the wave-vector in reciprocal space

/% = kla* + k}QB*, (9.4)
the eigenvalue problem takes the simple form

_ JX()Z
J E* 2
XSZ -B

=0

with
s = €i7r/4(1 +e—ik1+ik2) +e—i7r/4(e—ik1 +€ik2)
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Figure 9.2: Dirac spectrum of the 7m-flux state.

2
The spectrum is given by E? = (%) |2|? with |2|? = 4(cos? kl;kQ +cos? kl;“ ).

Defining k, = % and k, = kl;'”, the spectrum takes the form

E= iJXO\/cos2 ky + cos? ky

This spectrum has a very peculiar property. Since we are at half-filling,
the Fermi energy Fr = 0. The Fermi surface thus reduces to 4 points,
ky,ky = +m/2. This is a Dirac spectrum, qualitatively similar to that of
graphene (see Fig. 9.2).

In such a ground state, correlations are algebraic. Furthermore, it has
been argued that, because of the Dirac form of the spectrum, as opposed
to an extended Fermi surface, such a mean-field solution is stable against
fluctuations beyond mean field.

For the antiferromagnetic Heisenberg model on the square lattice, this
solution is definitely not the ground state. Indeed, numerical simulations
have shown beyond reasonable doubt that the ground state has Néel order.
However a similar solution has been proposed for the kagome antiferromag-
net with a flux m per hexagonal plaquette. Such an algebraic spin liquid
ground state has been supported by some numerical simulations.

9.2.4 Related developments

In the mean field approach, the constraint n; = 1 is treated on average. This
constraint can be treated more precisely using Gutzwiller’s projection. A
technique known as variationnal Monte Carlo has been devised to calculate
the expectation value of operators including a Gutzwiller projection:

[T(1-niny) (9.5)
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If one wants to compare the energy of different solutions to test the stabil-
ity of a given solution, it is certainly better to perform such a projection.
However, if one starts playing this game, one should use the decoupling pa-
rameters as free parameters in the context of a variational approach. This
opens the way to more general decouplings including pairing operators. This
line has been developed by Sorella and collaborators.

In that context, it is useful to note that, when formulated in terms of
fermionic operators, the Hamiltonian has a local gauge invariance:

T U )
(CiT) — 057 (CiT) (9.6)
Ci| Ci|

where 6 = (0,,0,,0.). A simple case is:

.|.
cl, = ¢
{ o (9.7)

Ciy = Cyy

This implies that different mean-field theories can correspond to the same
state. This is the case of the m-flux state, which is equivalent from the point
of view of spins with a pairing instability with d-wave symmetry.

Finally, mean-field theories with fractional fluxes that break time-reversal
symmetry have been proposed. These solutions are spin-liquid analogs to
the Fractional Quantum Hall Effect. They possess non-trivial topological
properties such as chiral edge-states and are often referred to as chiral spin
liquids.
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